Now showing items 1-1 of 1

    • Variations on Artin's Primitive Root Conjecture 

      FELIX, ADAM TYLER (2011-08-11)
      Let $a \in \mathbb{Z}$ be a non-zero integer. Let $p$ be a prime such that $p \nmid a$. Define the index of $a$ modulo $p$, denoted $i_{a}(p)$, to be the integer $i_{a}(p) := [(\mathbb{Z}/p\mathbb{Z})^{\ast}:\langle a ...