Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/5399

Title: Real-time Object Recognition in Sparse Range Images Using Error Surface Embedding
Authors: Shang, LIMIN

Files in This Item:

File Description SizeFormat
limin_phd.pdf4.12 MBAdobe PDFView/Open
Keywords: object recognition
range image
Issue Date: 2010
Series/Report no.: Canadian theses
Abstract: In this work we address the problem of object recognition and localization from sparse range data. The method is based upon comparing the 7-D error surfaces of objects in various poses, which result from the registration error function between two convolved surfaces. The objects and their pose values are encoded by a small set of feature vectors extracted from the minima of the error surfaces. The problem of object recognition is thus reduced to comparing these feature vectors to find the corresponding error surfaces between the runtime data and a preprocessed database. Specifically, we present a new approach to the problems of pose determination, object recognition and object class recognition. The algorithm has been implemented and tested on both simulated and real data. The experimental results demonstrate the technique to be both effective and efficient, executing at 122 frames per second on standard hardware and with recognition rates exceeding 97% for a database of 60 objects. The performance of the proposed potential well space embedding (PWSE) approach on large size databases was also evaluated on the Princeton Shape Bench- mark containing 1,814 objects. In experiments of object class recognition with the Princeton Shape Benchmark, PWSE is able to provide better classification rates than the previous methods in terms of nearest neighbour classification. In addition, PWSE is shown to (i) operate with very sparse data, e.g., comprising only hundreds of points per image, and (ii) is robust to measurement error and outliers.
Description: Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2010-01-24 23:07:30.108
URI: http://hdl.handle.net/1974/5399
Appears in Collections:Queen's Graduate Theses and Dissertations
Department of Electrical and Computer Engineering Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP