Queen's University - Utility Bar

QSpace at Queen's University >
Theses, Dissertations & Graduate Projects >
Queen's Theses & Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/5160

Title: Tunnelling in horizontally laminated ground: The influence of lamination thickness on anisotropic behaviour and practical observations from the Niagara Tunnel Project
Authors: Perras, Matthew A.

Files in This Item:

File Description SizeFormat
Perras_Matthew_A_200909_MScEng.pdf15.98 MBAdobe PDFView/Open
Keywords: anisotropy
tunnelling
TBM
sedimentary
Issue Date: 2009
Series/Report no.: Canadian theses
Abstract: The Niagara Tunnel Project is a 10.4 km long water diversion tunnel being excavated under the city of Niagara Falls, Ontario by a 14.4 m diameter tunnel boring machine. This tunnel has descended through the entire stratigraphy of the Niagara Escarpment, including dolomites, limestones, sandstones, shales and interbedded zones of these rock types, passed under St. Davids Buried Gorge ascending to surface. Working at the tunnel provided an opportunity to assess and document the horizontally laminated ground behaviour for this large diameter circular tunnel and provided the backdrop for this study. A detailed understanding of the geological history was necessary. Modelling of laminations, ranging between 0.16 to 16 m in thickness, was conducted to determine critical behaviour and cut-offs for failure modes. A critical normalized lamination thickness (thickness/radius) of 0.9 was found to exist, above which the excavation response is similar to the equivalent isotropic model, and below which the laminated behaviour corresponds to a characteristic failure mode controlled by bed deflections and bed parallel shear. Initially, as the normalized lamination thickness is decreased below 0.9, the stresses are channeled through the crown beam which concentrates the yield and increases the crown deflections. This results in crown beam failure. As the lamination thickness decreases, further the stresses are shed to multiple laminations increasing the displacements significantly and changing the shape and extent of the yield zone. From multiple lamination coupling to self-limiting yield the development of chimney style failure is controlled by the degree of tensile yielding. Tensile yielding first begins in the haunch area and progressively extends above the crown, as the lamination thickness decreases, until a self-limiting plastic yield zone shape is reached at normalized lamination thicknesses below 0.026. Incorporation of discrete anisotropy is necessary to accurately model the excavation response in horizontally laminated ground.
Description: Thesis (Master, Geological Sciences & Geological Engineering) -- Queen's University, 2009-09-15 16:34:47.134
URI: http://hdl.handle.net/1974/5160
Appears in Collections:Geological Sciences & Geological Engineering Graduate Theses
Queen's Theses & Dissertations

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP