Queen's University - Utility Bar

QSpace at Queen's University >
Theses, Dissertations & Graduate Projects >
Queen's Theses & Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/6560

Title: Cdc42-Interacting Protein Family Adaptors Regulate Endocytosis, Membrane Trafficking, Migration, and Invasion in Cancer Cells
Authors: HU, Jinghui

Files in This Item:

File Description SizeFormat
Hu_Jinghui_201008_PhD.pdf6.66 MBAdobe PDFView/Open
Keywords: Cancer Cell Biology
F-BAR Proteins
Issue Date: 2011
Series/Report no.: Canadian theses
Abstract: Timely and spatially controlled endosomal trafficking and signaling is important for cell proliferation, directed cell migration, and cell invasion, which are frequently misregulated in cancer cells. Cdc42-interacting protein-4 (CIP4) family adaptors promote endocytosis by inducing membrane invaginations via their Fer/CIP4 Homology-Bin/Amphyphysin/Rvs (F-BAR) domains, coupled with activation of the actin assembly machinery to promote vesicle fusion or motility. My thesis focuses on defining the roles of CIP4, and a related protein, Transducer of Cdc42-mediated actin assembly-1 (Toca-1), in regulating Epidermal Growth Factor Receptor (EGFR) endocytosis, EGFR trafficking, cancer cell motility, and invasion. In Chapter 2, I show that CIP4 and Toca-1 localize to early endosomes and promote EGFR trafficking from early endosomes to lysosomes for degradation, thus limiting extracellular signal-regulated kinase signaling from early endosomes and proliferation of A431 carcinoma cells. In Chapter 3, I provide novel evidence that depletion of Toca-1 results in defects in actin-based lamellipodial protrusions that are required for cell motility. The cause of these defects may relate to altered recruitment of the Abelson-interactor-1 and its effector Wiskott-Aldrich syndrome protein family verprolin-homologous protein to the lamellipodia in A431 cells depleted of Toca-1. Results in Chapter 4 identify CIP4 as a negative regulator of breast cancer invasiveness downstream of Src protein-tyrosine kinase. Src is a potent inducer of extracellular matrix (ECM)-degrading structures called invadopodia that function in tissue invasion by cancer cells. I found that CIP4 is a Src substrate that localizes to Src-induced invadopodia in MDA-MB-231 breast cancer cells. Interestingly, depletion of CIP4 results in enhanced ECM degradation, invadopodia formation, and invasiveness compared to control cells. Thus, CIP4 and Toca-1 are multifaceted regulators of EGFR downregulation, EGF-induced cell motility, and Src-induced cell invasion.
Description: Thesis (Ph.D, Biochemistry) -- Queen's University, 2010-08-25 11:44:46.934
URI: http://hdl.handle.net/1974/6560
Appears in Collections:Biochemistry Graduate Theses
Queen's Theses & Dissertations

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP