Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/493

Title: Fabrication and DC characterization of single electron transistors at low temperature
Authors: Dubejsky, Gregory Stefan

Files in This Item:

File Description SizeFormat
Dubejsky_Gregory_Stefan_200707_MSc.pdf6.42 MBAdobe PDFView/Open
Keywords: Single electron transistor
Low temperature
Issue Date: 2007
Series/Report no.: Canadian theses
Abstract: The metallic single electron transistor (SET) has been shown to provide charge sensitivity on the order of 10-6 e/(Hz)1/2, when operated as a charge amplifier. This makes it an ideal candidate for low-noise measurement schemes, such as monitoring nano-mechanical oscillations, or reading out the charge state of a quantum bit. The SET operates by exploiting quantum tunneling across an ‘island’ between two insulating tunnel junctions, and can be modulated by a capacitively coupled gate electrode. A metallic SET has been fabricated and characterized at low frequencies. The device was fabricated on a silicon substrate coated with a bi-layer resist, using electron beam lithography. The Al-AlOx¬-Al tunnel junctions were created using double angle evaporation. Samples were tested near 300 mK in a custom helium-3 cryostat system. Results which characterize the SET parameters and conductance behaviour were obtained, in both the superconducting and normal states. This thesis contains a discussion of the fabrication procedures and dc measurement techniques required to produce and test a single electron transistor. Relevant background theory relating to SET operation and cryogenic laboratory techniques is presented. A brief discussion of proposed future experiments using a dual gate radio frequency SET as a more sensitive amplifier is introduced.
Description: Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2007-08-01 14:07:55.427
URI: http://hdl.handle.net/1974/493
Appears in Collections:Department of Physics, Engineering Physics and Astronomy Graduate Theses
Queen's Graduate Theses and Dissertations

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP