Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/5065

Title: The Treatment of Benzene, Toluene, Ethylbenzene and o-Xylene Using Two-Phase Partitioning Bioscrubbers

Files in This Item:

File Description SizeFormat
Jennifer_Littlejohns_V_200908_PhD.pdf3.29 MBAdobe PDFView/Open
Keywords: Biodegradation
Two-Phase Partitioining Bioscrubber
Airlift Bioreactor
Oxygen Mass Transfer
Microbial Kinetics
Bacterial Consortium
Mathematical Modeling
Estimability Analysis
Issue Date: 2009
Series/Report no.: Canadian theses
Abstract: This thesis examined the biological treatment of gas streams containing benzene, toluene, ethylbenzene and o-xylene (BTEX) using solid-liquid two-phase partitioning bioscrubbers (SL-TPPBs). SL-TPPBs consist of a cell containing aqueous phase and a polymeric solid phase that sequesters poorly water soluble and/or toxic substrates, mitigating substrate toxicity in the aqueous phase and improving the gas mass transfer during treatment of VOC contaminated gases. An initial investigation of oxygen transport determined that the polymers in a stirred-tank SL-TPPB enhance gas-liquid mass transfer. In addition, a study on biodegradation kinetics of BTEX by a bacterial consortium identified and quantified substrate interactions such as inhibition, enhancement and cometabolism. The stirred-tank SL-TPPB was then experimentally investigated for treatment of BTEX gas streams during steady-state and dynamic step-change operation to determine performance of the system relative to other biotreatment methods. A mathematical model was developed to predict system performance, which included the microbial kinetic model structure and parameters estimated during kinetic and oxygen mass transfer studies. As a less energy intensive alternative, an airlift SL-TPPB was operated and characterized. The airlift SL-TPPB was compared to an airlift liquid-liquid TPPB (silicone oil as sequestering phase) and a single phase airlift over dynamic step-change loadings, which showed that the airlift SL-TPPB outperformed the single phase airlift by >30% and had similar performance to the liquid-liquid airlift. However, the airlift SL-TPPB performance was lower relative to the stirred-tank SL-TPPB by >15%. Steady-state operation of the airlift SL-TPPB identified a range of operating conditions that provided maximum performance and conditions that were not oxygen limited. This prompted a study of oxygen mass transfer and hydrodynamics in the airlift system, which identified that the addition of polymers to an airlift does not cause physical enhancement of the gas-liquid mass transfer coefficient, but improves aqueous phase mixing and enhances overall oxygen transfer rate. A tanks-in-series mathematical model was formulated to predict performance of the airlift SL-TPPB, wherein the number of tanks-in-series to describe mixing in the airlift was obtained from a residence time distribution analysis of the airlift system completed during the hydrodynamic investigation. This thesis contributes a low-energy solution for the effective treatment of gases contaminated with BTEX.
Description: Thesis (Ph.D, Chemical Engineering) -- Queen's University, 2009-08-18 16:16:22.598
URI: http://hdl.handle.net/1974/5065
Appears in Collections:Queen's Graduate Theses and Dissertations
Department of Chemical Engineering Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP