Queen's University - Utility Bar

QSpace at Queen's University >
Theses, Dissertations & Graduate Projects >
Queen's Theses & Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/978

Title: LATTICE STRAIN AND TEXTURE EVOLUTION DURING ROOM-TEMPERATURE DEFORMATION IN ZIRCALOY-2
Authors: Xu, FENG

Files in This Item:

File SizeFormat
Xu_Feng_200712_PhD.pdf6.42 MBAdobe PDFView/Open
Keywords: Neutron diffraction
polycrystalline modeling
plastic deformation
Zircaloy-2
Issue Date: 2008
Series/Report no.: Canadian theses
Abstract: Zircaloy-2 and its sister alloy, Zircaloy-4, have extensive applications in the nuclear industry as core components in heavy water reactors and fuel cladding in both heavy and light water reactors. Intergranular stresses and texture can greatly affect the mechanical performance of these components. A complete understanding of the development of intergranular constraints and texture in Zircaloy-2 will allow an improved understanding of the plastic deformation of zirconium alloys, and the prediction of in-reactor deformation of tubes made by different manufacturing routes. Neutron diffraction was used to track the development of lattice strain and peak intensity in three dimensions for various crystallographic planes in samples cut from a rolled Zircaloy-2 slab. The samples were subject to room temperature compression or tension in-situ in the neutron spectrometer in each of the three principal directions of the slab. Textures in the deformed samples were measured using neutron diffraction. Strong evidence was found for tensile twinning in tensile tests in the plate normal direction and compression tests in the transverse and rolling directions. The lattice strain development inside the newly formed twins was recorded for the first time in a Zr alloy. An elasto-plastic self-consistent model and a visco-plastic self-consistent model were used to interpret the lattice strain and texture data, respectively. Various slip and twinning modes were considered in both models. Prism <a> slip, basal <a> slip, pyramidal <c+a> slip and tensile twinning were concluded to be indispensable, while pyramidal <a> slip was unnecessary in the modeling. The critical resolved shear stresses and hardening parameters were obtained by simultaneously achieving a ‘best-fit’ with the complete experimental data set. The effects of anisotropic latent hardening due to dislocation interactions were found to be critical, and the inclusion of Lankford coefficients as modeling constraints was necessary. This research provided a comprehensive experimental data set obtained by neutron diffraction, forming a sound basis to investigate active plastic deformation mechanisms and to rigorously test plasticity models and twinning models. The research also made a substantial improvement in understanding the plastic deformation of Zircaloy-2 through polycrystalline modeling by introducing extensive data sets to constrain the modeling parameters.
Description: Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2007-12-21 11:56:23.743
URI: http://hdl.handle.net/1974/978
Appears in Collections:Queen's Theses & Dissertations
Mechanical and Materials Engineering Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP