Queen's University - Utility Bar

QSpace at Queen's University >
Theses, Dissertations & Graduate Projects >
Queen's Theses & Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/855

Title: Development of safety limits for load carriage in adults
Authors: Fergenbaum, Mitchell Alan

Files in This Item:

File Description SizeFormat
Fergenbaum_Mitchell_A_200710_PhD.pdf2.19 MBAdobe PDFView/Open
Keywords: Load carriage
Backpack
Safety
Payload
Issue Date: 2007
Series/Report no.: Canadian theses
Abstract: In society, personal load carriage systems (backpacks) are commonly used to transport loads by foot, however, they have also been implicated in causing injuries. The aim of this study was to develop a model for load carriage which could be used to determine safety limits in humans. To start, a number of experiments were conducted to determine the appropriateness of using pressure mapping technology to measure peak and mean pressures acting on humans during load carriage limits. Tests of accuracy and repeatability were performed using three common pressure mapping technologies: capacitance, piezoresistive and resistive ink. Pressure mapping was tested statically and dynamically on a human-like flat surface, as well as on human shoulder-shaped model. Error was found to be ≥ 20% on static flat and curved surfaces and it rose to 36-51% under dynamic conditions. Since pressure mapping would require significant modifications before it could be used to study human load carriage, a psychophysical approach was used instead. For this approach, an epidemiological study of pain was conducted based on 48 subjects who used multiple backpack designs to complete occupationally relevant tasks. As a result, pain trends and new methods of data analysis were identified that had potential use on human trials. In a final study, pain mapping, quantification of pain intensity, and physiological/motor testing were conducted on humans performing endurance exercise with light to heavy payloads. Results showed that all subjects were able to exercise with a 15-35 kg payload for 45 minutes and with a 50 kg payload for 30 minutes, without stopping. As well, pain was found to be highest in the anterior acromial (shoulder) region, particularly for the 50 kg payload (mean peak pain = 3.4/10). Based on these findings, two models were proposed: an assertive model and a conservative model to allow prediction of human load carriage limits for endurance exercise.
Description: Thesis (Ph.D, Rehabilitation Science) -- Queen's University, 2007-10-06 15:33:31.933
URI: http://hdl.handle.net/1974/855
Appears in Collections:Queen's Theses & Dissertations
Rehabilitation Therapy Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP