Queen's University - Utility Bar

QSpace at Queen's University >
Theses, Dissertations & Graduate Projects >
Queen's Theses & Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/1947

Title: Dye decolourization by immobilized laccase and impact of auxiliary chemicals on dye decolourization
Authors: Champagne, Paul-Philippe

Files in This Item:

File Description SizeFormat
Champagne_Paul-Philippe_200906_PhD.pdf1.35 MBAdobe PDFView/Open
Keywords: dye decolourization
lignin-degrading enzyme
laccase
enzyme kinetics
wastewater treatment
Issue Date: 2009
Series/Report no.: Canadian theses
Abstract: Textile dyes are molecules designed to impart a permanent colour to textile fabrics. They pose an environmental problem because they are toxic and they decrease the aesthetic value of rivers and lakes. Current technologies for dye removal cannot remove all classes of dyes and two or more technologies are usually combined to achieve statisfactory decolourization efficiencies. Lignin-degrading enzymes like laccases are potential technologies for dye decolourization and decolourization with immobilized laccase has been intensively investigated. The majority of those studies however have focused on dye disappearance and several reported that significant dye adsorption had occured during the dye removal, making the role of the enzyme unclear. Moreover, textile wastewaters contain auxiliary chemicals that can impact enzymatic dye decolourization and very few studies have evaluated the impact of those substances on laccase. This research evaluated the feasibility of treating dye-contaminated textile wastewaters with an immobilized laccase system. The first sub-objective was to examined the decolourization of Reactive blue 19 (an anthraquinone dye) by Trametes versicolor laccase immobilized on controlled porosity carrier (CPC) silica beads and the second was to analyze the kinetic effects of a non-ionic surfactant Merpol, sodium sulfate, and sodium chloride on laccase decolourization of Reactive blue 19. Decolourization of Reactive blue 19 by immobilized laccase was mainly enzymatic although dye some adsorption occurred. Decolourization led to less toxic by-products from azo and indigoid dyes whereas increased toxicity was observed for anthraquinone dyes. The feasibility of immobilizing laccase on poly(methyl methacrylate) (PMMA) through its sugar residues with a simple procedure was demonstrated and the mass of enzyme immobilized compared well with other commercial acrylic supports. The decolorization of Reactive blue 19 by laccase was inhibited by the non-ionic surfactant, Merpol by substrate depletion. A model describing this inhibition was developed and was validated by a saturated equilibrium binding experiment. While sodium sulfate (ionic strength) had no effect on either ABTS oxidation or dye decolourization, sodium chloride inhibited laccase during dye decolourization and the type and nature of the inhibition depended on the substrate. With ABTS, the inhibition was hyperbolic non-competitive whereas it was parabolic mixed with Reactive blue 19.
Description: Thesis (Ph.D, Chemical Engineering) -- Queen's University, 2009-06-16 16:58:47.753
URI: http://hdl.handle.net/1974/1947
Appears in Collections:Chemical Engineering Graduate Theses
Queen's Theses & Dissertations

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP