Queen's University - Utility Bar

QSpace at Queen's University >
Theses, Dissertations & Graduate Projects >
Queen's Theses & Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/5218

Title: Transient High-Temperature Prestress Relaxation of Unbonded Prestressing Tendons for use in Concrete Slabs
Authors: GALES, JOHN

Files in This Item:

File Description SizeFormat
Gales_John_A_200909_MSc.pdf1.97 MBAdobe PDFView/Open
Keywords: civil engineering
concrete slabs
fire endurance
fire safety
high temperature creep
post tensioning
prestressing steel
residual capacity
unbonded construction
Issue Date: 2009
Series/Report no.: Canadian theses
Abstract: Unbonded post-tensioned (UPT) flat plate concrete slabs have seen widespread use in multi-storey office and condominium buildings since the 1960s. The popularity of these systems can be attributed to various economic and structural benefits, including reductions in slab thickness, storey height, building mass, and excellent deflection control over large spans. The “inherent fire resistance” of these systems is often quoted as a key additional benefit as compared with competing structural systems. Such statements are apparently based largely on satisfactory results from large scale standard fire resistance tests performed on UPT slabs during the 1960s and on experience from real fires in UPT buildings. However, much remains unknown about the true structural behaviour of continuous multiple bay UPT slabs in real building fires. For instance, relatively little data exist on the effects of elevated temperature on cold drawn prestressing steel under realistic, sustained service stress levels. The primary objective of this thesis is to provide a greater understanding of the high-temperature performance (predominantly related to prestress relaxation) of prestressing steel used in UPT flat plate slabs. A computational model is developed, extending previous research by others, to predict transient high temperature stress relaxation (i.e., prestress loss) for a tendon in a typical UPT multiple span flat plate concrete slab under transient heating and cooling. The computational model is validated by comparison against a series of novel high temperature experiments on locally-heated, stressed, and restrained prestressing tendons with realistic as-built configurations. Reasonable agreement between measured and predicted prestress losses is observed, although some refinement of the model’s input parameters may be required. Test data also indicate that the most crucial fire scenario on a UPT concrete slab may be localized heating rather than a global, fully developed fire. The model is subsequently used to predict the capacity in flexure and punching shear of a UPT flat plate structure under various spatial and temporal heating regimes. The results highlight the need for particular care in the construction of UPT slabs to ensure adequate, robust concrete cover for structural fire safety.
Description: Thesis (Master, Civil Engineering) -- Queen's University, 2009-09-24 18:27:25.559
URI: http://hdl.handle.net/1974/5218
Appears in Collections:Queen's Theses & Dissertations
Civil Engineering Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP