Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/7405

Title: Computational study of rovibrational spectra of Van der Waals dimers and their isotopologues
Authors: Brown, JAMES

Files in This Item:

File Description SizeFormat
Brown_James_H_201208_MSc.pdf1.18 MBAdobe PDFView/Open
Keywords: Potential Energy Surface
Intermolecular Forces
Wave Functions
Rotational-Vibrational States
Schroedinger Equation
Issue Date: 29-Aug-2012
Series/Report no.: Canadian theses
Abstract: A new intermolecular potential energy surface, rovibrational transition frequencies, and line strengths are computed for OCS-OCS and CO2-CS2. The potentials were made by fitting energies obtained from explicitly correlated coupled-cluster calculations and fit using an interpolating moving least squares method. Rovibrational transition frequencies are also calculated for four isotopologues of the N2O dimer using a previously presented potential energy surface. The rovibrational Schroedinger equation for all three dimers is solved with a symmetry-adapted Lanczos algorithm and an uncoupled product basis set. All four intermolecular coordinates are included in the calculation. On the OCS-OCS potential energy surface, a previously unknown, cross-shaped isomer is found along with polar and non-polar isomers. For CO2-CS2, the previously found cross-shaped minima is found along with a slipped-parallel configuration. The associated wavefunctions and energy levels for each of these isomers is presented. To identify states that have a permanent dipole, both calculations of line strengths and vibrational parent analysis is used. For non polar states of, OCS-OCS, and N2O-N2O isotopologues, and all CO2-CO2 states, only vibrational parent analysis was used. Calculated rotational constants differ from their experimental counterparts by less than 0.001 wavenumbers for OCS-OCS and CO2-CS2, and less than 0.002 wavenumbers for any N2O-N2O isotopologue.
Description: Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2012-08-23 13:19:45.294
URI: http://hdl.handle.net/1974/7405
Appears in Collections:Queen's Graduate Theses and Dissertations
Department of Physics, Engineering Physics and Astronomy Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP