Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/498

Title: A numerical study of galaxy mass density profiles
Authors: Foyle, Kelly Ann Margaret

Files in This Item:

File Description SizeFormat
Foyle_Kelly_AM_200707_MSc.pdf31.74 MBAdobe PDFView/Open
Keywords: Astrophysics
Disk galaxies
Numerical simulations
Issue Date: 2007
Series/Report no.: Canadian theses
Abstract: An understanding of the shape and nature of galaxy density profiles remains a major challenge to galaxy structure studies. The physical mechanisms thought to control these profiles include star formation rates and dynamical interactions, but we focus in this thesis on the contribution of dynamical parameters associated with the dark and baryonic matter. We follow the evolution of mass density profiles, and investigate the development of a truncation radius. Using GADGET-2, an N-body/SPH code with a prescription for star formation and feedback, and the SHARCNET computational facilities, we have generated over 200 galaxy models covering a full range of structural parameters. The galaxy models have a minimum of 1.4 million particles and most are evolved over a period of 10 Gyr. We find that the evolution of the galaxy mass density profile is controlled by the ratio of the disk mass fraction, $m_{d}$, to the halo spin parameter, $\lambda$. The strength of the two-component structure in disk profiles and speed at which this structure develops, is directly proportional to $m_{d}/\lambda$. While the development of a two-component profile is coupled to bar formation, not all barred galaxies develop a two-component profile. We also show that the slope of the outer profile is in close agreement with that of the initial profile and remains stable over time, whereas the inner profile slope evolves considerably. This result will greatly improve comparisons of observed with predicted measures of galaxy density profiles. Our galaxy database is the largest of its kind and a valuable resource for many potential galaxy structural studies. We conclude with a list of future investigations based on our study and new database.
Description: Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2007-07-30 14:46:24.568
URI: http://hdl.handle.net/1974/498
Appears in Collections:Department of Physics, Engineering Physics and Astronomy Graduate Theses
Queen's Graduate Theses and Dissertations

This item is licensed under a Creative Commons License
Creative Commons

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP