Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/6635

Title: Variations on Artin's Primitive Root Conjecture

Files in This Item:

File Description SizeFormat
Felix_Adam_T_201108_PhD.pdf515.67 kBAdobe PDFView/Open
Keywords: primitive roots
elliptic curves
Sieve Theory
higher rank
Titchmarsh divisor problems
Analytic Number Theory
Issue Date: 11-Aug-2011
Series/Report no.: Canadian theses
Abstract: Let $a \in \mathbb{Z}$ be a non-zero integer. Let $p$ be a prime such that $p \nmid a$. Define the index of $a$ modulo $p$, denoted $i_{a}(p)$, to be the integer $i_{a}(p) := [(\mathbb{Z}/p\mathbb{Z})^{\ast}:\langle a \bmod{p} \rangle]$. Let $N_{a}(x) := \#\{p \le x:i_{a}(p)=1\}$. In 1927, Emil Artin conjectured that \begin{equation*} N_{a}(x) \sim A(a)\pi(x) \end{equation*} where $A(a)>0$ is a constant dependent only on $a$ and $\pi(x):=\{p \le x: p\text{ prime}\}$. Rewrite $N_{a}(x)$ as follows: \begin{equation*} N_{a}(x) = \sum_{p \le x} f(i_{a}(p)), \end{equation*} where $f:\mathbb{N} \to \mathbb{C}$ with $f(1)=1$ and $f(n)=0$ for all $n \ge 2$.\\ \indent We examine which other functions $f:\mathbb{N} \to \mathbb{C}$ will give us formul\ae \begin{equation*} \sum_{p \le x} f(i_{a}(p)) \sim c_{a}\pi(x), \end{equation*} where $c_{a}$ is a constant dependent only on $a$.\\ \indent Define $\omega(n) := \#\{p|n:p \text{ prime}\}$, $\Omega(n) := \#\{d|n:d \text{ is a prime power}\}$ and $d(n):=\{d|n:d \in \mathbb{N}\}$. We will prove \begin{align*} \sum_{p \le x} (\log(i_{a}(p)))^{\alpha} &= c_{a}\pi(x)+O\left(\frac{x}{(\log x)^{2-\alpha-\varepsilon}}\right) \\ \sum_{p \le x} \omega(i_{a}(p)) &= c_{a}^{\prime}\pi(x)+O\left(\frac{x\log \log x}{(\log x)^{2}}\right) \\ \sum_{p \le x} \Omega(i_{a}(p)) &= c_{a}^{\prime\prime}\pi(x)+O\left(\frac{x\log \log x}{(\log x)^{2}}\right) \end{align*} and \begin{equation*} \sum_{p \le x} d(i_{a}) = c_{a}^{\prime\prime\prime}\pi(x)+O\left(\frac{x}{(\log x)^{2-\varepsilon}}\right) \end{equation*} for all $\varepsilon > 0$.\\ \indent We also extend these results to finitely-generated subgroups of $\mathbb{Q}^{\ast}$ and $E(\mathbb{Q})$ where $E$ is an elliptic curve defined over $\mathbb{Q}$.
Description: Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2011-08-03 10:45:47.408
URI: http://hdl.handle.net/1974/6635
Appears in Collections:Queen's Graduate Theses and Dissertations
Department of Mathematics and Statistics Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP