Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/6983


Files in This Item:

File Description SizeFormat
Harris_Chris_T_201201_PhD.pdf8.33 MBAdobe PDFView/Open
Keywords: Upgrading
Nickel Laterites
Issue Date: 30-Jan-2012
Series/Report no.: Canadian theses
Abstract: The processing of nickeliferous laterites to produce nickel metal is both complex and energy intensive. Since most laterites are found in remote regions, the capital costs for the infrastructure can exceed those for the process itself. The low temperature sulphidation of lateritic ores to produce an intermediate nickel concentrate for further processing offers a number of potential advantages, such as lower energy consumption and a relatively simple flowsheet. In this research, the sulphidation of a nickeliferous lateritic ore was investigated between the temperatures of 450-1100oC and sulphur additions of between 25-1000 kg of sulphur per tonne of ore. The experiments demonstrated that the nickel oxide within the ore can be selectively sulphidized to a nickel-iron sulphide. It was found that both the grade and the sulphidation degree largely depended upon the temperature and the sulphur additions, with temperatures above 550oC exhibiting the highest nickel sulphidation extents and grades. A DTA/TGA with mass spectrometer was used to further elucidate the nature of the phase transformations that occur upon heating of the ore, in the presence of sulphur. It was found that the Fe-Ni-S phase formed at low temperatures was submicron in nature and heating to temperatures of 1050oC-1100oC allowed for the growth of the sulphides to a d80 of up to 14 ┬Ám due to increased sulphide mobility, associated with the formation of a liquid sulphide matte with dissolved oxygen. Flotation studies conducted on 60 g samples showed that the sulphides formed respond to flotation with maximum grades of up to 6-7 wt% nickel being achieved and average grades of between 4-5 wt% nickel. Recoveries were approximately 50% on a sulphide basis and it was determined that the low nickel grades were due to the entrainment of magnetite fines.
Description: Thesis (Ph.D, Mining Engineering) -- Queen's University, 2012-01-29 14:14:18.704
URI: http://hdl.handle.net/1974/6983
Appears in Collections:Queen's Graduate Theses and Dissertations
The Robert M. Buchan Department of Mining Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP