Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/5445

Title: Progress Towards the Quantum Limit: High and Low Frequency Measurements of Nanoscale Structures
Authors: Rideout, Joshua

Files in This Item:

File Description SizeFormat
Rideout_Joshua_L_201003_MSc.pdf9.57 MBAdobe PDFView/Open
Keywords: Physics
Low temperature
Quantum Hall effect
Quantum limit
Issue Date: 2010
Series/Report no.: Canadian theses
Abstract: In this thesis, I present the work performed towards a proposal to couple a piezoelectric, nanomechanical beam to a radio frequency single electron transistor (RF-SET). Lumped element RF circuit theory is applied to 50 kOhm single electron transistors acting as the resistor in an RLC circuit. It is shown that for the expected inductances and stray capacitances, at an operating frequency of 1.25 GHz, the RF-SET is expected to have a usable half-bandwidth of 175-200 MHz and a charge sensitivity on the order of 10^(−5) e/√Hz. A fabricated RF-SET device is cryogenically cooled and used to find experimental values of the stray capacitance. A heterostructure made of gallium arsenide and aluminum gallium arsenide from which piezoelectric beams can be made is designed to contain a 2-dimensional electron gas (2DEG). Quantum Hall effect samples are fabricated from the wafer, and magnetoresistance measurements for each sample are presented. It is shown that the 2DEG has a high electron concentration of about 8 × 10^11 cm−2 but a low mobility of about 3.5 × 10^4 cm^2/(V·s) for this type of heterostructure.
Description: Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2010-03-01 22:55:56.427
URI: http://hdl.handle.net/1974/5445
Appears in Collections:Queen's Graduate Theses and Dissertations
Department of Physics, Engineering Physics and Astronomy Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP