Queen's University - Utility Bar

QSpace at Queen's University >
Theses, Dissertations & Graduate Projects >
Queen's Theses & Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/6015

Title: Lymphocyte Contributions to Local and Systemic Cardiovascular Regulation in Mouse Pregnancy
Authors: Burke, Suzanne Diana

Files in This Item:

File Description SizeFormat
Burke_Suzanne_D_201010_PhD.pdf25.36 MBAdobe PDFView/Open
Keywords: Immunology
Lymphocytes
Radiotelemetry
Blood Pressure
Type 1 Diabetes
Genetically modified mice
Pregnancy
Uterine natural killer cells
Vascular remodeling
Issue Date: 2010
Series/Report no.: Canadian theses
Abstract: Healthy term pregnancy requires precisely timed coordination of multiple systems, including reproductive, neuroendocrine, immune and cardiovascular. Dynamic maternal alterations occur systemically as well as locally within the reproductive tract. Systemic cardiovascular changes during gestation are relatively conserved in mammals, permitting comparison. These physiological changes are relatively acute and reversible, in contrast to the pathological changes seen during cardiovascular disease development. Gestational hypertensive disorders, such as preeclampsia, are the leading causes of maternal and fetal morbidity and mortality. The pathogenesis of preeclampsia is not fully elucidated, but perturbation of the immune system is a fundamental component. The angiogenic and vascular properties of uterine NK lymphocytes have been well studied in mice and women, but their relationships to gestational blood pressure regulation and cardiovascular adaptations have not been addressed. In non-pregnant women and mice, T cells, but not B cells, have been found to alter cardiovascular functioning. NK cells in humans also possess these capabilities, but no functional studies have been completed. The aim of this thesis was to define the role of NK and T lymphocytes in cardiovascular adaptations during mouse gestation. Using chronic radiotelemetry, histology, post-mortem and other techniques, female inbred mice of differing genotypes that lack specific lymphocyte subsets were compared before and across gestation. In normal, immune competent mice, a five-phase gestational blood pressure profile was found. This dynamic profile corresponded to stages of placental development. In mice with a compound deficit in arterial modification and lymphocytes, no gestational hypertension was observed. To elevate the maternal challenge of pregnancy, studies of pregnant, autoimmune Type 1 Diabetic mice were conducted. Impaired spiral artery remodeling, dysfunctional lymphocytes and growth-restricted fetuses were identified. From mid-gestation, diabetic pregnant mice were hypotensive and bradycardic and showed signs of pre-renal failure (proteinuria and electrolyte imbalances). In pregnant mice lacking T cells, tachycardia was observed despite otherwise normal gestational outcomes. In pregnant mice lacking T cells with impaired NK cells, blood pressure was blunted and tachycardia was observed. These findings support the conclusion that impaired spiral artery remodeling is insufficient to cause gestational hypertension in mice. The data further identify a role for T and NK cells in cardiac function during gestation.
Description: Thesis (Ph.D, Anatomy & Cell Biology) -- Queen's University, 2010-09-01 20:56:15.648
URI: http://hdl.handle.net/1974/6015
Appears in Collections:Anatomy and Cell Biology Graduate Theses
Queen's Theses & Dissertations

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP