• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    LiDAR and WorldView-2 Satellite Data for Leaf Area Index Estimation in the Boreal Forest

    Thumbnail
    View/Open
    Pope_Graham_W_201209_MSC.pdf (4.887Mb)
    Date
    2012-09-25
    Author
    Pope, Graham
    Metadata
    Show full item record
    Abstract
    Leaf Area Index (LAI) is an important input variable for forest ecosystem modeling as it is a factor in predicting productivity and biomass, two key aspects of forest health. Current in situ methods of determining LAI are sometimes destructive and generally very time consuming. Other LAI derivation methods, mainly satellite-based in nature, do not provide sufficient spatial resolution or the precision required by forest managers. This thesis focused on estimating LAI from: i) height and density metrics derived from Light Detection and Ranging (LiDAR); ii) spectral vegetation indices (SVIs), in particular the Normalized Difference Vegetation Index (NDVI); and iii) a combination of these two remote sensing technologies. In situ measurements of LAI were calculated from digital hemispherical photographs (DHPs) and remotely sensed variables were derived from low density LiDAR and high resolution WorldView-2 data. Multiple Linear Regression (MLR) models were created using these variables, allowing forest-wide prediction surfaces to be created. Results from these analyses demonstrated: i) moderate explanatory power (i.e., R2 = 0.54) for LiDAR models incorporating metrics that have proven to be related to canopy structure; ii) no relationship when using SVIs; and iii) no significant improvement of LiDAR models when combining them with SVI variables. The results suggest that LiDAR models in boreal forest environments provide satisfactory estimations of LAI, even with low ranges of LAI for model calibration. On the other hand, it was anticipated that traditional SVI relationships to LAI would be present with WorldView-2 data, a result that is not easily explained. Models derived from low point density LiDAR in a mixedwood boreal environment seem to offer a reliable method of estimating LAI at a high spatial resolution for decision makers in the forestry community.
    URI
    http://hdl.handle.net/1974/7510
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Geography and Planning Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV