Queen's University - Utility Bar

QSpace at Queen's University >
Theses, Dissertations & Graduate Projects >
Queen's Theses & Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/1017

Title: BATCH AND BENCH-SCALE FIXED-BED COLUMN EVALUATIONS OF HEAVY METAL REMOVALS FROM AQUEOUS SOLUTIONS AND SYNTHETIC LANDFILL LEACHATE USING LOW-COST NATURAL ADSORBENTS
Authors: Li, Chenxi

Files in This Item:

File Description SizeFormat
Li_Chenxi_200801_Master.pdf4.88 MBAdobe PDFView/Open
Keywords: heavy metal
adsorption
synthetic landfill leachate
low-cost natural adsorbents
Issue Date: 2008
Series/Report no.: Canadian theses
Abstract: In this project, three separate experiments were conducted to assess heavy metal removal from metal aqueous solutions and synthetic landfill leachate by adsorption using low-cost natural adsorbents. Fundamental batch investigations indicated that the 4.0-4.75 mm crushed mollusk shells and the Sphagnum peat moss were the best adsorbents for cadmium and nickel removal, respectively. Peat moss was also found to have the highest adsorption capacities for manganese and cobalt adsorption. The adsorption capacities of the peat moss and crushed mollusk shells used as natural adsorbents for the adsorption of cadmium and nickel from binary aqueous solutions in fixed-bed columns under continuous flow conditions were investigated. The life expectancy of each adsorbent in the fixed-bed columns was also assessed for different hydraulic loading rates. The flow rate of 1.5 mL/min (surface loading of 27.52 cm3/cm2•day) and bed depth of 15 cm were identified as the better operational conditions from the column testing. The results indicated that 47.9% and 42.7% cadmium and nickel removal efficiencies could obtained under these operational conditions, respectively. Finally, the peat moss and the crushed mollusk shells were packed in bench-scale down-flow fixed-bed columns to evaluate their adsorption capacities as natural low-cost adsorbents for the removal of heavy metals from aerated and non-aerated synthetic landfill leachate. The flow rate applied in this operation was 1.5 mL/min (surface loading of 27.52 cm3/cm2•day). Peat was found to have the best adsorption capacities in columns treating aerated synthetic leachate for cadmium (78.6%) and nickel (83.8%) removal efficiencies.
Description: Thesis (Master, Civil Engineering) -- Queen's University, 2008-01-31 22:37:34.381
URI: http://hdl.handle.net/1974/1017
Appears in Collections:Civil Engineering Graduate Theses
Queen's Theses & Dissertations

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP