Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/6551

Authors: CAO, YU

Files in This Item:

File Description SizeFormat
Cao_Yu_201106_PhD.pdf855.76 kBAdobe PDFView/Open
Keywords: Rateless codes
Unequal error protection
Multimedia multicast
Cross-layer design
Issue Date: 2011
Series/Report no.: Canadian theses
Abstract: Rateless codes, also known as fountain codes, are a class of erasure error-control codes that are particularly well suited for broadcast/multicast systems. Raptor codes, as a particularly successful implementation of digital fountain codes, have been used as the application layer forward error correction (FEC) codes in the third generation partnership program (3GPP) Multimedia Broadcast and Multicast Services (MBMS) standard. However, the application of rateless codes to wireless multimedia broadcast/multicast communications has yet to overcome two major challenges: first, wireless multimedia communications usually has stringent delay requirements. In addition, multimedia multicast has to overcome heterogeneity. To meet these challenges, we propose a rateless code design that takes the layered nature of source traffic as well as the varying quality of transmission channels into account. A convex optimization framework for the application of unequal error protection (UEP) rateless codes to synchronous and asynchronous multimedia multicast to heterogeneous users is proposed. A second thread of the thesis addresses the noisy, bursty and time- varying nature of wireless communication channels that challenge the assumption of erasure channels often used for the wired internet. In order to meet this challenge, the optimal combination of application-layer rateless code and physical layer FEC code rates in time-varying fading channels is investigated. The performance of rateless codes in hybrid error-erasure channels with memory is then studied, and a cross-layer decoding method is proposed to improve decoding performance and complexity.
Description: Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2011-06-12 16:26:36.136
URI: http://hdl.handle.net/1974/6551
Appears in Collections:Queen's Graduate Theses and Dissertations
Department of Electrical and Computer Engineering Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP