Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/1659

Title: Investigation of Maximum Mud Pressure within Sand and Clay during Horizontal Directional Drilling
Authors: Xia, HONGWEI

Files in This Item:

File Description SizeFormat
Xia_Hongwei_200901_PhD.pdf9.85 MBAdobe PDFView/Open
Keywords: Maximum Mud Pressure
Mud loss
Directional drilling
ground heave
Issue Date: 2009
Series/Report no.: Canadian theses
Abstract: Horizontal Directional Drilling (HDD) has been used internationally for the trenchless installation of utility conduits and other infrastructure. However, the mud loss problem caused by excessive mud pressure in the borehole is still a challenge encountered by trenchless designers and contractors, especially when the drilling crosses through cohesionless material. Investigation of mud loss problem is necessary to apply HDD with greater confidence for installation of pipes and other infrastructure. The main objectives of this research have been to investigate the maximum allowable mud pressure to prevent mud loss through finite element analysis and small scale and large scale laboratory experiments. The recent laboratory experiments on mud loss within sand are reported. Comparisons indicate that the finite element method provides an effective estimation of maximum mud pressure, and “state-of-the-art” design practice- the “Delft solution” overestimates the maximum mud pressure by more than 100%. The surface displacements exhibit a “bell” shape with the maximum surface displacement located around the center of the borehole based on the data interpreted using Particle Image Velocimetry (Geo-PIV) program. A parametric study is carried out to investigate the effect of various parameters such as the coefficient of lateral earth pressure at rest K0 on the maximum allowable mud pressure within sand. An approximate equation is developed to facilitate design estimates of the maximum allowable mud pressure within sand. A new approach is introduced to consider the effects of coefficient of lateral earth pressure at rest K0 on the blowout solution within clay. The evaluations using finite element method indicate that the new approach provides a better estimation of the maximum allowable mud pressure than the “Delft solution” in clay when initial ground stress state is anisotropic (K0 ≠1). Conclusion of this research and suggestions on future investigation are provided.
Description: Thesis (Ph.D, Civil Engineering) -- Queen's University, 2009-01-14 12:23:35.069
URI: http://hdl.handle.net/1974/1659
Appears in Collections:Department of Civil Engineering Graduate Theses
Queen's Graduate Theses and Dissertations

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP