Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/7342

Title: On the Reduced Operator Algebras of Free Quantum Groups
Authors: Brannan, Michael Paul

Files in This Item:

File Description SizeFormat
Brannan_Michael_P_201207_PhD.pdf1.19 MBAdobe PDFView/Open
Keywords: quantum groups
operator algebras
free probability
approximation properties
Issue Date: 3-Aug-2012
Series/Report no.: Canadian theses
Abstract: In this thesis, we study the operator algebraic structure of various classes of unimodular free quantum groups, including thefree orthogonal quantum groups $O_n^+$, free unitary quantum groups $U_n^+$, and trace-preserving quantum automorphism groups associated to finite dimensional C$^\ast$-algebras. The first objective of this thesis to establish certain approximation properties for the reduced operator algebras associated to the quantum groups $\G = O_n^+$ and $U_n^+$, ($n \ge 2$). Here we prove that the reduced von Neumann algebras $L^\infty(\G)$ have the Haagerup approximation property, the reduced C$^\ast$-algebras $C_r(\G)$ have Grothendieck's metric approximation property, and that the quantum convolution algebras $L^1(\G)$ admit multiplier-bounded approximate identities. We then go on to study trace-preserving quantum automorphism groups $\G$ of finite dimensional C$^\ast$-algebras $(B, \psi)$, where $\psi$ is the canonical trace on $B$ induced by the regular representation of $B$. Here, we extend several known results for free orthogonal and free unitary quantum groups to the setting of quantum automorphism groups. We prove that the discrete dual quantum groups $\hG$ have the property of rapid decay, the von Neumann algebras $L^\infty(\G)$ have the Haagerup approximation property, and that $L^\infty(\G)$ is (in most cases) a full type II$_1$-factor. As applications of these and other results, we deduce the metric approximation property, exactness, simplicity and uniqueness of trace for the reduced C$^\ast$-algebras $C_r(\G)$, and the existence of multiplier-bounded approximate identities for the convolution algebras $L^1(\G)$. We also show that when $B$ is a full matrix algebra, $L^\infty(\G)$ is an index $2$ subfactor of $L^\infty(O_n^+)$, and thus solid and prime. Finally, we investigate strong Haagerup inequalities in the context of quantum symmetries arising from actions of free quantum groups on non-commutative random variables. We prove a generalization of the strong Haagerup inequality for $\ast$-free R-diagonal families due to Kemp and Speicher, and apply this result to study strong Haagerup inequalites for the free unitary quantum groups.
Description: Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2012-07-31 12:45:57.767
URI: http://hdl.handle.net/1974/7342
Appears in Collections:Queen's Graduate Theses and Dissertations
Department of Mathematics and Statistics Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP