Queen's University - Utility Bar

QSpace at Queen's University >
Theses, Dissertations & Graduate Projects >
Queen's Theses & Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/6083

Title: Modelling and Testing Strategies for Brittle Fracture Simulation in Crystalline Rock Samples
Authors: Ghazvinian, Ehsan

Files in This Item:

File Description SizeFormat
Ghazvinian_Ehsan_201009_MASc.pdf25.1 MBAdobe PDFView/Open
Keywords: brittle rock
damage threshold
Particle Flow Code
acoustic emission
rock mechanics
microcracks
Issue Date: 2010
Series/Report no.: Canadian theses
Abstract: The failure of brittle rocks around deep underground excavations due to the high induced stress is controlled by the crack accumulation in the rock. The study shows that the damage initiation strength, CI, corresponds to the long-term strength, and the short-term strength of the brittle rocks in-situ is the crack interaction strength, CD. Therefore the damage thresholds that are being used for the calibration and validation of numerical models are important parameters in the design of underground structures. The accurate detection of the damage thresholds is important as they define the in-situ behaviour of the brittle rocks. The two most common methods of detecting damage thresholds are the Acoustic Emission method and the strain measurement method. Apparent discrepancy that exists between the accuracy of these methods was the author’s motivation for comparing these two methods on Stanstead and Smaland granites. The author introduced two new parameters based on the measured strains for improving the strain measurement method. Based on the comparisons, the author is of the opinion that the Acoustic Emission method is a more accurate method of detecting damage thresholds. Numerical models are an important tool in the design of underground structures. The numerical methods that are able to simulate fractures explicitly have the ability to predict the brittle failure, the density and the extension of the microcracks around the opening. Itasca’s Particle Flow Code (PFC) was used in this study due to its potential to simulate fractures explicitly. Calibration of PFC models to Unconfined Compressive Strength properties of the rock does not mean that the model will behave correctly under other confining stresses or in tension. The author has tried to solve this problem by different methods and developing new procedures. Improvements in the model behaviour have been achieved but more work is required. The definition, and detection and calibrated simulation of rock damage thresholds for calibration of numerical models is helpful for a successful design of underground excavations and long term, lower bound strength, a critical design parameter for deep geological repositories for the storage of nuclear wastes, for example.
Description: Thesis (Master, Geological Sciences & Geological Engineering) -- Queen's University, 2010-09-23 13:59:28.795
URI: http://hdl.handle.net/1974/6083
Appears in Collections:Geological Sciences & Geological Engineering Graduate Theses
Queen's Theses & Dissertations

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP