Queen's University - Utility Bar

QSpace at Queen's University >
Theses, Dissertations & Graduate Projects >
Queen's Theses & Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/1763

Title: Organically Modified Mesoporous Silica as a Support for Synthesis and Catalysis
Authors: McEleney, Kevin

Files in This Item:

File SizeFormat
McEleney_Kevin_A_200904_PhD.pdf13.83 MBAdobe PDFView/Open
Keywords: Materials Chemistry
Mesoporous Silica
Supported Catalysis
Heterogeneity Tests
Chiral Periodic Mesoporous Silica
Issue Date: 2009
Series/Report no.: Canadian theses
Abstract: Mesoporous silicates are excellent materials for supported catalysis due to their ease of functionalization, tunable pore size and high surface areas. Mesoporous silicates have been utilized in a variety of applications such as drug delivery scaffolds and catalyst supports. Functionalization of the surface can be achieved by either grafting of alkoxy silanes or co-condensation of the organosilane with the inorganic silica source. My research in this area can be divided into two components. In the first, we address the significant issue of metal contamination after reactions that are catalyzed by transition metals. In the second, we examine the design of new catalysts based on organic/inorganic composites. Ruthenium catalyzed processes such as olefin metathesis or asymmetric hydrogenation, are often underutilized due to the difficulty of removing the ruthenium by-products. Attempts to remove ruthenium involve treating the solution with a scavenging reagent followed by silica chromatography. Often these scavenging agents are expensive phosphines or toxic agents like lead tetra-acetate. SBA-15 functionalized with aminopropyl triethoxysilane displays a high affinity for ruthenium. Furthermore, it can be utilized to remove ruthenium by-products from olefin metathesis or hydrogenation reactions without the need for silica chromatography. We have also prepared sulfur-functionalized mesoporous silicates that have a high affinity for palladium. The materials after loading prove to be active catalysts for a variety of palladium catalyzed processes such as Suzuki-Miyaura and Sonogashira couplings. The catalysts are recyclable with moderate loss of activity and structure, depending on the method of incorporation of the thiol. We have characterized the as-synthesized and used catalysts by nitrogen sorption, TEM, X-ray photoelectron spectroscopy (XPS) and a variety of homogeneity tests were performed on the catalysts. Periodic mesoporous organosilicates (PMOs) are a well known class of inorganic-organic hybrid materials. The majority of PMOs prepared utilize simple organic bridges such as ethyl, phenyl or biphenyl. The use of a chiral organic bridging group, such as BINAP, allows the synthesis of chiral PMOs with possible applications in catalysis and separation science. The synthesis of a triethoxysilyl functionalized BINAP as well as its incorporation into PMO materials with 4,4’-bistriethoxysilyl biphenyl or tetraethylorthosilicate as co-silica sources are described.
Description: Thesis (Ph.D, Chemistry) -- Queen's University, 2009-04-20 10:49:13.443
URI: http://hdl.handle.net/1974/1763
Appears in Collections:Chemistry Graduate Theses
Queen's Theses & Dissertations

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP