Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/5679

Title: A Comparison and Outline of Tolerances in Performing Optical Time Division Multiplexing using Electro-Absorption Modulators
Authors: Owsiak, Mark

Files in This Item:

File Description SizeFormat
Owsiak_Mark_J_201005_MASC.pdf4.35 MBAdobe PDFView/Open
Keywords: OTDM
electro-absorption modulators
system tolerances
optical time division multiplexing
160 Gbit/s
Issue Date: 2010
Series/Report no.: Canadian theses
Abstract: As high bandwidth applications continue to emerge, investigation in technologies that will increase transmission capacity become necessary. Of these technologies, Optical Time Division Multiplexing (OTDM) has been presented as a possible solution, supporting a next generation bit rate of 160 Gbit/s. To perform the demultiplexing task, the use of tandem electro-absorption modulators (EAMs) has been widely studied, and due to its benefits was chosen as the topology of this thesis. To create an effective model of an OTDM system, the vector based mathematical simulation tool MatLab is used. Care was taken to create an accurate representation of an OTDM system, including: the development of a realistic pulse shape, the development of a true pseudo-random bit sequence in all transmitted channels, the optimization of the gating function, and the representation of system penalty. While posing impressive bit rates, various sources of system performance degradation pose issues in an OTDM system, owning to its ultra-narrow pulse widths. The presence of dispersion, timing jitter, polarization mode dispersion, and nonlinear effects, can sufficiently degrade the quality of the received data. This thesis gives a clear guideline to the tolerance an OTDM system exhibits to each of the aforementioned sources of system penalty. The theory behind each impairment is thoroughly discussed and simulated using MatLab. From the simulated results, a finite degree of sensitivity to each source of system penalty is realized. These contributions are of particular importance when attempting to implement an OTDM system in either the laboratory, or the field.
Description: Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2010-05-17 22:51:56.471
URI: http://hdl.handle.net/1974/5679
Appears in Collections:Queen's Graduate Theses and Dissertations
Department of Electrical and Computer Engineering Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP