Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/7039

Title: High Frequency Ultrasound RF Time Series Analysis for Tissue Characterization

Files in This Item:

File Description SizeFormat
Yazdi_Mohsen_N_201203_Masters.pdf5.82 MBAdobe PDFView/Open
Keywords: RF Time Series
High Frequency Ultrasound
Tissue Characterization
Issue Date: 29-Mar-2012
Series/Report no.: Canadian theses
Abstract: Ultrasound-based tissue characterization has been an active eld of cancer detection in the past decades. The main concept behind various techniques is that the returning ultrasound echoes carry tissue-dependent information that can be used to distinguish tissue types. Recently, a new paradigm for tissue typing has been proposed which uses ultrasound Radio Frequency (RF) echoes, recorded continuously from a xed location of the tissue, to extract tissue-dependent information. This is hereafter referred to as RF time series. The source of tissue typing information in RF time series is not a well known concept in the literature. However, there are two main hypotheses that describe the informativeness of variations in RF time series. Such information could be partly due to heat induction as a result of consistent eradiation of tissue with ultrasound beams which results in a virtual displacement in RF echoes, and partly due to the acoustic radiation force of ultrasound beams resulting in micro-vibration inside tissue. In this thesis, we further investigate RF time series signals, collected at high frequencies, by analyzing the properties of the RF displacements. It will be shown that such displacements exhibit oscillatory behavior, emphasizing on the possible micro-vibrations inside tissue, as well as linear incremental trend, indicating the e ect of heat absorbtion of tissue. i The main focus of this thesis is to study the oscillatory behavior of RF displace- ments in order to extract tissue-dependent features based on which tissue classi ca- tion is performed. Using various linear and nonlinear tools, we study the properties of such displacements in both frequency and time domain. Nonlinear analysis, based on the theory of dynamical systems, is used to study the dynamical and geometrical properties of RF displacements in the time domain. Using Support Vector Machine (SVM), di erent tissue typing experiments are performed to investigate the capability of the proposed features in tissue classi ca- tion. It will be shown that the combination of such features can distinguish between di erent tissue types almost perfectly. In addition, a feature reduction algorithm, based on principle component analysis (PCA), is performed to reduce the number of features required for a successful tissue classi cation.
Description: Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2012-03-29 13:52:10.874
URI: http://hdl.handle.net/1974/7039
Appears in Collections:Queen's Graduate Theses and Dissertations
Department of Electrical and Computer Engineering Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP