Queen's University - Utility Bar

QSpace at Queen's University >
Theses, Dissertations & Graduate Projects >
Queen's Theses & Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/1395

Title: High cell density culivation of Methylosinus trichosporium OB3b
Authors: Adegbola, OLUFEMI

Files in This Item:

File Description SizeFormat
Adegbola_Olufemi_200808_MScE.pdf2.08 MBAdobe PDFView/Open
Keywords: Methylosinus trichosporium
High density cell fermentation
Methanol
methane monooxygenase
Issue Date: 2008
Series/Report no.: Canadian theses
Abstract: Methylosinus trichosporium OB3b is a wild type, obligate methanotroph that grows only on one-carbon compounds and, in the absence of copper, produces high levels of soluble methane monooxygenase (sMMO) to metabolize methane to methanol. SMMO has gained a great deal of attention in the bioremediation and chemical industries because of its low substrate specificity and its ability to oxidize chlorinated hydrocarbons. Much literature exists on cultivating this organism on methane, however no one has achieved dry cell weight densities exceeding 18 g/L. Biomass growth is limited due to mass transfer of methane to cells. This study investigated the growth of M. trichosporium on the water soluble carbon source, methanol while retaining sMMO activity. Methanol was found to completely inhibit growth at 40 g/L. For online methanol measurements during fed-batch cultivation, an in situ probe was constructed from autoclavable materials and equipped with a Figaro TGS822 vapor sensor. The probe was designed to prevent the sensor coming in contact with water aerosols which affect its performance. The probe was an essential component of a feedback methanol control system. The cumulative CO2 production (CCP) strategy was used to feed methanol in fed-batch experiments. In an initial bioreactor study, growth nutrients were fed in excess. The yields of biomass to nutrients were determined and the growth medium modified accordingly. A biomass density of 19 g/L (growth rate of 0.013-0.065 h-1) was achieved with sMMO activity of 300 to 500 [┬Ámol naphthol][g of biomass]-1[h]-1. The subsequent bioreactor study involved feeding of nutrients based on their yields in relation to methanol, a biomass density of 62 g/L (growth rate of 0.034- 0.08 h-1) was achieved. The inoculum cultures utilized in the bioreactor studies were maintained on Noble agar plates containing nitrogen minimal salts medium and methane. After 6 months of subsequent plate transfers, M. trichosporium lost the ability to produce high levels of sMMO. The enzyme activity in methanol grown cells was recovered by subculturing in liquid NMS medium with methane as the sole carbon source, the activity increased from 8 to 600 [┬Ámol naphthol][g of biomass]-1[h]-1. It is recommended that further studies be carried out on stimulating sMMO activity during cultivation on methanol.
Description: Thesis (Master, Chemical Engineering) -- Queen's University, 2008-08-21 15:14:42.475
URI: http://hdl.handle.net/1974/1395
Appears in Collections:Chemical Engineering Graduate Theses
Queen's Theses & Dissertations

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP