Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/5152

Title: Robust Signal Extraction Methods and Monte Carlo Sensitivity Studies for the Sudbury Neutrino Observatory and SNO+ Experiments

Files in This Item:

File Description SizeFormat
Wright_Alexander_J_200909_PhD.pdf5.68 MBAdobe PDFView/Open
Keywords: Sudbury Neutrino Observatory
neutrinoless double beta decay
Issue Date: 2009
Series/Report no.: Canadian theses
Abstract: The third and final phase of the Sudbury Neutrino Observatory (SNO) experiment utilized a series of 3He proportional counters called Neutral Current Detectors (NCDs) to detect the neutrons produced by the neutral current interactions of solar neutrinos in the detector. The number of neutrons detected by the NCDs, and hence the total flux of 8B solar neutrinos, has been determined using two novel signal extraction techniques which were designed to be robust against potential unexpected behaviour in the NCD background. These techniques yield total 8B solar neutrino flux measurements of 5.04(+0.42-0.40(stat))(+/-0.28(syst))x10E6/cm2/s and (4.40 - 6.43)x10E6/cm2/s, which are in good agreement with previous SNO results and with solar model predictions, and which confirm that previous NCD analyses were not unduly affected by unexpected background behaviour. The majority of the hardware from the now-completed SNO experiment will be reused to create a new liquid scintillator based neutrino experiment called SNO+. An important part of the SNO+ physics program will be a search for neutrinoless double beta decay, carried out by dissolving 150Nd into the scintillator. The sensitivity of the SNO+ experiment to neutrinoless double beta decay has been evaluated. If loaded at 0.1% (w/w) with natural neodymium, after 1 kTa of data taking SNO+ would have a 90%C.L. sensitivity equivalent to a neutrinoless double beta decay half life of 8.0x10E24a or better 50% of the time; if the experiment were run with neodymium enriched to 50% in 150Nd this limit improves to 57x10E24a. Under a reasonable choice for the 150Nd neutrinoless double beta decay matrix element, these half lives correspond to upper limits on the effective Majorana neutrino mass of 112 meV and 42 meV, respectively. These limits are competitive with those expected from all other near-term neutrinoless double beta decay experiments.
Description: Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2009-09-10 21:07:00.25
URI: http://hdl.handle.net/1974/5152
Appears in Collections:Queen's Graduate Theses and Dissertations
Department of Physics, Engineering Physics and Astronomy Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP