Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/6137

Title: Role of hypoxia and hypoxia-inducible factor-1 in tumour immune escape
Authors: Li, Xin

Files in This Item:

File Description SizeFormat
Xin_Li_200908_MSc.pdf2.18 MBAdobe PDFView/Open
Keywords: HIF-1
Immune Escape
Issue Date: 2010
Series/Report no.: Canadian theses
Abstract: Previous studies revealed that, upon exposure to hypoxia, tumour cells acquire resistance to the cytolytic activity of IL-2-activated lymphocytes. The MHC class I chain-related (MIC) molecules – comprised of MICA and MICB – are ligands for the activating NKG2D receptor on Natural Killer (NK) and CD8+ T cells. MIC-NKG2D interactions lead to the activation of NK and CD8+ T cells and the subsequent lysis of the tumour cells. The study also showed that the mechanism of the hypoxia-mediated immune escape involves the shedding of MIC, specifically MICA, from the tumour cell surface. The objective of the present study was to determine whether the shedding of MICA requires the expression of hypoxia inducible factor-1 (HIF-1), a transcription factor that regulates cellular adaptations to hypoxia. Exposure to hypoxia (0.5% O2 vs. 20% O2) led to the shedding of MIC from the surface of MDA-MB-231 human breast cancer cells and DU-145 human prostate cancer cells as determined by flow cytometry. Knockdown of HIF-1α mRNA using siRNA technology resulted in inhibition of HIF-1α accumulation under hypoxic conditions as determined by Western blot analysis. Parallel study revealed that knockdown of HIF-1α also blocked the shedding of MICA from the surface of MDA-MB-231 cells exposed to hypoxia. These results indicate that HIF-1 is required for the hypoxia-mediated shedding of MICA and, consequently, that HIF-1 may play an important role in tumour immune escape. Ongoing studies aim to determine the HIF-1 target genes involved in the shedding of MICA under hypoxia.
Description: Thesis (Master, Anatomy & Cell Biology) -- Queen's University, 2009-08-19 21:09:13.707
URI: http://hdl.handle.net/1974/6137
Appears in Collections:Queen's Graduate Theses and Dissertations
Anatomy and Cell Biology Graduate Theses (July 2007 - Sept 2016)

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP