Queen's University - Utility Bar

QSpace at Queen's University >
Theses, Dissertations & Graduate Projects >
Queen's Theses & Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/5134

Title: An Investigation of Neutral Hydrogen in Three Edge-on Spiral Galaxies
Authors: Kennedy, HEATHER

Files in This Item:

File Description SizeFormat
Kennedy_Heather_J_200908_MSc.pdf20.67 MBAdobe PDFView/Open
Keywords: Galaxy
Hydrogen
Rotation-Curves
Halo
ISM
Spiral
Bubbles
Lagging Halo
Density Distribution
Issue Date: 2009
Series/Report no.: Canadian theses
Abstract: We present the results of a new and high sensitivity study of the neutral hydrogen (HI) gas in three early type edge-on spiral galaxies, NGC 4157, NGC 3600 and NGC 2683. All three galaxies reveal HI disks that extend nearly or more than twice the length of the optical disk, which ubiquitously reveal asymmetries and warps. We model each galaxy using a three-dimensional kinematic model to derive the empirical parameters of the density distribution functions and rotation curves. A Gaussian function is unanimously found to best represent the density distribution in the plane of the galaxies. We also find that there is in fact a thick HI disk extending into the halo of two of three of these galaxies with scale heights on kpc. scales. This gas suggests the existence of two separate widespread components: a thin, high intensity disk component, normally rotating, and a vast, low intensity halo component, rotating at slower velocities with respect to the disk. This vertical velocity gradient is perhaps our most significant finding in addition to the discovery of the two new HI halos. We also find an unevenly distributed small-scale component of the gas in the form of shell-like and filamentary structures that extend from the disk into the halo. In all three systems we find unique kinematic and structural peculiarities including an HI disk extending four times the optical disk, a declining rotation curve, a companion, expanding bubbles, disk warps, etc. Several physical parameters are derived such as neutral hydrogen and dynamic masses, systemic velocities, HI radii, HI halo masses, etc. All of our findings are investigated and discussed in depth for each of the three galaxies.
Description: Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2009-09-03 19:47:31.786
URI: http://hdl.handle.net/1974/5134
Appears in Collections:Queen's Theses & Dissertations
Physics, Engineering Physics & Astronomy Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP