Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/1559

Title: The effects of habitat connectivity and regional heterogeneity on artificial pond metacommunities
Authors: Pedruski, Michael

Files in This Item:

File Description SizeFormat
Pedruski_Michael_T_200810_MSc.pdf3.22 MBAdobe PDFView/Open
Keywords: metacommunity
community ecology
habitat connectivity
Issue Date: 2008
Series/Report no.: Canadian theses
Abstract: While much evidence suggests that ecosystem functioning is closely related to biodiversity, present rates of biodiversity loss are high. With the emergence of the metacommunity concept ecologists have become increasingly aware that both local processes (e.g. competition, predation), and regional processes (e.g. dispersal and regional heterogeneity) affect ecological communities at multiple spatial scales. I experimentally investigated the effects of habitat connectivity and regional heterogeneity on biodiversity, community composition, and ecosystem functioning of artificial pond metacommunities of freshwater invertebrates at the local (α), among-community (β), and regional (γ) spatial levels. There was a significant effect of habitat connectivity on mean local richness, but mean local Simpson diversity, mean local functional diversity (FD), and all the three indices of ecosystem functioning investigated (regional abundance, invertebrate biomass, and chlorophyll a concentration) were unaffected by connectivity levels. Regional heterogeneity had no effect on local diversity, but enhanced both among-community richness and among-community Simpson diversity. Conversely, connectivity reduced among-community Simpson diversity. All indices of regional diversity were unaffected by either connectivity or heterogeneity. Despite expectations that there would be strong interactions between the effects of connectivity and heterogeneity on species richness, there were no interactions for any index of biodiversity at any spatial scale. Invertebrate community composition was unaffected by either connectivity or heterogeneity, though there was a significant effect of heterogeneity on its variance. Neither connectivity nor heterogeneity had significant effects on any index of ecosystem functioning, nor among-community coefficients of variation of ecosystem functioning. Connectivity appears to act mainly as a force homogenizing habitat patches in a region, as opposed to having strong effects in and of itself on communities. Conversely, heterogeneity acts largely as a diversifying force, maintaining differences between communities within a region, but, similar to connectivity, it does not have clear effects on communities at the local scale. Despite the different processes expected to act in homogeneous and heterogeneous regions, it does not appear that connectivity and heterogeneity interact strongly.
Description: Thesis (Master, Biology) -- Queen's University, 2008-10-16 09:06:33.103
URI: http://hdl.handle.net/1974/1559
Appears in Collections:Department of Biology Graduate Theses
Queen's Graduate Theses and Dissertations

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP