Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/1177

Title: An Investigation of Nano-voids in Aluminum by Small-angle X-ray Scattering
Authors: Westfall, Luke Aidan

Files in This Item:

File Description SizeFormat
Westfall_Luke_200804_MSc(Eng).pdf5.63 MBAdobe PDFView/Open
Keywords: SAXS
vacancy clustering
Issue Date: 2008
Series/Report no.: Canadian theses
Abstract: Small angle x-ray scattering (SAXS) with synchrotron radiation was used to characterize nano-sized voids in different nominally pure aluminum (Al) alloys produced by quenching. The scattering signal from nano-voids is shown to be predictable from SAXS theory, and the information related to the void population confirm past experiments and reveal new details about quench-void formation in Al. Specifically, voids were produced in 99.97 at.% to 99.9994 at.% Al alloys by infrared heating to 450 – 625 °C followed by controlled rapid quenching at 10^3 to 10^5 °C/s. For changing processing conditions, the size of voids varied between 5 to 11 nm, and the density of voids varied by over an order of magnitude. Results from SAXS were consistent with TEM observations performed on the same specimens, indicating that synchrotron SAXS can be reliably used to characterize nano-voids produced in quenched Al. Factors determined to affect voids were consistent with previous studies, except that the present nano-voids dissolved after only 3 min. at 145 °C, indicating that quenched nano-voids are less stable than previously determined. SAXS also showed that void size is sensitive to quench temperature and quench rate. The activation energies for void nucleation and growth were determined to be 0.75 ± 0.10 and 0.19 ± 0.03 eV/at., respectively, confirming that hydrogen and di-vacancies take part in nucleation and growth during quenching. It was concluded that the non-linear tail of the quench curve plays a crucial role in void formation, and that voids form when long range diffusion is inhibited. This information can be utilized to design new Al alloys that limit incipient void formation, which is detrimental to properties such as formability.
Description: Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2008-04-25 15:17:30.211
URI: http://hdl.handle.net/1974/1177
Appears in Collections:Queen's Graduate Theses and Dissertations
Department of Mechanical and Materials Engineering Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP