• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Palladium and Ruthenium Catalyzed Reactions

    Thumbnail
    View/Open
    Jaksic_Bryan_E_201106_MSc.pdf (2.324Mb)
    Date
    2011-07-05
    Author
    Jaksic, Bryan
    Metadata
    Show full item record
    Abstract
    Part one of this thesis will discuss research which involves the direct comparison of the activity of commonly used precatalysts with the newly synthesized precatalyst, Pd(η5-C5H5)(η3-1-Ph-C3H4), for Sonogashira cross-coupling reactions. Sonogashira reactions are important as they provide a simple method for the formation of substituted alkynes, a commonly found functionality within important organic molecules. These reactions are generally believed to be catalyzed by a Pd(0)L2 species which are generated in situ from a palladium precatalyst and are often co-catalyzed by CuI although use of the latter is undesirable as it induces homocoupling in certain instances. The rate and quantity of active species generated is not known for the commonly used precatalysts and is a potential reason for decreased rates and yields. Norton et al. have recently demonstrated that the newly synthesized, easily handled compound Pd(η5-C5H5)(η3-1-Ph-C3H4) is a superior precatalyst as it generates the active Pd(0)L2 species more quickly than other commonly used palladium precatalysts. Part one of this thesis will discuss research which investigated the efficiencies of precatalysts used for Sonogashira cross-coupling reactions. Part two of this thesis will discuss research into the syntheses of a novel series of ruthenium complexes and their utilization as ester hydrogenation catalysts. Reduction of esters to the corresponding alcohols is normally carried out using LiAlH4, a stoichiometric type of reaction which produces large amounts of undesirable by-products. Ruthenium-based catalysts are known to hydrogenate a variety of functional groups and many catalytic systems have been developed for the hydrogenation of alkenes, ketones, etc. The recent literature also describes a small number of ruthenium catalyst systems which enable ester hydrogenation to the same types of alcohols produced by LiAlH4 reduction albeit catalytically, a much “greener” type of chemistry. This paper will discuss the syntheses of a series of Ru(acac)2(phosphine)1-2 complexes and their utilization as ester hydrogenation catalysts.
    URI
    http://hdl.handle.net/1974/6596
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Chemistry Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV