Queen's University - Utility Bar

QSpace at Queen's University >
Theses, Dissertations & Graduate Projects >
Queen's Theses & Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/5465

Title: Associated Sulfide Minerals in Thiosulfate Leaching of Gold: Problems and Solutions
Authors: Xia, Chen

Files in This Item:

File Description SizeFormat
xia_chen_200809_phd.pdf1.96 MBAdobe PDFView/Open
Keywords: thiosulfate
gold
ammonia
copper
ethylenediamine
phosphate
pyrite
pyrrhotite
arsenopyrite
chalcopyrite
chalcocite
bornite
galena
lead
Eh-pH
Oxygen
Extraction
Leaching
Pre-aeration
Passivation
Issue Date: 2010
Series/Report no.: Canadian theses
Abstract: The effects of some associated minerals on thiosulfate gold leaching were studied through thermodynamic analysis and leaching experiments on composite ore samples containing various minerals and a reference silicate gold ore. In the leaching test on the reference gold ore, about 93% of gold was extracted within 3.0 hours. The presence of various amount of pyrite, pyrrhotite, chalcopyrite, arsenopyrite, chalcocite, bornite, and some lead species, has significant detrimental effects. Under reduced oxygen conditions, the thiosulfate consumptions could be significantly reduced. High gold extractions (i.e. >= 90%) were observed in the leaching tests with reduced dissolved oxygen (i.e., 0.7% oxygen in the supplied gas) in the absence or in the presence of sulfide minerals such as pyrite, pyrrhotite, arsenopyrite and chalcopyrite. High copper concentration and a pre-aeration step was also found to largely increase the gold extractions under such conditions. Thiosulfate-copper-ethylenediamine system was found effective in the leaching of gold. The leaching kinetics was significantly slower than that of the conventional thiosulfate-copper-ammonia leaching. The consumption of thiosulfate, however, was largely reduced. This leaching system worked effectively on the reference gold ore within a wider pH range (e.g., 6-11), with or without ammonia. The presence of ammonia in a low concentration improved the leaching rate but also increase the consumption of thiosulfate. Comparable gold extractions were observed in the leaching of the composite ores containing various sulfide minerals, such as pyrite, pyrrhotite, chalcocite, galena and chalcopyrite. The leaching of gold in the presence of iron sulfides was also improved by applying chemical additives, such as, carbonate, calcium, galena, phosphate, and additional hydroxide anion. It is proposed that these additives either passivated the harmful surface of sulfide minerals or masked some detrimental aqueous species. Finally, some improved leaching methods concluded in this study were applied on a few industrial ore samples in order to demonstrate the effectiveness of these methods. It was found that by comprehensively applying these improved thiosulfate leaching strategies, satisfactory gold extractions and thiosulfate consumption results were archived on these ores.
Description: Thesis (Ph.D, Mining Engineering) -- Queen's University, 2008-09-18 11:48:38.672
URI: http://hdl.handle.net/1974/5465
Appears in Collections:Queen's Theses & Dissertations
Mining Engineering Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP