Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/1536

Title: Deformable Registration to Create Cytoarchitectonic Probability Maps for Functional Analysis of Primary Auditory Cortex
Authors: Bailey, Lara

Files in This Item:

File Description SizeFormat
Bailey_Lara_200809_MSc.pdf2.96 MBAdobe PDFView/Open
Keywords: Computer Science
Medical Image Processing
Functional Magnetic Resonance Imaging
Auditory Cortex
Region of Interest Analysis
Primate Homologies
Issue Date: 2008
Series/Report no.: Canadian theses
Abstract: A novel method is presented for analyzing fMRI data, which relies on probabilistic estimates of microanatomically defined regions in individual fMRI volunteers. Postmortem structural and cytoarchitectonic information from the Julich/Dusseldorf group in Germany is aligned to the high-resolution structural MR images of functional MRI volunteers. This is achieved using nonlinear registration, which is applied only to the region of interest. The registered postmortem datasets are then combined into probability maps for microanatomically defined regions that are tailored to the anatomy of individual fMRI volunteers. These are then used as weighted spatial filters on functional MR data. In this thesis, three regions of the primary auditory cortex (located on Heschl's gyrus) have been targeted, and the analysis method is used to explore how these three areas respond to different kinds of sound. Regions Te1.0 and Te1.2 both demonstrate pitch sensitivity, consistent with published observations of the functional response of homologous regions in nonhuman primates. Area Te1.1 displayed sensitivity to both noise and pitch, consistent with the theory that it is homologous with the microanatomically similar area CM in nonhuman primates. Furthermore, the custom probability maps are much less diffuse and anatomically more precise than previous versions generated using the same postmortem data, and therefore permit a more sensitive and anatomically precise analysis of functional activity. This method could be applied to any other microanatomically defined region that has been characterized in the Julich postmortem dataset.
Description: Thesis (Master, Computing) -- Queen's University, 2008-09-26 19:50:54.582
URI: http://hdl.handle.net/1974/1536
Appears in Collections:Queen's Graduate Theses and Dissertations
School of Computing Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP