Queen's University - Utility Bar

QSpace at Queen's University >
Theses, Dissertations & Graduate Projects >
Queen's Theses & Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/6525

Title: Synthesis and Applications of Nanostructured Mesoporous Organosilica Films and Monoliths
Authors: Du, Jenny

Files in This Item:

File Description SizeFormat
Du_Jenny_201105_PhD.pdf15.51 MBAdobe PDFView/Open
Keywords: mesoporous
organosilica
films
monoliths
heavy metal sensing
structural control
capillary chromatography
surfactant-templated
sol-gel
Issue Date: 2011
Series/Report no.: Canadian theses
Abstract: Surfactant-templated, sol-gel based methodologies for the synthesis of tailored, nanostructured, hybrid inorganic–organic materials are incredibly powerful and versatile. Although growth in this field has been explosive in recent decades, a lot of room remains to contribute to the design and synthesis of new materials, as well as the development of advanced applications. In the work described herein, we firstly explored the synthesis of thick, mesoporous organosilica films and their application as functional coatings for solution-based, fibre-optic heavy metal sensors. Notably, sub-ppm level detection was observed for the detection of Pb(II) in mixed aqueous–organic media in short timeframes, and progress has been made toward synthesizing organotitania films that would allow for heavy metal sensing in purely aqueous solution. Furthermore, the utility of these types of surfactant-templated, organically-functionalized, mesostructured coatings has been preliminarily extended to other types of optical devices for heavy metal sensing. We have also explored the use of designer amphiphilic, alkyl oligosiloxane precursors for the tightly-controlled formation of thin, self-templated, hybrid nanostructured films. Moreover, films bearing uniaxial 2D hexagonal alignment over macroscopic length scales were obtained using polymer-treated substrates to control the interfacial interactions between the film precursors and the substrate surface. In addition, a relatively mild UV / ozone treatment was employed to remove the alkyl moieties from the films to yield porous materials without catastrophic loss of the as-synthesized, mesostructural order. Lastly, novel chiral, binaphthylene-based, periodic mesoporous organosilica (PMO) materials have been prepared. With the aim of demonstrating chiral recognition with such materials, porous, co-continuous capillary monoliths have been synthesized and applied as chiral stationary phases in nano-HPLC and CEC. Notably, enantioselective interactions between our materials and a chiral acetal-based analyte have been observed. Quantification of these enantioselective interactions in chiral PMOs by isothermal titration microcalorimetry is also being pursued. It has thus been demonstrated that a wide array of different functional materials may be accessed through template-based synthetic strategies. By varying parameters such the starting monomers, the sol composition, and the interfacial interactions between reacting species and a given substrate (to name a few), the resulting materials may be tailored to meet the demands of new and emerging technologies.
Description: Thesis (Ph.D, Chemistry) -- Queen's University, 2011-05-24 19:50:17.478
URI: http://hdl.handle.net/1974/6525
Appears in Collections:Chemistry Graduate Theses
Queen's Theses & Dissertations

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP