Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/6235

Title: A High-Speed Reconfigurable System for Ultrasound Research
Authors: Wall, Kieran

Files in This Item:

File Description SizeFormat
Wall_Kieran_A_201012_PhD.pdf3.91 MBAdobe PDFView/Open
Keywords: Ultrasound
Issue Date: 2010
Series/Report no.: Canadian theses
Abstract: Many opportunities exist in medical ultrasound research for experimenting with novel designs, both of transducers and of signal processing techniques. However any experiment must have a reliable platform on which to develop these techniques. In my thesis work, I have designed, built, and tested a high-speed reconfigurable ultrasound beamforming platform. The complete receive beamformer system described in this thesis consists of hardware, firmware, and software components. All of these components work together to provide a platform for beamforming that is expandable, high-speed, and robust. The complexity of the operations being performed is hidden from the user by a simple to use and accessible software interface. Existing beamformer hardware is usually designed for real-time 2D image formation often using serial processing. The platform I built uses parallel processing in order to process ultrasound images 100 times faster than conventional systems. Conventional hardware is locked to a single or small number of similar transducers, while my design can be on-the-fly reprogrammed to work with nearly any transducer type. The system is also expandable to handle any size of device, while conventional systems can only handle a fixed number of device channels. The software I have created interfaces with the hardware and firmware components to provide an easy way to make use of the system’s reconfigurability. It also delivers a platform that can be simply expanded to host post-processing or signal analysis software to further fulfill a researcher’s needs.
Description: Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2010-12-10 11:23:01.961
URI: http://hdl.handle.net/1974/6235
Appears in Collections:Queen's Graduate Theses and Dissertations
Department of Physics, Engineering Physics and Astronomy Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP