DEVELOPMENT AND CHARACTERISATION OF
PHOTOCROSSLINKABLE POLY(ETHYLENE CARBONATE)
ELASTOMERS FOR LOCAL PROTEIN DELIVERY

by

Laura Anne Cornacchione

A thesis submitted to the Department of Chemical Engineering
In conformity with the requirements for
the degree of Master of Applied Science

Queen’s University
Kingston, Ontario, Canada
January, 2011

Copyright © Laura Cornacchione, 2011
Abstract

Therapeutic angiogenesis is a promising application of local protein delivery. Poly(ethylene carbonate) (PEC) is an interesting polymer due to its special degradation mechanism and good immunocompatibility and cytocompatibility. Its biggest advantage over commonly used aliphatic polyesters is that it does not degrade to acidic products implicated in protein denaturation and tissue inflammation. The degradation mechanism of linear PEC is thought to be oxidative, however the *in vivo* degradation rate is inappropriately rapid for angiogenic growth factor delivery. To reduce the PEC degradation rate, low molecular weight PEC diacrylates were formed and then UV photocrosslinked to form elastomers. The aims of this thesis were to evaluate the degradation and biocompatibility of these elastomers, and to determine formulation parameters that control the release of a model protein, bovine serum albumin, from porous elastomer matrices.

Diacrylated prepolymers were successfully prepared with molecular weights from 2,000 Da to 12,000 Da. Elastomers were prepared from these prepolymers and characterised using NMR, DSC, ATR-FTIR, sol content and tensile testing. As hypothesized, crosslinking PEC slowed its degradation rate significantly compared to 60 kDa linear PEC (37 ± 4% mass loss in 12 weeks as compared to 78 ± 11% in 3 weeks). This result suggested that PEC degradation properties can be tuned for a range of tissue engineering or drug delivery applications. For both linear and elastomeric PEC, a typical foreign body reaction was observed. The degradation mechanism observed for the elastomer was the same as that for linear PEC and was consistent with the literature: cell-mediated surface erosion, which is demonstrated by linear mass loss, SEM observations, and pitted surface features.
The *in vitro* release of BSA-loaded porous formulations was rapid and/or incomplete. The most promising formulation (12% BSA) produced a more prolonged release of two weeks than the other formulations tested, however the total fraction of BSA released was only 23%. The formulation parameter that most significantly affected the release of BSA was the amount of DMSO used to vortex BSA particles. These findings provide insight into the potential and limitations of PEC elastomers in protein delivery applications.
Acknowledgements

I could write several chapters of gratitude to the following wonderful people for helping make these past two years a supportive and educational experience. Luckily for the printer, I have only included the abbreviated version and will save the extended thank-you’s for in person.

Firstly, I thank my supervisor, Dr. Brian Amsden, for all the guidance, for being a great teacher, translating his vast knowledge of the field of biomaterials, for financial support, and especially for caring about my life outside of, and after, graduate school. I wish to extend great thanks to our lab manager, Dr. Dale Marecak, for keeping the lab running smoothly, equipment assistance, and sampling when I was unable to be in Kingston. I wish to thank Chris Ryan who conducted the animal care surgeries; Charles Cooney for SEM training and tips; and John Da Costa for the paraffin sections and H&E stains (and for teaching me how to get to the Azores, which I will one day visit).

I owe thanks to my friends in my lab group, especially Moira Vyner who translated her knowledge and enthusiasm of histology staining through the bologna slicer analogy, resulting in the successful completion of my first Masson’s Trichrome stain. I thank her also for sampling when I was out of town, for proof-reading help (for resisting the temptation to add the term “double-dog-dare” to my thesis), and for naming all lab equipment, which ensured that they “behaved” for the most part. Thanks to Julian Chesterman for providing help for NMR problems and computer issues.
I owe a big thanks to many other friends within the department, especially Dr. Ian Parrag, who has been a wonderful mentor and advisor. I owe thanks to Eric Potter … even if I only ever needed a bandaid, it was great to gain such a great friend through the Emergency Buddy System. His presence made Biosci seem less haunted. Thanks goes out to Adam Hepburn for his friendship, in the form of “props”.

I extend a special thank-you to Tanya Khan, for fusion dinners, roadtrips, girl talks, and especially for the overwhelming encouragement (and cup of cement) given to me when at crossroads in this last semester, helping me realize one of my dreams.

I will always be grateful to Katie McAlindon for the many wonderful memories we’ve shared at Queen’s, for her friendship and inspiration. I am honoured to have known her, and she will be deeply missed.

Most of all, I would like to send an enormous THANK YOU to Michael Fitzpatrick and my family, the people who have been there for me for years, no matter what else is going on. Mike, I couldn’t have done it without all your love and support. I am so thankful to have shared this graduate experience with you. For my family, thank you for your unconditional love and support (emotional and financial) and especially for your patience! I love you so much.

The financial support provided by National Sciences and Engineering Research Council (NSERC) was very much appreciated.
Table of Contents

Abstract ... i
Acknowledgements .. iii
Table of Contents ... v
List of Figures ... vii
List of Tables .. xii
List of Abbreviations ... xiv

Chapter 1 Introduction and Literature Review .. 1

1.1 Proteins as Therapeutic Agents ... 1
 1.1.1 The Promise of Protein Therapy ... 1
 1.1.2 Role of the Extracellular Matrix ... 3
 1.1.3 Protein Therapy vs. Gene Therapy ... 4
 1.1.4 Clinical Motivation of Angiogenic Growth Factor Therapeutics ... 5

1.2 The Need for Local Protein Delivery .. 5

1.3 Advantages of Polymeric Controlled Delivery Systems ... 7

1.4 Challenges of Current Polymeric Protein Delivery Systems .. 8
 1.4.1 Degradation Mechanism .. 9
 1.4.2 Burst Release ... 10
 1.4.3 Incomplete Release .. 11
 1.4.4 Polymer Hydrophobicity ... 11

1.5 Delivery Challenges of Vascular Endothelial Growth Factor .. 11
 1.5.1 Therapeutic Regimen for Angiogenesis .. 13

1.6 Angiogenic Growth Factor Delivery Approaches and Their Limitations .. 15
 1.6.1 Protein Loading Methods .. 15
 1.6.2 Biomaterials for Growth Factor Delivery .. 16
 1.6.2.1 Poly(lactide-co-glycolide), PLG .. 18
 1.6.2.2 Poly(ethylene oxide), PEO ... 20
 1.6.2.3 Alginate ... 21
 1.6.2.4 Poly(carbonates) ... 23
 1.6.2.5 Biodegradable Elastomers ... 29
 1.6.2.6 Fabrication of Porous Scaffolds ... 30
5.2.2 BSA Release from Porous PEC Elastomers...90
5.3 Results and Discussion ...93
 5.3.1 Fabrication of Porous Scaffolds...93
 5.3.2 BSA Release from Porous PEC Elastomers...97
5.4 Conclusions..107
Chapter 6 Conclusions and Recommendations...108
Chapter 7 References...113
Appendix A Preparation and Characterisation of Poly(ethylene carbonate) Elastomers.......128
Appendix B Degradation and Biocompatibility of PEC Elastomers131
Appendix C PEC Elastomer as a Porous Protein Delivery Device......................................133
List of Figures

Figure 1-1: Structures of PEC and PTMC. .. 23
Figure 1-2: Proposed anionic- and radical-based mechanisms for the biodegradation of PEC in vivo. Adapted from Acemoglu et al. 51 ... 27
Figure 3-1: Structure of α, ω-diacylate poly(ethylene carbonate) PEC and the acrylation procedure .. 40
Figure 3-2: Constitutional units in poly(ethylene carbonate). ... 45
Figure 3-3: NMR spectroscopy of PEC diol after depolymerization and purification, in DMSO. Peaks indicate presence of ethylene carbonate functions, incorporated ether functions, and ethylene oxide functions. “EC” = ethylene carbonate, “EG” = ethylene glycol. 46
Figure 3-4: Depolymerization of linear poly(ethylene carbonate) at 160°C from 30 to 200 minutes ... 48
Figure 3-5: NMR spectrum of diacrylated PEC. Note that acrylated group protons present and that there is no peak at 4.9ppm to correspond to the terminal hydroxyl peak, (100% acrylation). ... 52
Figure 3-6: Young’s modulus for five batches of PEC elastomers before and after sol removal. Data was fit using an power curve for “before sol removal”. Insufficient data points were available to curve fit the “after sol” series. Error bars indicate 95% confidence intervals. N = 3. ... 57
Figure 3-7: Young’s modulus of PEC elastomer batches (before sol removal) compared to linear starting material, 60 kDa PEC. Error bars indicate the 95% confidence interval. 58
Figure 3-8: Representative stress-strain diagrams of linear non-crosslinked PEC, low crosslink density and medium crosslink density PEC elastomers. .. 60
Figure 4-1: Potassium superoxide and 18-crown-6 ether in THF produce a high concentration of the superoxide anion. ... 64
Figure 4-2: In vitro oxidative degradation of PEC and PEC elastomers at different crosslinking densities. Each point represents the average of replicates. N = 3 for Day 1 points, and N = 4 for Day 3 and Day 6 points. Error bars represent 95% confidence intervals for the means. Data for 2000 MW elastomer at Day 6 was excluded due to significant disc damage. Series
curves were added to aid the reader in series identification only. * indicates that difference is significant (p=0.001 or less). .. 70

Figure 4-3: In vivo mass loss for linear 60 kDa PEC, and PEC elastomer made from 6000 MW PEC diacryl. Each point represents the average of quadruplicate values, where the error bars represent the 95% confidence intervals for the means. Linear trendline fitted to each set, where y = Mass loss (%) and x = Time after implantation in weeks. .. 71

Figure 4-4: Water uptake for PEC in vivo degradation study. Each point represents the average of quadruplicate values, where the error bars represent the 95% confidence interval on the mean. Series curves were added to aid the reader in series identification only. 73

Figure 4-5: Representative thermogram showing two heating cycles for PEC elastomer 6 weeks after implantation. Heating cycle started from -80°C and heated to -130°C at 10°C/min. ... 73

Figure 4-6: Glass transition results for linear PEC (left) and PEC Elastomer (right) during in vivo degradation. Error bars represent 95% confidence intervals.. 74

Figure 4-7: SEM micrographs at 100x magnification for 60 kDa linear PEC throughout in vivo degradation. (b) R indicates the rough pitted surface area, S indicates the smooth surface area. (d) Arrow highlights the blanket of tissue covering a degraded pit.............................. 77

Figure 4-8: SEM micrographs at 100x magnification for PEC elastomer (6000 MW) throughout in vivo degradation. (c), R indicates the rough pitted surface area, S indicates the smooth surface area. (d) Arrow highlights the blanket of tissue covering a degraded pit. 78

Figure 4-9: Histological sections stained with H&E or Masson’s Trichrome for PEC Elast 6000 during in vivo degradation. PEC label indicates the implant void, as compared to the surrounding tissue. (b) G= granulocytes (multi-lobed nuclei), E = erythrocytes (c) and (e) FC = fibrous capsule, (d) GT = granulation tissue... 80

Figure 4-10: Histological sections stained with H&E or Masson’s Trichrome for PEC Elast 6000 during in vivo degradation. PEC label indicates the implant void, as compared to the surrounding tissue, (e) FC = fibrous capsule, (f) arrows indicate to cell nodules............. 81

Figure 4-11: Normalized mass loss data comparison for the in vivo degradation data found in the present study (60 kDa), as compared to that from Acemoglu et al. which was 72 kDa. 82

Figure 5-1: SEM micrographs of PTMC porous elastomers at low (20x or 30x) and high (100x) magnification... 96

Figure 5-2: SEM of PEC porous elastomers at low (20x) and high (100x) magnification.......... 97

Figure 5-3: BSA release results for PEC elastomers. Error bars represent standard deviation. . 100
Figure 5-4: Change in PEC elastomer disc size during BSA release study, expressed as percent increase from the initial value .. 100

Figure 5-5: Confocal microscope images of BSA-loaded PEC Elastomers before and after release. 100X magnification. Red scale bars represent 200 μm .. 103

Figure 5-6: SEM micrographs of PEC elastomers after BSA release .. 105

Figure 5-7: High magnification (500x) SEM micrographs of Elastomer C ... 106

Figure 8-1: Copolymerization of poly(alkylene carbonates) from Empower Materials 128

Figure 8-2: During photoinitiator decomposition, 2,2-dimethoxy-2-phenylacetophenone (DMPA) undergoes α-cleavage to form a benzoyl radical and a benzoyl ketal radical, and subsequently the benzoyl ketal undergoes β-cleavage to form a methyl radical and methyl benzoate (Borer, 1978). The benzoyl and methyl radicals are most effective in initiating chains, thus attacking the monomer molecule to form an active monomer molecule which can undergo propagation reactions 160 .. 128

Figure 8-3: Photoinitiated crosslinking of PEC to form an elastomeric polymer network 129

Figure 8-4: Batch #1 diol after purification in CDCl₃. Note that the terminal hydroxyl peak disappeared (not exchangeable) .. 130

Figure 8-5: ATR-FTIR results for PEC diacrylates (top two spectra), and PEC elastomers (bottom two spectra). The band at 1650cm⁻¹ (indicated arrows) corresponds to the acrylated groups which disappear after crosslinking, as expected .. 130

Figure 8-6: Location of subcutaneous PEC disc implantation into Male Wistar rats 131

Figure 8-7: Representative photograph of rat sacrificed at Week 1 containing PEC elastomer implants with four sutures intact .. 131

Figure 8-8: Representative photograph of PEC elastomer implanted into subcutaneous pocket at the time of explantation. No signs of inflammation (redness or swelling) can be seen macroscopically. (Week 6 time point) .. 132

Figure 8-9: Differential Scanning Calorimetry results for PEC depoly (red), PEC diacryl (dark blue), PEC Elast 6000 at Week 0 (green), PEC Elast 6000 at Week 1 (purple), PEC Elast 6000 at Week 6 (light blue), PEC Elast 6000 at Week 12 (brown) .. 132

Figure 8-10: Chemical structure of terminally acrylated glycerol-initiated star-poly(trimethylene carbonate) (star-PTMC) .. 133

Figure 8-11: DSC for porous PEC elastomer with 40/20 PEG, as compared to that of PEG 8000 alone or PEG 400 alone .. 134
Figure 8-12: Calibration curve for total BSA (10% FITC-BSA, 90% BSA) for HPLC assay. ... 134
List of Tables

Table 1-1: Representative list of commonly used growth factors for therapeutic applications 3 3
Table 1-2: Most commonly used growth factors in therapeutic angiogenesis 21 ... 6
Table 1-3: Technical challenges for developing sustained release protein delivery devices.
 Adapted from Wu et al. 27 .. 8
Table 3-1: 2^3 full factorial experiment for determining the best UV crosslinking conditions 42
Table 3-2: Visual observations to aid in PEC depolymerization to a target prepolymer molecular weight.. 49
Table 3-3: Characterisation of low MW PEC diol used in subsequent experiments ... 50
Table 3-4: Properties of PEC Diacyl Batches used in All Experiments .. 52
Table 3-5: Results for the UV crosslinking experiment to determine the minimum sol content attainable within the levels tested ... 54
Table 3-6: Results of parameter estimates for the linear regression of UV crosslinking experiment 54
Table 3-7: DSC results for 6000 MW diol, diacryl and elastomer ... 59
Table 3-8: Stress and strain at break averages for linear PEC and elastomers. Averages reported ± standard deviation. N = 3 ... 60
Table 4-1: Sol content of PEC elastomer explants .. 75
Table 5-1: Elastomers prepared for BSA delivery release experiment. Φ is the volumetric fraction loading of BSA in PEC ... 91
Table 5-2: The comparisons made between BSA-loaded elastomer conditions .. 92
Table 5-3: Porosity of porous PTMC elastomers prepared. ε_1 values are the mean of triplicates ± 95% confidence intervals. ε_2 values are the mean of triplicates ± 95% confidence intervals ... 94
Table 5-4: Porosity of porous PEC elastomers prepared. Values for ε_1 porosity are the mean of triplicates, including 95% confidence intervals based on error propagation and estimated precision of mass balance and calliper (see Appendix C, Equation 8-1). Values for ε_2 porosity listed are the mean of triplicates, with 95% confidence intervals .. 95
Table 5-5: DSC results showing the integration of endothermic melting peaks for PEC elastomers throughout BSA release experiment. Melt temperature value reported is the average of the temperatures at 0, 1, and 4 weeks ± standard deviation. Midpoint of the temperature is reported. No melting points were found for Elastomer E before release .. 101
Table 5-6: Porosity measurements of PEC elastomers after completed BSA release study. 104
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Acryloyl Chloride</td>
</tr>
<tr>
<td>Ang</td>
<td>Angiopoietin</td>
</tr>
<tr>
<td>ATR-FTIR</td>
<td>Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>bFGF</td>
<td>Basic Fibroblast Growth Factor</td>
</tr>
<tr>
<td>BMP</td>
<td>Bone Morphogenetic Protein</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CABG</td>
<td>Coronary Artery Bypass Graft</td>
</tr>
<tr>
<td>CDCl₃</td>
<td>Deuterated Chloroform</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-(Dimethylamino)pyridine</td>
</tr>
<tr>
<td>DMPA</td>
<td>2,2-Dimethoxy-2-Phenyl-Acetophenone</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl Sulfoxide</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential Scanning Calorimetry</td>
</tr>
<tr>
<td>EC</td>
<td>Ethylene Carbonate</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular Matrix</td>
</tr>
<tr>
<td>EC's</td>
<td>Endothelial Cells</td>
</tr>
<tr>
<td>ECU</td>
<td>Ethylene Carbonate Units</td>
</tr>
<tr>
<td>EF</td>
<td>Ether Function</td>
</tr>
<tr>
<td>EG</td>
<td>Ethylene Glycol</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal Growth Factor</td>
</tr>
<tr>
<td>EVA</td>
<td>Ethylene Vinyl Acetate</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FITC-BSA</td>
<td>Fluorescein Isothiocyanate Conjugated Bovine Serum Albumin</td>
</tr>
<tr>
<td>GPC</td>
<td>Gel Permeation Chromatography</td>
</tr>
<tr>
<td>HGF</td>
<td>Hepatocyte Growth Factor</td>
</tr>
<tr>
<td>hIL-3</td>
<td>Human Interleukin-3</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-Performance Liquid Chromatography</td>
</tr>
<tr>
<td>IEF</td>
<td>Incorporated Ether Function</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon-gamma</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Insulin-Like Growth Factor</td>
</tr>
<tr>
<td>IL-2</td>
<td>Interleukin-2</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular Weight</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide Adenine Dinucleotide</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide Adenine Dinucleotide Phosphate</td>
</tr>
<tr>
<td>NGF</td>
<td>Nerve Growth Factor</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
</tbody>
</table>
PBS Phosphate Buffered Saline
PDGF Platelet-Derived Growth Factor
PEC Poly(ethylene carbonate)
PEG Poly(ethylene glycol)
PEO Poly(ethylene oxide)
PGA Poly(glycolide)
PLG Poly(lactide-co-glycolide)
PIGF Placental Growth Factor
PLLA Poly(L-lactide)
PTMC Poly(trimethylene carbonate)
PVA Poly(vinyl alcohol)
RGD Arg-Gly-Asp
SCID Severe Combined Immunodeficient
SEM Scanning Electron Microscopy
TEA Triethylamine
TFA Trifluoroacetic Acid
T_g Glass Transition Temperature
TGF-α Transforming Growth Factor-α
TGF-β Transforming Growth Factor-β
THF Tetrahydrofuran
TMC Trimethylene Carbonate
UV Ultraviolet
VEGF Vascular Endothelial Growth Factor
Chapter 1
Introduction and Literature Review

1.1 Proteins as Therapeutic Agents

1.1.1 The Promise of Protein Therapy

Proteins have a wide range of dynamic roles in the body, such as catalyzing biochemical reactions, forming receptors and channels in membranes, providing intracellular and extracellular scaffold support, and transporting molecules within a cell or from one organ to another\(^1\). With the number of functionally distinct proteins predicted to be higher than the estimated 30,000 genes in the human genome\(^2\), there is a large opportunity to take advantage of proteins for therapeutic treatments of many conditions. In 2008, more than 130 different protein-based therapies were approved by the U.S. Food and Drug Administration (FDA)\(^1\).

Compared to small-molecule drugs, proteins have several advantages as therapeutic agents\(^1\). One such advantage is that proteins serve highly specific and complex functions that cannot be achieved with simple synthetic compounds. Due to this high specificity, there is less potential for interference with normal biological processes and thus less adverse effects, especially if delivered locally\(^1\). Another advantage is that proteins used as therapeutics are often naturally produced in the body and therefore may be better tolerated\(^1\). A final major advantage of using proteins as therapeutics is that, clinical time and FDA approval can be faster for proteins than for small drugs\(^1\). In 2003, a study showed that the average development and approval time was 1 year.
shorter for 33 protein therapeutics approved in 2002, than for 294 small-molecule drugs approved during the same time

Growth factors are proteins responsible for the control of normal cellular activities such as proliferation, differentiation, migration, and adhesion. They initiate these actions by binding to cell surface receptors. The term “growth factors” is often used synonymously with morphogens, cytokines, or chemokines. The growth factor type, concentration, duration and environment (e.g. presence and sequence of multiple growth factors) dictate cell fate, and therefore determine the ultimate therapeutic effect. For example, some growth factors induce angiogenesis, maturation, or maintain the integrity of established vasculature. See Table 1-1 for a list of representative growth factors and their activities.

There has been an abundance of promising studies describing the use of growth factors for therapeutic applications. For example, local drug delivery of insulin-like growth factor (IGF-1) and transforming growth factor-β1 (TGF-β1) have been evaluated for biological stimulation of the healing process to improve the clinical outcome in the treatment of long bone fractures. Vascular endothelial growth factor (VEGF) has been successfully used at the intimal surface of a balloon-injured artery (after balloon angioplasty) resulting in enhanced reendothelialization and reduced neointimal thickening in a rat model. Recent studies have shown that basic fibroblast growth factor (bFGF) was effective in enhancing periodontal tissue regeneration. This growth factor has also been delivered to microencapsulated islets for the treatment of type I diabetes. Epidermal growth factor (EGF) has been locally delivered via Pluronic/chitosan hydrogels for enhanced wound healing of diabetic foot ulcers. These examples represent only a small fraction of the potential applications of growth factor delivery.
Table 1-1: Representative list of commonly used growth factors for therapeutic applications

<table>
<thead>
<tr>
<th>Growth Factor Name</th>
<th>Abbrev.</th>
<th>Representative Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidermal growth factor</td>
<td>EGF</td>
<td>Proliferation of epithelial, mesenchymal, glial, and fibroblast cells</td>
</tr>
<tr>
<td>Basic fibroblast growth factor</td>
<td>bFGF</td>
<td>Proliferation of fibroblasts and initiation of angiogenesis</td>
</tr>
<tr>
<td>Insulin-like growth factor</td>
<td>IGF-1</td>
<td>Proliferation and differentiation of satellite cells; activation of muscle stem cells</td>
</tr>
<tr>
<td>Vascular endothelial growth factor</td>
<td>VEGF</td>
<td>Migration, proliferation, and survival of endothelial cells</td>
</tr>
<tr>
<td>Transforming growth factor - α</td>
<td>TGF-α</td>
<td>Migration and proliferation of keratinocytes</td>
</tr>
<tr>
<td>Transforming growth factor - β</td>
<td>TGF-β</td>
<td>Proliferation and differentiation of bone forming cells; chemoattractant for fibroblasts</td>
</tr>
<tr>
<td>Platelet-derived growth factor</td>
<td>PDGF-AA, PDGF-AB, PDGF-BB</td>
<td>Proliferation and chemoattractant for smooth muscle cells</td>
</tr>
<tr>
<td>Hepatocyte growth factor</td>
<td>HGF</td>
<td>Proliferation, migration, and differentiation of mesenchymal stem cells</td>
</tr>
<tr>
<td>Nerve growth factor</td>
<td>NGF</td>
<td>Promotes neurite outgrowth and neural cell survival</td>
</tr>
<tr>
<td>Bone morphogenetic protein (family of protein, of which six, BMP-2 through BMP-7 belong to TGF-b family of proteins)</td>
<td>BMP-2/ BMP-7</td>
<td>Differentiation and migration of bone forming cells</td>
</tr>
</tbody>
</table>

1.1.2 Role of the Extracellular Matrix

Growth factors are released by cells close to the site of action. After being released, many growth factors, such as VEGF, IGF, bFGF, TGF-β, and hepatocyte growth factor (HGF) bind with glycosaminoglycans (heparin or heparin sulphate) within the extracellular matrix (ECM). This binding acts to stabilize the active protein conformation, to protect it from immediate clearance and proteolytic inactivation and to promote its release in proximity to the cells involved in proteolytic remodelling of the ECM. Since ECM-degrading enzymes are regulated to exert
their activity directly at the cell surface, the release of growth factors is localised11. Therefore, it is clear that the ECM plays a highly functionalized role in modulating the stability, activity, release and spatial localization of endogenous growth factors.

1.1.3 Protein Therapy vs. Gene Therapy

Gene therapy is an alternative to protein delivery, but there are many problems associated with this approach. To date, serious and unresolved problems related to gene therapy include: a) low transfection efficiency, b) risks of an undesired immune response, c) the potential for toxicity, inflammatory responses and oncogenesis related to the viral vectors, and d) the injection of a single gene will not be beneficial for disorders which are likely caused by the combined effects of variations in many genes (e.g. heart disease, high blood pressure, and diabetes)12, 13. The U.S. FDA has not yet approved any gene therapy products for sale14.

In contrast to gene therapy, localized protein delivery has a number of advantages: the biological effects of proteins are better characterised than genes, it is possible to deliver a therapeutic protein with minimal immunogenic response, there is no need for a viral or synthetic vector, there is a localized effect at the target site, and more predictability of dosing. For protein delivery, the biggest challenges are associated with selecting a delivery device that is appropriate for the protein dose and duration required, and maintaining the bioactivity of the therapeutic agent until it reaches the target cell. Considering the challenges of both approaches, protein therapy may be the dominant treatment choice for many disorders for at least the next decade (at least until more research further evaluates whether the risks and challenges of gene therapy can be resolved).
1.1.4 Clinical Motivation of Angiogenic Growth Factor Therapeutics

The administration of angiogenic growth factors has been investigated clinically for the treatment of tissue ischemia (e.g. for peripheral vascular disease or coronary artery disease), which results from arterial blockage due to plaque deposition11. Given that cardiovascular disease currently accounts for 30\% of deaths in Canada, and that 54\% of these are due to ischemic heart disease15, the promise of angiogenic growth factor therapy provides a significant opportunity to develop life-saving technologies. Promising clinical results from angiogenic growth factor therapy are also meaningful for other applications, such as for vascularisation in tissue engineering, which is currently an unmet challenge that has limited the success of tissue engineering approaches so far to simple avascular tissues such as skin (epidermis), cornea and cartilage16.

It has been shown that administration of a number of angiogenic growth factors improves regional blood flow. Growth factors shown to be involved in angiogenesis include: vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which initiate endothelial capillary formation by promoting endothelial cell migration, proliferation and survival; platelet-derived growth factor (PDGF), which stabilizes the newly formed vessels by the recruitment of mural cells; and transforming growth factor-\(\beta\) (TGF-\(\beta\)) which is involved in the maturation by promoting ECM deposition17-20. A list of commonly used angiogenic growth factors are listed in Table 1-2.

1.2 The Need for Local Protein Delivery

The delivery of protein drugs is often more challenging than small-molecule drugs for many reasons. One major challenge is maintaining the bioactivity of the therapeutic agent since soluble
Table 1-2: Most commonly used growth factors in therapeutic angiogenesis.21

<table>
<thead>
<tr>
<th>Growth Factor</th>
<th>Abbreviation</th>
<th>Relevant Known Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vascular endothelial growth factor</td>
<td>VEGF</td>
<td>Migration, proliferation, and survival of endothelial cells</td>
</tr>
<tr>
<td>Basic fibroblast growth factor</td>
<td>bFGF</td>
<td>Migration, proliferation, and survival of endothelial cells and many other types of cells</td>
</tr>
<tr>
<td>Platelet derived growth factor</td>
<td>PDGF</td>
<td>Promotes the maturation of blood vessels by recruiting smooth muscle cells</td>
</tr>
<tr>
<td>Angiopoietin-1</td>
<td>Ang-1</td>
<td>Strengthens endothelial cell-smooth muscle cell interaction</td>
</tr>
<tr>
<td>Angiopoietin-2</td>
<td>Ang-2</td>
<td>Weakens endothelial cell-smooth muscle cell interaction</td>
</tr>
<tr>
<td>Placental growth factor</td>
<td>PIGF</td>
<td>Stimulates angiogenesis</td>
</tr>
<tr>
<td>Transforming growth factor</td>
<td>TGF</td>
<td>Stabilizes new blood vessels by promoting matrix deposition</td>
</tr>
<tr>
<td>Hepatocyte growth factor</td>
<td>HGF</td>
<td>Mitogen, motogen, morphogen of epithelial and endothelial cells</td>
</tr>
</tbody>
</table>

proteins are prone to degradation, deactivation by enzymes, and chemical and physical reactions at body temperature. Therefore, most proteins possess short plasma half-lives. For example, the half life of bFGF is only 3 minutes22, that of VEGF is 30-90 minutes18, 23, 24 and that of interleukin-2, (IL-2) is 30 minutes25. Protein denaturation can also result in the protein becoming immunogenic when released \textit{in vivo}26, 27. This inherent instability of protein drugs must be taken into account when designing delivery systems to ensure that the protein is protected during fabrication, storage, and during release.

In addition to short half-lives, proteins are relatively large in size, penetrate tissue slowly and are potentially toxic at high systemic levels4, 27. Therefore, conventional systemic routes of administration are not effective and may even be dangerous. Administration of growth factor alone via bolus injection has been shown to result in systemic problems caused by distribution, fast clearance, and overdose side effects27. Oral administration is not effective due to proteolytic degradation in the acidic environment of the gastro-intestinal tract and low permeability across
biological membranes due to the large size and polar surface characteristics of proteins. Therefore to be effective, due to these special challenges, the delivery of protein therapeutics must be local, as is done in nature.

1.3 Advantages of Polymeric Controlled Delivery Systems

There are significant advantages to using polymers for controlled protein delivery. Most importantly, polymer delivery devices are capable of improving the efficacy of drug therapy by delivering the protein therapeutic locally, to avoid dangerous systemic effects, and delivering the protein in a sustained fashion within the therapeutic window, to prevent overdose effects. They also allow for stabilization of the protein drug to maintain its bioactivity until release by providing protection against physiological conditions, which is important for reasons described in the previous section. If they are efficient, controlled release devices allow for lower dosage administration to accomplish the same therapeutic effect in patients as compared to systemic routes of administration such as injections. Additionally, the convenience of fewer, more efficient dosages increases patient compliance.

Polymers also offer the advantage of device design flexibility. The chemical and physical properties of polymers can be tailored, especially through copolymerization, to produce a range of different release profiles which can be used for different therapeutic applications. Polymers can also be fabricated by various techniques to have different geometries, surface morphology, and porosity. Altering these characteristics can alter the release profile and/or mode of administration (e.g. minimally invasive injectables using hydrogels, microspheres or low viscosity material). Several different release mechanisms are available (diffusion alone, matrix erosion, a combination of diffusion and matrix erosion, or osmotic release mechanism).
depending on the polymer system selected. In some protein release applications, the polymer also
serves to provide structural support, as a tissue engineering scaffold, or to provide a barrier to
prevent the formation of post surgical adhesions34.

1.4 Challenges of Current Polymeric Protein Delivery Systems

There are many challenges in designing an effective protein delivery system, as summarized in
Table 1-3. Some of these problems are attributed to the polymer degradation mechanism and
hydrophilicity. Others are associated with the fabrication process of the protein-loaded device,
such as protein denaturation due to exposure to heat, shear, or moisture. These problems must be
simultaneously resolved in order to produce an efficient and safe protein delivery device.

Table 1-3: Technical challenges for developing sustained release protein delivery devices. Adapted
from Wu et al.27.

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Possible Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein denaturing during polymer degradation</td>
<td>Acidic degradation products of hydrolysis</td>
</tr>
<tr>
<td>Protein denaturing during formulation process</td>
<td>High temperature, shear, cavitations, cross-linking reagent</td>
</tr>
<tr>
<td>Protein denaturing, aggregation, adsorption to polymer</td>
<td>Environmental factors like temperature, moisture</td>
</tr>
<tr>
<td>Immunogenicity of denatured proteins</td>
<td>Denaturation, aggregation</td>
</tr>
<tr>
<td>Burst Release</td>
<td>\textit{In vivo} conditions like body temperature, pH, buffer, hydrophilic polymers</td>
</tr>
<tr>
<td>Incomplete Release</td>
<td>Denaturation, aggregation, low loading or limited interconnectivity of pores</td>
</tr>
<tr>
<td>Poor loading capacity, loading efficiency, and reproducibility</td>
<td>Formulation, complicated procedures, high cost, polymer type/properties</td>
</tr>
<tr>
<td>Formulation complexity</td>
<td>Denaturation, aggregation</td>
</tr>
</tbody>
</table>
1.4.1 Degradation Mechanism

The specific degradation mechanism of the selected polymer must be understood, since it will determine the microenvironment into which the drug is released. Biodegradable polymers can be degraded by bulk erosion and/or surface erosion.

Bulk degradation often takes place by hydrolysis, which is the result of water absorption into the polymer matrix; ester hydrolysis; byproduct diffusion to the surface of the implant; and local internal decrease in pH since the acidic degradation products are temporarily retained catalyzing further hydrolysis. The degradation is characterised by an initial decrease in mechanical properties with little mass loss, followed by a period of mass loss, water uptake, further mechanical strength decrease, and finally the release of low molecular weight degradation products. Bulk degradation may also be accompanied by cracks and crevices throughout the device that may rapidly crumble into pieces. This is especially dangerous for drug delivery applications since cracks and/or failure may cause a bolus/large release of the drug. These fragments may even cause tissue irritation depending on the mechanical properties of the material and tissue location of the implant. Bulk eroding materials also possess limited predictability of erosion and the lack of protection of drug molecules from water. Commonly used bulk degrading biomaterials include poly(glycolide), poly(L-lactide), poly(D,L-lactide), and poly(ε-caprolactone) and their copolymers. Therefore, there are several reasons to conclude that bulk eroding polymers are not ideal for protein delivery applications.

Surface eroding biomaterials, on the other hand, are advantageous for protein delivery applications because they do not experience these problems. They degrade by oxidation and/or enzymatic degradation at the surface of the implant where adherent phagocytes produce reactive
oxidative species or enzymes 47-50. Since this degradation occurs primarily in the intimate environment between the adherent phagocytes and the implant surface, the bulk remains inaccessible to the degrading species during most of the degradation period, and mechanical properties and other bulk properties do not change. Mass loss begins immediately and is linear with time. For some elastomers (especially thermosetting elastomers), hydrolysis also occurs on the surface50. Surface eroding biomaterials include poly(ethylene carbonate)47, 51, poly(trimethylene carbonate)48, poly(urethane carbonate)52, poly(glycerol sebacate)50, poly(polyol sebacate)50, poly(ortho esters)53, and poly(anhydrides)54, 55.

1.4.2 Burst Release

One of the most common problems with the release of drugs via delivery devices is the “burst release”, which refers to the initial large bolus release occurring immediately after the device has been placed in release medium (between 24 hours to several days). This burst release must be minimized because overdose is a concern for the entire release period, and is economically inefficient, especially considering the high cost of growth factor therapeutics. Among the strategies that have been successfully applied in decreasing the burst release, some have used plasticizers such as poly(ethylene glycol)56, 57 and poly(ethylene oxide monooleate)-block-poly(D,L-lactide)58 which work by producing a smoother surface, thereby reducing the surface area available for the initial burst release. Other strategies have coated a drug loaded device with another polymer or embedded microspheres in thermal gelling systems, poly(vinyl alcohol) (PVA), or fibrin59-61.
1.4.3 Incomplete Release

Incomplete release is also a common problem in delivery systems. It has been attributed, in many cases, to the protein aggregation during formulation, as well as the protein adsorption onto porous (hydrophobic) surfaces as the surface area increases during polymer degradation. To solve this problem for a salicylic delivery system, one study applied low intensity ultrasound, which created cracks and crevices in a poly(ethylene-co-vinyl acetate) elastomer with 40% EVA and allowed more trapped drug to be released. However, this technique has not been applied to growth factor delivery systems where localized heat and pressure during ultrasound exposure could degrade incorporated growth factor.

1.4.4 Polymer Hydrophobicity

Proteins can denature during sustained release by protein aggregation and protein adsorption onto a hydrophobic polymer matrix. The energy barrier for protein unfolding was reported to be 5-20 kcal/mol which is close to that of protein-hydrophobic surface interaction. On the other hand, the use of completely hydrophilic systems has not proven to be completely successful. Disadvantages of some hydrogels have included low growth factor encapsulation yields, a rapid and significant initial burst followed by short release durations (4-7 days), low total fraction released, or the exposure of proteins to reactive cross-linkers.

1.5 Delivery Challenges of Vascular Endothelial Growth Factor

The most commonly used growth factor for initiating angiogenesis is vascular endothelial growth factor (VEGF) because it is more potent than basic fibroblast growth factor (bFGF) for endothelial cells (EC’s). VEGF-A165 is the most common and biologically active isoform and for the remainder of this thesis, it will be referred to as VEGF.
Early studies involving administration of VEGF by bolus injection at high doses demonstrated the need for a delivery system that prevents local and systemic overdose effects. Observed complications of bolus VEGF delivery have included severe vascular leakage leading to edema, nitric-oxide dependent hypotension,69, 70 and the unregulated formation of a dense bed of abnormal non-functional and short-lived vessels71.

There have also been problems with distribution and clearance of VEGF unless a delivery device is utilized. A study conducted in a rat model by Kim et al. compared the pharmacokinetics following subcutaneous injection of VEGF alone to subcutaneous injection of VEGF-containing microspheres made from one of the most common drug delivery polymers, poly(lactide-co-glycolide) (PLG). When VEGF was injected on its own, the result was a very high plasma concentration (low concentration in the subcutaneous area), clearance of only four hours, and 70\% of the VEGF was located in the blood, liver, spleen, lung and kidneys72. Therefore, it is clear that a controlled delivery device is necessary for effective VEGF therapy.

It should be noted that for the Kim et al. study while the administration of VEGF in PLG microspheres produced low VEGF plasma concentrations but high subcutaneous concentrations over 7 weeks, significant reduction in protein activity was reported and the study concluded that this reduction was due to the degradation byproducts73. This significant limitation is a concern for the application of many of the most commonly used drug delivery polymers, and will be further discussed.

As when designing delivery devices for almost any growth factor, the potential for stability issues must be taken into account. The acidic byproducts produced by many commonly used drug delivery polymers are detrimental for VEGF delivery, since VEGF degradation is accelerated at
low pH values. The N-terminal residues of recombinant human VEGF, which participate in receptor binding, are prone to deamidation, oxidation, and diketopiperazine reactions. These reactions occur at 7.4, 2.5 and 5.2 times faster, respectively, when environmental pH is 5 as compared to pH 8\(^7^4\). Therefore hydrolysable polymers are not recommended for the release of VEGF.

1.5.1 Therapeutic Regimen for Angiogenesis

One of the requirements of an effective and safe drug delivery system is that the release rate is within the therapeutic window, and that the duration of drug release is appropriate for this application. In therapeutic angiogenesis, newly formed blood vessels must be functional (i.e. perfused), and stabilized by surrounding smooth muscle cells in order to remain stable and therapeutically helpful. Preliminary experiments and preclinical trials have shown that the delivery of the growth factor must be continuous and local to induce effective vascularisation\(^7^5\)\(^\text{-}\)\(^7^8\). Many studies have shown that VEGF should be presented at the target site for 3-4 weeks\(^7^5\)\(^,\)\(^7^9\)\(^-\)\(^8^1\). For example, Dor et al. administered VEGF for two weeks followed by cessation, which resulted in the production of new blood vessels that disappeared two weeks after cessation of delivery. When the delivery was extended to 4 weeks followed by cessation, however, the newly formed blood vessels persisted\(^8^0\). This prolonged multi-week exposure is necessary because many growth factors are also survival factors for endothelial cells, and exposure must be sustained to prevent early apoptosis of the migrating endothelial cells.

While it is generally accepted that this prolonged exposure to angiogenic growth factors is required, there is not widespread agreement regarding what concentration and combination of growth factors should be the goal of a delivery devices for therapeutic angiogenesis. It is
expected that when the VEGF concentration is too low, there is insufficient growth factor for activation of microvascular endothelial cells. On the other hand, if VEGF concentrations are too high, cell receptors can be potentially saturated and this may disrupt cell guidance4. There is support from several studies that indicate that single factor (VEGF) delivery at the correct concentration and duration is enough to produce functional long-lasting blood vessels. For example, in a study conducted by von Degenfeld \textit{et al.}, the local delivery of a high concentration of VEGF (440ng/day) for two weeks into ischemic tissue in SCID mice resulted in improved blood flow and the development of persistent new blood vessels, even at 15 months. On the other hand, doses of 48 ng/day and 804 ng/day did not produce long-lasting blood vessels81. This dosage dependence was confirmed by another study by Davies \textit{et al.} through continuous infusion of 15, 150 or 1500 ng/day into a porous polyurethane scaffold implanted subcutaneously into the back of rats. Only the 150 ng/day dosage resulted in increased blood vessel density and persistent blood vessels82.

On the other hand, there have also been many studies concluding that for new blood vessels to remain stable, the co-administration of a pro-angiogenic growth factor and pro-maturation factor is required. For example, PDGF-BB is a potential pro-maturation factor because it recruits pericytes, which may help stabilize the nascent blood vessel. Richardson \textit{et al.} reported that the co-administration of VEGF and PDGF-BB at rates of 79 ng/day and 3 ng/day in a subcutaneous pocket in Lewis rats produced larger and more mature blood vessels than the delivery of either factor alone83. Another study demonstrated that the sequential delivery of these two growth factors induced the formation of mature, stable vessels by recruitment of smooth muscle cells84. As another approach, Xin \textit{et al.} reported that the combined delivery of VEGF and HGF achieved a more effective therapeutic results than that achieved with either single factor administered alone and this combined therapy had an amplified, synergistic effect85.
Unlike with conventional routes of drug administration, controlled delivery devices can be designed to deliver multiple growth factors sequentially, in combination, at different rates. This approach is seen as more biomimetic since in nature cell fate processes are most likely controlled by coordinating cell exposure to multiple growth factors. This design would be accomplished through fabrication using several different approaches where each growth factor is incorporated at different stages of the device fabrication. Recent approaches include encapsulating one growth factor within beads before incorporation into another polymer containing matrix \(^83\), coating one growth factor containing device with another polymer-containing coating material \(^86, 87\), or taking advantage of different growth factors affinity to heparine sulphate (heparinization) \(^88\).

Since the best drug regimen for therapeutic angiogenesis is not known for certain, there is a need for growth factor delivery systems with tunable release rates, as well as adjustable mechanical and degradation properties. The latter is especially true if there is interest in using the delivery device for therapeutic angiogenesis in tissue engineering of a range of tissues since it is assumed that the degradation rate of the scaffold should match the rate of regeneration of tissue. The purpose of this work is to develop a new biodegradable elastomer and investigate its potential as a protein delivery device, with the ultimate interest in therapeutic angiogenesis. Therefore, the present literature review will focus especially on biomaterials that have been applied to angiogenic growth factor delivery.

1.6 Angiogenic Growth Factor Delivery Approaches and Their Limitations

1.6.1 Protein Loading Methods
There are a number of strategies for obtaining growth factor release from various porous scaffolds. However, the potential for denaturation of the growth factor as well as the need for the release kinetics to meet the design criteria for this application must be considered for each option. These strategies include adsorbing growth factors to the scaffold, coating the interior surface of the scaffold with a protein/polymer emulsion, blending growth factor-containing microspheres into the scaffold, or directly mixing growth factor containing lyophilized protein into the scaffold during preparation. Adsorbing growth factors to the scaffold has shown low loading efficiencies, rapid release, and an initial burst in the first few hours of 25%. For loading growth factors into microspheres, or into the emulsion coating, water/organic solvent emulsions are involved and therefore there is a decrease in protein bioactivity observed. Proteins are prone to denaturation during exposure to water-organic solvent interfaces. As mentioned, the energy barrier for protein unfolding was reported to be 5-20 kcal/mol, which is also close to that of water-oil and water-air interfacial tension. To minimizing the chance of denaturation during protein particle fabrication, one approach uses stabilizers, however often this results in burst release, protein aggregation, reduced efficacy and formulation complexity. Incorporating solid protein particles is an attractive option because it is simple, and achieves nearly 100% protein incorporation efficiency and does not involve the use of an organic solvent so it is recommended for use if possible, which depends on the processing properties of the polymer selected.

1.6.2 Biomaterials for Growth Factor Delivery
A number of natural and synthetic polymers have been studied as controlled drug delivery devices. Naturally-derived materials available include proteins (collagen, gelatin, fibrin), and polysaccharides (alginate, chitosan, hyaluronic acid). While natural materials are often similar
to ECM, and may have the innate ability to interact with cells and/or undergo cell-mediated degradation, there can be issues including batch-to-batch variation, mechanical properties, immunocompatibility, and source/availability \(^4, ^99\).

Alternatively, synthetic materials have also been applied to drug delivery applications because they do not possess issues with source and are more controllable and reproducible from compositional and materials processing viewpoints \(^98, ^100\). Use of synthetics also eliminates the concerns associated with the infectious pathogens from using animal or plant derived substances\(^18\). Although they may not be recognised by cells due to the absence of biological signals, architecture parameters and surface modification techniques have been employed to successfully improve cell adhesion and migration for synthetic options \(^31, ^99\). Classes that are widely used include poly(α-hydroxyesters)s, polyanhydrides, and polyorthoesters \(^31\). So far, the poly(α-hydroxyesters)s such as poly(lactide) (PLA) and poly(glycolide) (PGA) and its copolymers have been most widely used.

Depending on the mechanical properties required and the delivery route for a certain application, synthetic polymers can be processed into porous scaffolds, particles or hydrogels. Hydrogels are physically or chemically crosslinked water-soluble polymers that swell in the presence of water. Poly(vinyl alcohol) (PVA) and poly(ethylene glycol) (PEG) are commonly applied examples. Porous scaffolds can be fabricated using solvent casting \(^101\), gas foaming \(^102\), particulate leaching \(^103\), electrospinning \(^104\), or rapid prototyping \(^31\). The most commonly used polymers that are processed into porous scaffolds for drug delivery are poly(α-hydroxyester)s such as PLG or PLLA, polyanhydrides, polyorthoesters, poly(ethylene glycolide) and PVA.
A number of biodegradable polymers have been investigated for protein delivery. Among biodegradable polymers, polyesters\(^{105}\), polyamides\(^{106}\), poly(anhydrides)\(^{107}\), poly(orthoesters)\(^{53}\), poly(phosphazene)s\(^{108}\), and many other synthetic polymers have been studied. These polymers degrade by hydrolysis, which releases acid byproducts into the local environment. These acidic degradation products have been shown to reduce the bioactivity of released protein drugs\(^{17,109-116}\) and have been even implicated in causing tissue inflammation surrounding the implant\(^{117}\). A number of synthetic polymers do not significantly degrade in hydrolytic conditions at physiological pH, and are known to degrade by oxidation \textit{in vivo}. These are, poly(carbonates), poly(urethane)s, poly(carbamate)s, and poly(ether urethane urea)\(^{118,119}\).

\subsection*{1.6.2.1 Poly(lactide-co-glycolide), PLG}

PLG is one of the most commonly used synthetic biodegradable materials and it has a history of use as degradable synthetic sutures and bone fixatives\(^{120}\). The advantages of this material include good mechanical and degradation properties that can be tuned by the lactide to glycolide monomer ratio and the degree of polymerization\(^{17}\). PLG also possesses good cell adhesive properties for application as a drug-delivering tissue engineering scaffold.

The high temperatures or organic solvents used in conventional PLG scaffold processing techniques are inappropriate for maintaining the activity of loaded growth factors. However, new variations of the processing techniques have been developed to avoid denaturation\(^{121}\). A gas foaming process was developed using high pressure CO\(_2\) gas and NaCl leaching which resulted in completely amorphous, highly porous matrices of PLG with interconnectivity that degrade over a period of 2-6 months\(^{121}\). Since these conditions are relatively mild for VEGF, it was shown that the bioactivity of the loaded protein was maintained using this process\(^{121}\). However, the loading
capacity using this method was only 20-30% since the growth factor was released during the aqueous salt removal. This is too low considering the high cost of growth factors. This was improved by pre-encapsulating the VEGF into alginate microspheres before incorporation into PLG which resulted in a 55% loading capacity of growth factor. This approach resulted in a more sustained release over the course of several weeks as compared to releasing from alginate microspheres alone. Histological examination of mouse subcutaneous implants revealed locally induced formation of a new vascular network around the implant.

The first dual delivery release system was applied in this area using porous PLG as a scaffold. Dual release hypothesizes that the administration of a pro-angiogenic growth factor, VEGF, with pro-maturation factor, PDGF, will result in mural cell recruitment to stabilize newly formed blood vessels. This hypothesis was supported by the study results. PLG scaffolds were prepared to allow the release of VEGF and PDGF by loading at different times. While VEGF was mixed with the polymer particles before processing, the PDGF was encapsulated into the polymer particles before processing (a gas foaming technique). This resulted in somewhat distinct release kinetics of the two growth factors since VEGF was largely associated with the surface and therefore released initially, and the PDGF was located in the bulk, released later by bulk erosion. Although the data were not shown by the authors, the paper indicated that both growth factors were measured to be bioactive over the first three weeks of an in vitro release study.

More importantly, it was shown that this dual delivery led to both a high density of vessels and the formation of thicker and larger vessels. This was further confirmed in a mouse model of hind limb ischemia where an increased number of mural cells were identified by histochemical
staining. This staining was for α-smooth muscle actin (a marker of mural cells), which was present when both factors were delivered as compared to just VEGF or PDGF alone.

There are serious limitations to PLG materials, as they degrade by hydrolysis. The degradation byproducts are lactic acid and glycolic acid which can significantly decrease the local pH as the scaffold degrades, and this is likely to denature the releasing growth factor and may cause tissue inflammation. Studies have been conducted attempting to resolve this limitation of PLG by incorporating basic excipient (e.g. Mg(OH)$_2$ and MgCO$_3$) along with the growth factor before loading. Other studies have blended PLG with PEG. For addition of basic excipients, some control over the microenvironmental pH was accomplished for a short term, but the internal pH did eventually drop. Blending with PEG resulted in an improved control over microenvironmental pH (5 to 5.8 for 4 weeks), however this was accompanied by a significant burst release (60% of loaded VEGF was released within the first 4 days). As mentioned, burst release should be avoided because it may cause serious overdose effects.

1.6.2.2 Poly(ethylene oxide), PEO

The most commonly used synthetic hydrogel in drug delivery is poly(ethylene oxide) (PEO), which is a component in several FDA-approved medical devices. Since it is very hydrophilic, it can absorb water from its surroundings and form a hydrogel. A significant advantage of hydrogels is that they can be injected which is minimally invasive. PEO can also be UV crosslinked by modifying each end with acrylate or methacrylate and adding a photoinitiator.

Disadvantages of unmodified PEO gels include that it is not biodegradable and it does not allow protein adsorption (therefore giving PEO poor cell adhesion properties, rendering it unsuitable as
an angiogenic growth factor delivering scaffold for tissue engineering on its own. Modifications
to overcome these limitations include conjugation to a number of natural and synthetic molecules.
For example, the copolymer PEO-co-PLLA is biodegradable and can form thermally reversible
hydrogels. It should still be noted that experiments where PEO is copolymerized to achieve
degradable scaffolds have involved the addition of hydrolysable segments, which release acid
degradation products. Another modification includes the incorporation of affinity sites to provide
association/dissociation sites for growth factor release, as well as cleavage sites for
biodegradability. For example, PEG derivatives with proteolytically degradable peptides in their
backbone have been used to form hydrogels that are degraded by enzymes involved in cell
migration, such as collagenase and elastase. RGD has been incorporated into the scaffold to
achieve biospecific cell adhesion to enhance cellular ingrowth of neighbouring tissue. A
heparin-binding peptide-conjugated star PEG was used to form bFGF loaded gels and the release
was closely related to the erosion rate.

1.6.2.3 Alginate

Alginate is a commonly used natural biomaterial and is an anionic polysaccharide composed of
beta-D-mannuronic acid and alpha-L-glucuronic acid which is derived from marine brown algae.
When exposed to divalent cations (e.g. calcium), it complexes and forms a gel that will solubilise
if the calcium is chelated and gets exchanged with sodium ions. This hydrogel is used widely
in food additives and wound dressings. Since this material will gel in an aqueous environment,
alginate microspheres provide mild conditions for the entrapment of angiogenic growth factors.
However, when simply loaded in this way, in vitro release under static conditions showed an
uncontrolled burst release within the first 4 days followed by a zero-order release for 3 weeks.
To minimize the initial burst, heparinization has shown to be a more effective growth factor-
loading strategy, which involves covalently binding heparin to the scaffold surface, and then incubating in a growth factor solution. Since alginate is a hydrogel, the growth factors easily diffuse to binding sites, and bind reversibly. After rinsing, the release of the growth factor is then a function of its affinity to heparin or heparin sulfate. Sustained release of bFGF from heparinized alginate beads has been applied to the treatment of myocardial ischemia in human and animal models. Implantation of these beads loaded with 10-100 µg of bFGF resulted in significant improvement of coronary blood flow in a pig model with coronary occlusion \(^\text{130}\). Since there was no rise in bFGF plasma levels, and no hemodynamic effects or toxicity detected as a result of the treatment, it was suggested that bFGF delivery was safe. Positive results were also observed when 100 µg bFGF was delivered by heparin-alginate beads in human patients undergoing coronary bypass surgery (CABG). Nuclear perfusion imaging revealed significant improvement in myocardial perfusion for these patients as compared to controls \(^\text{131}\).

Freeman \textit{et al.} \(^\text{88}\) used alginate-sulfate for the sequential delivery of VEGF, PDGF and TGF-β. Distinct release kinetics were achieved because each growth factor had a different binding affinity for alginate-sulfate, which was shown to have an affinity similar to that of heparin \(^\text{88}\). The results from this study showed that incorporating alginate-sulfate into alginate scaffolds significantly sustained factor release as compared to alginate scaffolds. A small, 20% burst release was observed for VEGF, followed by a much lower rate of factor release. For PDGF and TGF-β, no burst is seen and the release is relatively constant. By day 6, VEGF and PDGF releases plateau while TGF-β continues to be released. Considering the roles of VEGF as an initiator of angiogenesis, and of PDGF and TGF-β as stabilizers of the newly formed blood vessels, the results from histology and immunohistochemistry are not surprising: that the multi-release system produces more mature blood vessels than either factor released alone, or the
controls. However, disadvantages of alginate include slow and uncontrollable degradation properties and reports of the stimulation of inflammatory cells.

1.6.2.4 Poly(carbonates)

Polycarbonates are attractive options for protein delivery devices because they are one of the only degradable synthetic polymers available that degrade to yield non-acidic degradation products. As mentioned, acid degradation products have been implicated in the denaturation of the protein to be delivered, including VEGF. They may also cause tissue inflammation surrounding the implant. Therefore, polycarbonates have an important advantage. See Figure 1-1 for structures of poly(ethylene carbonate) (PEC) and poly(trimethylene carbonate) (PTMC).

![Figure 1-1: Structures of PEC and PTMC.](image)

PTMC, has been shown to have good biocompatibility and degradation properties for several applications in protein delivery and tissue engineering, and has a history of use in the body as a component of Biosyn, Maxon and Caprosyn sutures. High molecular weight PTMC (>200 kDa) undergoes surface erosion at a rapid degradation rate. For example, 457 kDa PTMC was implanted into the femurs of rabbits, and 8 weeks later had lost 60% of its mass, and
mass loss over time was nearly linear \(^{48}\). In investigating PTMC as a drug delivery scaffold material which would not be prone to creep, Chapanian \textit{et al.} produced PTMC elastomers by UV initiated photocrosslinking a triacrylated star-PTMC which was produced by ring opening polymerization with glycerol as an initiator \(^{49}\). After subcutaneous implantation in rats, it was demonstrated that crosslinking drastically reduced the degradation rate. Surface erosion, and a nearly linear mass loss with time was observed, reaching a total mass loss of 33 ± 8\% in 44 weeks \(^{35}\). Despite its desirable degradation mechanism, acceptable host response and release potential, this degradation rate is too slow for many drug delivery and tissue engineering applications.

To formulate these PTMC elastomers for osmotic release, the star triacrylate was formed by copolymerization of TMC and D,L-lactide since the elastomers formed from TMC alone had large tear properties and therefore were not able to provide efficient osmotic release \(^{137}\). While D,L-lactide was used also to increase the \textit{in vivo} degradation, poly(D,L-lactide) segments are susceptible to acid-catalyzed hydrolysis. Therefore, only a small fraction of D,L-lactide was incorporated and this is not expected to increase the degradation rate significantly to an appropriate level for certain drug delivery applications. Since the study by Chapanian \textit{et al.} showed that the fluorescein isothiocyanate conjugated bovine serum albumin (FITC-BSA) particles (which become less fluorescent below pH of 5) remained fluorescent after 17 days, they concluded that the small fraction of D,L-lactide did not significantly reduce the microenvironmental pH \(^{137}\).

1.6.2.4.1 Poly(ethylene carbonate)

Poly(ethylene carbonate) (PEC) has attracted attention in the literature as an interesting synthetic polymer due to its special degradation mechanism, good cytocompatibility and
immunocompatibility, and potentially beneficial drug carrier properties, although it has been evaluated for only a few therapeutic applications.

1.6.2.4.1.1 Degradation and Biocompatibility

The first published in vivo study of linear PEC was in 1983 by Kawaguchi et al., where the biodegradation of PEC pellets in the peritoneal cavity of rats was studied. The molecular weight of this PEC was not reported. It was found that the implants were nearly completely degraded in 2 weeks. Cha et al. also concluded that the in vivo degradation of PEC (Mw = 105,000 Da) in rats was very fast, being completely degraded in 2 weeks for subcutaneously implanted films, 90% degraded in 3 weeks for intraperitoneal films, and 80% degraded in 3 weeks for intramuscular polymer rods. These degradation rates are far too fast for almost all applications in tissue engineering and drug delivery.

In 1997, a study was published that evaluated the effects of different factors on the in vivo degradation rate of PECs in rats. PECs were synthesized by copolymerization of ethylene oxide and carbon dioxide with different organometallic catalysts, resulting in a range of molecular weights from 13 kDa to over 1,000 kDa. As a consequence of this copolymerization process, the PECs comprised oxyethylene units in the polymer chain in addition to ethylene carbonate units. This study concluded that the biodegradation of these PECs depended on molecular weight, ethylene carbonate fraction, and catalyst choice. As expected, polymers with a higher ethylene carbonate content degraded more quickly considering that poly(ethylene oxide) resists biodegradation. Contrary to what is expected, when the molecular weight was lower than approximately 70-100 kDa, degradation is strongly suppressed, degrading about 30-40% in 27 days, as compared to implants greater than 100kDa which were completely degraded in this
time. The results from this study were rationalized by means of a non-hydrolytic degradation mechanism.

A follow-up study published by the same Novartis group further investigated the degradation mechanism of PEC (MW 300-450 kDa). PEC was found to specifically degrade in vivo and in vitro by superoxide radical anions (•O$_2^-$) which are mostly produced by inflammatory cells. It was also demonstrated that the degradation is cell-mediated. In vivo, degradation took place by surface erosion without significant change in molecular weight, producing ethylene glycol as the main degradation product of PEC, formed presumably by the hydrolysis of ethylene carbonate. A chain reaction mechanism which starts at polymer chain ends is implied by the splitting of a ring structure from the PEC. No degradation was observed when incubated with hydrolases, serum or blood. No in vitro degradation in aqueous media was seen in a wide range of pH values (pH 1 to 15.5). The two studies by Cha et al. and Acemoglu et al. also tested in vitro hydrolysis of PEC and found that there was negligible mass loss after up to 40 days in phosphate buffered saline (pH 7.0-7.4).

In another study conducted by Dadsetan et al., PEC degradation and immunocompatibility was evaluated using the in vivo cage implant system. Exudate analysis showed that PEC and PEC degradation products were biocompatible and induced minimal inflammatory and wound healing responses. Once again, the surface erosion mechanism was seen, and pitting on the implant surface was present caused by adherent foreign body giant cells, and degradation was dependent on contact with cells. Using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to characterise the degradation, it was concluded that superoxide anions released from adherent inflammatory cells appeared to initiate an “unzipping” mechanism of degradation, beginning with deprotonation of the polymer hydroxyl end groups. Acemoglu et al. proposed a
chain reaction mechanism as shown in Figure 1-2, which superoxide anion radicals can initiate, according to either an anionic- or radical-based mechanism. Ethylene carbonate is the product of degradation in both cases, which may further break down into ethylene glycol and carbon dioxide via hydrolysis.

![Chemical structure](image)

Figure 1-2: Proposed anionic- and radical-based mechanisms for the biodegradation of PEC in vivo. Adapted from Acemoglu et al.

From these studies it can be concluded that PEC does not degrade hydrolytically by hydrolases or aqueous conditions, and the main mechanism of degradation is oxidation caused by reactive oxygen species (superoxide anion) released by inflammatory cells. Degradation is a cell-mediated surface erosion process. Since PEC does not degrade to produce acidic by-products, it has an advantage over many other polymers as a drug delivery device. The exact differences in degradation rates may be associated with the composition and molecular weight of PEC, however, in all cases PEC degrades too quickly for almost all applications in tissue engineering.
and many in drug delivery. It has also been demonstrated the PEC elicits minimal inflammatory and wound healing responses.

1.6.2.4.1.2 Drug Delivery

Stoll et al. evaluated PEC as a drug carrier for human interleukin-3 (hIL-3, 15 kDa) and octreotide (1kDa) using a tablet press and the result was a 1:1 correlation between drug release and polymer mass loss. Furthermore, the release rate of hIL-3 after subcutaneous implantation in rats was roughly linear. However, a tablet press using heat (50-85°C) and pressure (100-160 bar) was used for formulating the protein-containing polymer tablets, which may not be suitable for preserving the bioactivity of all protein drugs. However, in this case, Stoll et al. reported that for subcutaneous rat implants, the bioactivity of hIL-3 was maintained at about 50% (compared to the standard) based on a cell proliferation assay. Although this value was held constant for the 7-day duration, it is quite low. Another reason to be concerned about reduced bioactivity of released proteins loaded into a delivery device in this way is that using the surface erosion mechanism to control the release may imply that proteins are directly exposed to the same reactive species released by inflammatory cells, which degrade the polymer.

High molecular weight PEC (Mw 242 kDa) was evaluated as a secondary coating for a drug eluting stent for “on demand” delivery of paclitaxel, a small antiproliferative drug. In this study, cytotoxicity tests showed excellent cytocompatibility of PEC. PEC was also found to be an amorphous polymer with elastic properties, and a high stress to strain failure of more than 600% when heated to 37°C. Dynamic Mechanical Thermal Analysis was utilized to obtain a T_g of 31.1°C. The use of PEC’s special inflammatory cell-dependent degradation being applied as an “on demand” delivery stent coating is interesting, since the drug will be released at an inflamed implantation site upon direct contact with macrophages. This is based on the
assumption that an inflammatory response will precede reendothelialization. The use of high molecular weight linear PEC is appropriate in this application because to prevent restenosis the desired drug delivery period is relatively short.

1.6.2.5 Biodegradable Elastomers
Biodegradable elastomers have been applied to many different areas in controlled released, since they possess several advantages over linear uncrosslinked polymers. Thermosetting elastomers are not prone to creep, and therefore a porous architecture can be formed and maintained. This also means that device geometry may not change during degradation, potentially providing more predictable release when the release of the drug is controlled by diffusion. Also, different release kinetics are available with elastomers, including osmotic release. Examples of growth factors delivered from elastomers using osmotic release include VEGF, interferon-gamma (IFN-γ) and IL-2. While the release of these growth factors from the elastomers was constant until 60-80% mass loss, there were issues with the bioactivity of released growth factors after 7 days when the polymer backbones were composed of hydrolysable linkages which degraded to produce acid byproducts.

Elastomers are most advantageous in applications where flexibility as well as drug delivering properties are desired, for example a biodegradable drug eluting stent, or as a tissue engineering scaffold for the regeneration of elastic soft tissue. By adjustment of the crosslink density, the mechanical properties can be adjusted to the desired properties, matching the surrounding tissue of the drug delivery device and/or the elastic soft tissue that is to be regenerated, in the case of tissue engineering scaffolds. The role of mechanical stimulation on the regeneration of elastic soft tissues has recently been well-established.
Examples of biodegradable elastomers applied to drug delivery include thermosetting star-poly(caprolactone-co-D,L, lactide) and star-poly(trimethylene carbonate-co-caprolactone) which were produced by photoinitiated free radical polymerization of acrylated star-shaped prepolymers \(^\text{26}\). Thermoplastic elastomer examples include copolymers of \(\varepsilon\)-caprolactone and 1,4-butanediamine, butyldiisocyanate, D,L, lactide, L-lactide, and 2,6-diisocyanato methyl caproate.

1.6.2.6 Fabrication of Porous Scaffolds

Depending on the biomaterial selected for the delivery device, a number of fabrication options are available to produce a porous matrix. It is a requirement of the proposed delivery device because porosity is expected to reduce the formation of the fibrous capsule since there is greater surface area for host cell infiltration meaning better integration into the tissue \(^\text{149}\). The fibrous capsule can also be a barrier to the diffusion of the drug.

While natural polymeric scaffolds are usually fabricated by freeze drying or crosslinking in aqueous environments, synthetic polymer scaffolds have been prepared by various methods including solvent casting, particulate leaching, phase separation, and electrospinning \(^\text{31, 150}\). One method of creating a porous scaffold involves freeze drying an emulsion solution of an organic polymer-containing phase dispersed in water, and this can give rise to porous scaffolds with various pore sizes and interconnectivities as demonstrated for the preparation of poly(lactide-co-glycolide) (PLG) scaffolds which have porosities up to 95% and pore sizes up to 200 \(\mu\text{m}\) \(^\text{151}\).

The most convenient way to prepare a porous scaffold is to use solvent casting and particulate leaching. Using this method, the polymer is cast in an organic solvent mixture with a salt, and
then the solvent is evaporated. The salt is then dissolved in aqueous solution. Results show up to 93% porosity with open-cell morphology. However, the limitations include that it may still contain residual salt particles, and that it is capable of making only thin scaffolds. PLG sheets produced in this way have been laminated into multi-layer structures. Gas foaming in combination with particulate leaching has been evaluated as a porous fabrication technique. This method involves a binary mixture of polymer solvent gel containing salt particles, and is cast in a mold. Then it is immersed in hot water, whereby CO$_2$ gas is evolved and particulates leach out. Using this method, a highly porous network with high interconnectivity can be accomplished. Particulate leaching is said to be the most convenient method for preparing porous material.

1.7 Summary

Therapeutic angiogenesis is a promising application of local protein delivery. However, there are many protein delivery problems that are commonly faced that must simultaneously be resolved in order to produce an efficient and safe delivery device to promote the production of new, functional and stable blood vessels. These issues include protein denaturation during fabrication or during polymer degradation, burst release and incomplete release.

PEC is an interesting polymer due to its special degradation mechanism, good biocompatibility and potentially beneficial drug carrier properties. The biggest advantage of using PEC is that, unlike the most commonly used synthetic polymers in drug delivery (polyesters, poly(ortho ester), polyanhydrides), it does not degrade to form acidic byproducts implicated in growth factor denaturation and tissue inflammation. However the degradation of linear PEC is inappropriately fast for angiogenic growth factor delivery since the release of bioactive angiogenic growth factor
must last for 3-4 weeks. Therefore the aim of this thesis was to develop photocrosslinkable PEC elastomers, test *in vitro* and *in vivo* degradation and *in vivo* biocompatibility, and to evaluate formulation parameters that may control the release of an example protein, bovine serum albumin, from porous PEC elastomer matrices. These experiments comprise the first steps in determining the potential of these porous PEC elastomers as biomaterials for angiogenic growth factor delivery and other applications.
Chapter 2

Scope of Research and Objectives

In overcoming the challenges of therapeutic protein delivery, there is a need to develop new biodegradable polymer systems for the delivery of protein therapeutics that maintain protein bioactivity, and delivers them locally to the site of interest within the therapeutic window to avoid systemic and overdose effects. There has been increasing interest in using biodegradable elastomers for this purpose (for example, as an angiogenic growth factor delivery device for treating myocardial ischemia, or as a soft tissue engineering scaffold which promotes vascularisation). Poly(ethylene carbonate) is a promising polymer for these applications because it degrades by surface erosion and unlike the commonly used poly(lactide-co-glycolide), poly(orthoester)s, and poly(anhydrides), it does not produce the acidic byproducts implicated in protein denaturation and tissue inflammation. However, the degradation of linear PEC degrades too rapidly for these purposes. It is hypothesized that crosslinking this material would slow down the degradation to a more appropriate rate. This work proposes to create biodegradable PEC elastomers, to evaluate biocompatibility and degradation of this new biomaterial, and to conduct preliminary release studies using porous protein-loaded PEC elastomers.

The following objectives outline the scope of this research:

Chapter 3:
1. To prepare PEC elastomers with a range of crosslinking densities, and characterise them using NMR, DSC, ATR-FTIR, tensile testing. The elastomers were prepared by first producing
low molecular weight PEC which was functionalized to possess acrylated end groups, and then UV photocrosslinked. Photo-initiated crosslinking has the advantage of rapid reaction time, and low temperature, and therefore was more suitable for the incorporation of thermally sensitive protein therapeutics than other crosslinking methods.

Chapter 4:

2. Evaluate the *in vivo* biocompatibility of PEC elastomers using a rat model for up to 12 weeks.

3. Measure *in vitro* oxidative degradation of different crosslinking densities to test the hypothesis that oxidative degradation of these elastomers can be tailored based on prepolymer molecular weight.

4. Investigate *in vivo* degradation of PEC elastomer and non-crosslinked PEC in a rat model to test the hypothesis that PEC degradation can be decreased to become more appropriate for its intended applications by crosslinking. Degradation was analyzed by determining mass loss, water uptake, glass transition temperature, and surface morphology over 12 weeks.

Chapter 5:

5. Fabricate PEC elastomers to possess a porous architecture of interconnected pores, using low molecular weight poly(ethylene glycol), PEG, as a porogen. This PEG was selected as a porogen because it is water soluble, non toxic and therefore could be extracted once implanted in the body. This was predicted to provide an extra parameter for release kinetics control.

6. Produce BSA-loaded porous PEC elastomers to be tested by an *in vitro* release study tracking the release of an example protein, BSA. The release of PEG during the course of this release study was also of interest. Several formulations were evaluated with the goal of determining formulation parameters that affect the release kinetics. BSA was used as a
preliminary screening protein as a step towards evaluating the new polymeric system for its potential as an angiogenic growth factor device.
Chapter 3
Preparation and Characterisation of Poly(ethylene carbonate) Elastomers

3.1 Introduction

Polycarbonates are a class of synthetic polymers that are a promising option as a vehicle device for protein delivery since they are one of the only synthetic polymers which do not degrade by hydrolysis to produce acid \(^{133, 134, 138-140}\). This acid has been implicated in the denaturation of protein therapeutics, like vascular endothelial growth factor \(^75\), and can even cause tissue inflammation surrounding the implant \(^{117}\).

While linear poly(trimethylene carbonate) has good biocompatibility and an appropriate \textit{in vivo} degradation rate, it is prone to creep \(^{35, 48, 49, 136, 154}\). Since there are many advantages of using biodegradable thermosetting elastomers for flexible protein delivery devices, star-PTMC was crosslinked to form an elastomer but its \textit{in vivo} degradation rate was found to be too slow for many drug delivery and tissue engineering scaffold applications \(^{35}\). Linear poly(ethylene carbonate), PEC, which also has shown good biocompatibility, has an \textit{in vivo} degradation rate that is much faster (complete degradation in 2-3 weeks), however it is too rapid for these applications \(^{138-140}\). It is anticipated that the degradation rate can be adjusted to a more appropriate level by crosslinking.
Therefore, the main goals of the work presented in this chapter are to prepare PEC-based elastomers of different crosslink densities, characterise prepolymers and elastomers in terms of molecular weight, composition, glass transition temperature, and sol content, and demonstrate that the elastomers prepared from a range of different prepolymers possess different crosslink densities (molecular weights between crosslinks).

3.2 Materials and Methods

Linear poly(ethylene carbonate) (M\textsubscript{w} = 60 kDa) was purchased from Empower Materials, Delaware, USA (copolymerization scheme found in Appendix A, Figure 7-1). Ethylene glycol, tin(II)-2-ethyl hexanoate (96%), acryloyl chloride (96%), 4-(dimethylamino)pyridine, triethylamine (99.5%), 2,2-dimethoxy-2-phenyl-acetophenone (99%), dioxane, and magnesium sulphate were purchased from Sigma-Aldrich (Canada). Dichloromethane (DCM), ethanol, methanol, were purchased from Fisher Scientific (Canada). DCM was dried over calcium hydride and distilled under argon. Dimethyl sulfoxide-D6 (DMSO) and deuterated chloroform (CDCl\textsubscript{3}) for proton nuclear magnetic resonance (^1H-NMR) were purchased from Cambridge Isotope Laboratories Inc. (USA).

3.2.1 Depolymerization to Produce Low MW PEC Diol

In order to produce a series of poly(ethylene carbonate) (PEC) elastomers with different crosslink densities, a range of low molecular weight PEC diols was prepared. This was done via depolymerization of 60 kDa linear PEC according to a method outlined by Sant’Angelo \textit{et al}. Ring opening polymerization of ethylene carbonate is not an option due to the positive enthalpy of polymerization140, 155. Depolymerization is necessary because the current processes for making PEC (copolymerization of CO\textsubscript{2} and ethylene glycol) cannot produce polymers with
molecular weights lower than 50 kDa156, while the molecular weight range of interest for this project is 2,000 to 10,000 Daltons. PEC diol above 10,000 Daltons cannot be easily acrylated to a high degree due to more limited end-group mobility and dilution of the functional groups.

The depolymerization mechanism occurs by “unzipping” at polymer chain ends to produce ethylene carbonate and shorter chain PEC. Removal of ethylene carbonate from PEC chain ends is possible due to thermal decomposition of the depolymerization catalyst to form a carboxylate, which is capable of producing alkoxy-terminated PEC from hydroxyl-terminated PEC.

For each PEC depolymerization batch, 9-10 grams of PEC was cut into pieces of appropriate sizes for fitting into a dry glass ampoule. Tin(II)-2-ethyl hexanoate catalyst (1 mg of catalyst for every gram of polymer), and 5% ethylene glycol (EG) were added to the ampoule. The reaction ampoule was flame sealed under vacuum and placed in an oven for 30 to 200 minutes at a set temperature between 130 °C (melt flow temp) to 170 °C (safely below the degradation temp of 240 °C), depending on the desired final molecular weight of the diol. In order to calibrate this method such that a target molecular weight could be achieved by selecting a certain reaction time and oven temperature, several batches of PEC were prepared for each temperature and reaction time was varied. Once a temperature was selected that was most appropriate for the molecular weight range of interest, the reaction time was altered to produce PEC diols with a range of molecular weights. To purify the low molecular weight PEC diol to remove low molecular weight glycols (including EG), the ampoule contents were dissolved in 75 mL DCM. This solution was added drop-wise into 200 mL of stirred methanol in order to precipitate the polymer. For target molecular weights of less than 3000 Da, methanol was chilled over dry ice prior to precipitation.
An estimate of the number average molecular weight was obtained by proton nuclear magnetic resonance spectroscopy (1H-NMR) (on a 400 MHz Bruker-Avance spectrometer) using end-group analysis. To confirm the location of the terminal hydroxyl peak, whose position can shift depending on pH and temperature157, 1H-NMR was run in DMSO-d_6 as well as CDCl$_3$. 1H-NMR was conducted before and after the purification to check for a reduction in the level of EG. To confirm this method of using NMR for a relative measure of molecular weights for a series of depolymerized PEC, GPC was also conducted for a random selection of depolymerized samples using a measured value of the differential index of refraction for 60 kDa linear PEC in acetonitrile. The column (Phenogel 5um M3 mixed bed followed by a Phenogel 5um 103A, both being 300 x 7.8mm from Phenomenex, in line with a Phenogel 5um 50x7.8mm guard column) was run in acetonitrile (30°C, 1ml/min, 100 µL, double injections).

3.2.2 Acrylation of Low MW PEC to Form Diacryl Prepolymer

Once the low molecular weight PEC was purified and dried to a constant mass to remove residual methanol, terminal hydroxyl groups were acrylated with acryloyl chloride (AC) in order to introduce UV-crosslinkable end-groups. 4-(dimethylamino)pyridine (DMAP) was used as the catalyst, and triethylamine (TEA) as the proton scavenger. Several measures were put into place to ensure that exposure to humidity was minimal. The reaction was conducted in a controlled atmosphere chamber that was purged several times with nitrogen. The DCM used as the reaction solvent and to dilute AC was distilled the day before each reaction. Also, magnesium sulphate was added to the polymer solution and left in overnight to absorb any water that was contained in the polymer. All glassware was oven-dried overnight before use.
The night before each reaction, 100 mL of distilled DCM was added to a 7-9 gram batch of PEC diol, and 0.25 grams or less of magnesium sulphate was added. This suspension was left overnight in the dry box to allow PEC to dissolve in the DCM. Immediately before addition of reactants, the polymer solution was filtered (in the dry box) to remove the magnesium sulphate. DMAP catalyst was added at a molar ratio of 1×10^{-3} mole per mole of PEC terminal hydroxyl group 158. The amount of AC added was in excess at 1.5-2.0 moles of AC per mole of terminal hydroxyls in the prepolymer in case EG, methanol, or water was present. AC was also diluted 2-5 times with DCM before addition. Due to the presence of a competing side reaction that produces a brown colour (and would reduce the purity of the product and the efficiency of UV crosslinking due to light scatter), the amount of TEA was kept to only 1.5 times the molar amount of terminal hydroxyls. Once filtered and all reactants added, the reaction mixture was left in the dry box to react for 3 days. On the third day, the reaction solution was removed from the dry box, evaporated to 75 mL and added dropwise into 200 mL ethanol to remove unreacted AC and TEA and colour (the TEA-polymer complex). For target molecular weights of less than 3000 Da, the ethanol was chilled over dry ice before the precipitation step.

Proton Nuclear Magnetic Resonance spectroscopy (1H-NMR) in both DMSO and CDCl$_3$ was conducted on samples before and after purification to determine purity and the degree of acrylation. The following equation was used to determine the degree of acrylation:
3.2.3 UV Crosslinking to Produce PEC Elastomers

To produce PEC elastomers, α,ω-diacrylate PEC and the photoinitiator (2,2-dimethoxy-2-phenyl-acetophenone, (DMPA)) were dissolved in dioxane (3 g PEC diacrylate/mL). DMPA is commonly used to initiate the radical polymerization of acrylated biomaterials and is a potent initiator 159,160 (Appendix A, Figure 7-2). After being mixed and kneaded thoroughly, the sticky solid pre-elastomer was spread into a mold and exposed to UV light (320-480 nm) for several minutes per side to produce a 1 mm thick film of PEC elastomer (Appendix A, Figure 7-3). The mold was covered with a glass slide to shield the surface from oxygen, which may quench free radicals.

It was anticipated that many factors would affect the efficiency of the photo-crosslinking step, which was reflected in the soluble (sol) content measured. The three factors investigated were polymer concentration, initiator amount, and time of exposure to UV light. Therefore, a 2^3 factorial experiment was designed to help decide which conditions of UV photo-crosslinking should be used for preparation of future elastomers in order to minimize the sol content.

It was expected that a higher UV light intensity would produce elastomers with lower sol content, however, since the ultimate application of these elastomers is for protein delivery, crosslinking at or below 30 mW/cm2 was used since it has been shown that this intensity does not affect vascular endothelial growth factor bioactivity significantly 161. For all elastomer experiments, only PEC batches with an acrylation of over 80% were used.
Table 3-1 outlines the runs used in this 2^3 factorial experiment to determine the minimum sol content that can be obtained within the ranges of each factor tested. Linear regression was conducted on JMP statistical software to determine parameter estimates and their significance/confidence interval.

Sol content was removed from crosslinked PEC elastomers by immersing them in DCM overnight then replacing the DCM and repeating at least three times. Then elastomers were placed in a vacuum oven until constant mass was achieved. The sol content was calculated by comparing the mass of elastomers immediately after crosslinking to the mass after sol removal according to Equation 3-2.

Table 3-1: 2^3 full factorial experiment for determining the best UV crosslinking conditions

<table>
<thead>
<tr>
<th>Run #</th>
<th>PEC Concentration in Dioxane (g/ml) X_1</th>
<th>Time (min) X_2</th>
<th>Initiator (w/w) % X_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.8 g/mL</td>
<td>2 min</td>
<td>1.5 %</td>
</tr>
<tr>
<td>2a</td>
<td>3.0 g/mL</td>
<td>2 min</td>
<td>1.5 %</td>
</tr>
<tr>
<td>2b</td>
<td>3.0 g/mL</td>
<td>2 min</td>
<td>1.5 %</td>
</tr>
<tr>
<td>2c</td>
<td>3.0 g/mL</td>
<td>2 min</td>
<td>1.5 %</td>
</tr>
<tr>
<td>3</td>
<td>1.8 g/mL</td>
<td>5 min</td>
<td>1.5 %</td>
</tr>
<tr>
<td>4</td>
<td>3.0 g/mL</td>
<td>5 min</td>
<td>1.5 %</td>
</tr>
<tr>
<td>5</td>
<td>1.8 g/mL</td>
<td>2 min</td>
<td>3.0 %</td>
</tr>
<tr>
<td>6</td>
<td>3.0 g/mL</td>
<td>2 min</td>
<td>3.0 %</td>
</tr>
<tr>
<td>7</td>
<td>1.8 g/mL</td>
<td>5 min</td>
<td>3.0 %</td>
</tr>
<tr>
<td>8</td>
<td>3.0 g/mL</td>
<td>5 min</td>
<td>3.0 %</td>
</tr>
</tbody>
</table>
\[
\text{Sol Content (\%) } = 1 - \left(\frac{m_{\text{dry}}}{m_{\text{total}} - m_{\text{dioxane}}} \right) \quad \text{Equation 3-2}
\]

Where \(m_{\text{dry}} \) is the elastomer’s mass after DCM washing and drying step

\(m_{\text{total}} \) is the total mass of the elastomer immediately after crosslinking

\(m_{\text{dioxane}} \) is the mass of dioxane during crosslinking

As additional confirmation of successful crosslinking, surface chemistry was evaluated using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy (Nicolet 6700 spectrometer equipped with a diamond crystal).

3.2.4 Mechanical Testing of PEC Elastomers

Uniaxial tensile measurements of the elastomers were obtained to ascertain the elastomer mechanical properties. A range of five different prepolymer molecular weights, spanning the range of interest for all other experiments of this project (2,000 to ~15,000 MW) were selected for Young’s modulus measurements. These elastomers were prepared into films using a 1 mm mold spacer as described above. A micro-dogbone punch was used to produce dogbone films (each a total length of 8.8 mm, ends were 4.1 mm wide tapering to 1.2 mm in the middle of the sample). This punch was manufactured with dimensions scaled down from Type V ASTM D638-02 punch dimensions (Standard Test Method for Tensile Properties of Plastics, since the punch was designed for testing both linear PEG and elastomers PEC). An Instron uniaxial tensile tester model 4443 was used for measuring mechanical properties, with a crosshead speed of 500 mm/min, as outlined in ASTM D412 (Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers – Tension). Merlin 4.11 Series IX software package was used for data analysis as well as the calculations outlined in ASTM D638-02 for determining Young’s
Modulus. Uniaxial tensile measurements were conducted in triplicate for each molecular weight and for elastomers before and after sol removal. Sol was removed as described above. Stress and strain at break were also recorded for a select number of elastomers and linear PEC to gauge the extensibility. Differential Scanning Calorimetry (DSC) was also used to characterise the thermal properties of PEC elastomers (Mettler Toledo, DSC1). Glass transition temperature, T_g, was also of interest to anticipate the flexibility *in vivo* (ie. at body temperature, 37°C). A heating ramp from -80°C to 130°C, repeated twice, was utilized to determine the T_g for 6000 MW PEC diol, diacrylate, and elastomer. In case the sample contained residual water or solvent, the T_g was obtained from the second heating cycle.

3.3 Results and Discussion

3.3.1 Depolymerization to Produce Low MW PEC Diol

A range of low molecular weight polymers was accomplished by depolymerization of 60 kDa linear poly(ethylene carbonate) (PEC) with a tin catalyst and ethylene glycol (EG) at temperatures from 130°C to 170°C. To estimate the number average molecular weight (\bar{M}_n) of the depolymerization products, 1H-NMR end-group analysis was used according to Equation 3-3. 1H-NMR conducted in CDCl$_3$ confirmed the location of the hydroxyl peak (see Appendix A, Figure 7-4).

\[
\bar{M}_n \text{ (estimate)} = \# \text{ Repeating EC Units} \times MW_{ECU} = \frac{I_{ECU}}{I_{OH}} \times MW_{ECU} \quad \text{Equation 3-3}
\]
Where \(I_{ECU} \) is the integration of the backbone ethylene carbonate unit proton peak,

\[I_{OH} \] is the integration of the terminal hydroxyl proton peak,

\[MW_{ECU} \] is the molecular weight of one repeating unit of ethylene carbonate.

Equation 3-3 assumes that the structure of PEC was ideal (that is, composed only of ethylene carbonate linkages). However, it has been reported\(^{140}\) and confirmed herein using the \(^1\)H-NMR spectra that the copolymerization of ethylene oxide and carbon dioxide used to produce the starting material PEC results in a polymer composed of ethylene carbonate and ethylene oxide regions. The \(^1\)H-NMR spectra show signals at 4.35 ppm, which correspond to ethylene carbonate units (ECU), at 4.25 ppm and 3.65 ppm, which correspond to incorporated ether functions (IEF), and at 3.55 ppm for ether functions (EF) as indicated in Figure 3-2. A representative \(^1\)H-NMR spectrum is found in Figure 3-3.

![Figure 3-2: Constitutional units in poly(ethylene carbonate).](image-url)
Figure 3-3: NMR spectroscopy of PEC diol after depolymerization and purification, in DMSO. Peaks indicate presence of ethylene carbonate functions, incorporated ether functions, and ethylene oxide functions. “EC” = ethylene carbonate, “EG” = ethylene glycol.

Therefore, the following equations can be used to more accurately calculate the molecular weight from 1H-NMR spectra:

\[
\bar{M}_n = \text{# Repeating Units} \times MW_{RU}
\]

\[
\text{# Repeating Units} = \frac{\text{Backbone protons}}{\text{Terminal protons}} = \frac{\left(\frac{l_A}{4} + \frac{l_B}{4} OR \frac{l_C}{4} + \frac{l_D}{4}\right)}{\frac{l_{OH}}{2}}
\]

\[
MW_{RU} = \text{Weighted average of 3 possible constitutional units}
\]

\[
= \left(\frac{l_A}{4} \times MW_A\right) + \left(\left(\frac{l_B}{4} \times MW_{BC}\right) OR \left(\frac{l_C}{4} \times MW_{BC}\right)\right) + \left(\frac{l_D}{4} \times MW_D\right)
\]
The estimate of number average molecular weight (Equation 3-3) was used when setting up the calibration of the depolymerization, where a relative measure of M_n was of interest to compare the extents of depolymerization of different batches. However, for characterising the low molecular weight PEC diols to be used in subsequent experiments, the M_n in Equation 3-4 was used.

A range of temperatures between 130°C to 170°C was investigated when calibrating this method. Depolymerization at low temperatures close to the melt flow temperature (130°C) was initially of interest since a less steep depolymerization profile over time would be expected and therefore better control over the resulting molecular weight would be obtained. However, the products from depolymerization at 130°C and 150°C possessed molecular weights that were too high for this project (above ~10,000 Da). It should be noted that for values much higher than 10,000 Da, 1H-NMR end-group analysis does not yield an accurate measure of molecular weight. Therefore, only molecular weights determined to be below 10,000 Da were reported with the exception of one at approximately 15,000 Da, which was confirmed using GPC.

Depolymerization at 130°C and 150°C tested here, (at least up to 130 minutes) are well above this limit and so future depolymerization batches were made at higher temperatures. On the other hand, depolymerization at 160°C from 60 to 200 minutes produced PEC diol in the range of interest, as can be seen in Figure 3-4. At 170°C, the depolymerization products were 1,000 Da and 1,800 Da for 60 and 110 minutes, respectively, which are too low for the purposes of this project. Therefore 160°C was chosen as the oven temperature to be used for obtaining PEC diol in the range of 3000 to 8000 Da.
Figure 3-4: Depolymerization of linear poly(ethylene carbonate) at 160°C from 30 to 200 minutes.

The goal of these depolymerization experiments was to obtain a calibration curve which could be used to produce a target molecular weight polymer. However, Figure 3-4 provides only a guideline for the time required to produce a certain molecular weight since there is considerable variability in possible molecular weights at one time point. Each batch set was prepared together and depolymerized on the same day, but Sets 1 to 4 were conducted on four different days. Since there seems to be tighter control when one looks at a single day’s data alone, the variability in Figure 3-4 may be due to variations in day-to-day factors such as precise oven temperature, the size of polymer pieces loaded into ampoules, thermal cycling as the oven attempts to maintain the setpoint temperature, and precise location in the oven. Table 3-2 describes the distinct visual changes in cooled ampoule contents that PEC undergoes at 2000-3000 Da and at 6000 Da. It is recommended that after Figure 3-4 is used as a guideline, Table 3-2 is used to make sure that the desired molecular weight is being approached and if not, to adjust the time in the oven.
Table 3-2: Visual observations to aid in PEC depolymerization to a target prepolymer molecular weight.

<table>
<thead>
<tr>
<th>Target Prepolymer M_n</th>
<th>Visual Observation Once Cooled</th>
<th>Suggested Oven Temp/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2000 Da</td>
<td>Transparent, flows at room temperature</td>
<td>170 ºC for > 50 minutes</td>
</tr>
<tr>
<td>3000-6000 Da</td>
<td>Translucent, tacky solid</td>
<td>160 ºC for 125 to 250 minutes</td>
</tr>
<tr>
<td>> 6000 Da</td>
<td>Opaque, solid</td>
<td>160 ºC for < 125 minutes</td>
</tr>
</tbody>
</table>

1H-NMR was used to confirm that the purification method for the low molecular weight diol is effective in reducing the level of ethylene carbonate (EC) and ethylene glycol (EG), which are by-products of the degradation process. Analysis of the 1H-NMR also showed that there was significant reduction in the levels of EG and EC after purification to 2-5 % wt. In the future it is recommended that the step of purifying the depolymerized polymer by precipitation be repeated several times so as to more fully remove EG and EC.

For the batches of low molecular weight PEC which were used in subsequent experiments, the number average molecular weight was calculated using both Equation 3-3 and Equation 3-4. The ratio of ethylene carbonate units (ECU) was calculated to confirm that it is high for all batches of PEC used for subsequent experiments. The content of ether functions (EF) and incorporated ether functions (IEF) often given in the literature. This data is summarized in Table 3-3.

\[
ECU \, (\%) = 100 \times \left(\frac{I_A}{(I_A + I_B + I_C + I_D)} \right)
\]

\[
EF \, (\%) = 100 \times \frac{(I_A + I_B)}{(I_A + I_B + I_C + I_D)}
\]

\[\text{Equation 3-8}\]

\[\text{Equation 3-9}\]
\[IEF \% = 100 \times \frac{I_c}{I_A + I_c} \]

Equation 3-10

It is noted that the rounded number average molecular weight obtained by simply using the ratio of ethylene carbonate backbone protons to terminal hydroxyl protons and the molecular weight of the repeating unit of PEC is a very good estimate of the true number average molecular weight, which considers ECU, EF, and IEF. For the remainder of this report, the rounded estimate will be used to identify batches for simplicity of labeling.

Table 3-3: Characterisation of low MW PEC diol used in subsequent experiments.

<table>
<thead>
<tr>
<th>Batch ID#</th>
<th>Mn (Da) estimate</th>
<th>Mn (Da) considering ECU, EF and IEF content</th>
<th>ECU %</th>
<th>EF %</th>
<th>IEF %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,000</td>
<td>2,100</td>
<td>82.4</td>
<td>10.5</td>
<td>7.9</td>
</tr>
<tr>
<td>2</td>
<td>3,000</td>
<td>3,100</td>
<td>83.1</td>
<td>11.1</td>
<td>8.2</td>
</tr>
<tr>
<td>3</td>
<td>5,500</td>
<td>5,600</td>
<td>88.6</td>
<td>7.8</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>6,000</td>
<td>6,100</td>
<td>89.1</td>
<td>6.8</td>
<td>4.4</td>
</tr>
<tr>
<td>5</td>
<td>6,500</td>
<td>6,700</td>
<td>89.9</td>
<td>6.8</td>
<td>3.4</td>
</tr>
<tr>
<td>6</td>
<td>8,000</td>
<td>8,100</td>
<td>89.7</td>
<td>6.8</td>
<td>3.8</td>
</tr>
<tr>
<td>7</td>
<td>15,000</td>
<td>15,100</td>
<td>90.7</td>
<td>6.3</td>
<td>3.2</td>
</tr>
</tbody>
</table>

As expected, batches that were depolymerized to a greater extent (have a lower \(M_n \)) possessed a lower ratio of ethylene carbonate units, since it is these regions whereby the molecular weight is reduced, producing EG and CO₂. Despite a higher ethylene oxide content compared to other batches, the batch with the lowest ECU tested is still very high (82.4%) and therefore results from biocompatibility and degradation studies reflected PEC properties.
3.3.2 Acrylation of Low MW PEC to Form α,ω-Diacrylate Prepolymer

Batches of PEC that had been used to make elastomers for all experiments contained in this report are found in Table 3-4, which summarizes the degree of acrylation and colour after acrylation and purification. The degree of acrylation was calculated as outlined in Equation 3-1 based on the appearance of acrylate group peaks at $\delta = 5.95 - 6.33$ ppm and the disappearance of the terminal hydroxyl peak at $\delta = 4.93$ ppm in the 1H-NMR spectra (see Figure 3-5). With the exception of batch 2, a degree of acrylation of above 95% was achieved for all batches listed. Since higher MW diols are more difficult to acrylate (due to reduced chain mobility and end group dilution), the first attempt to acrylate the 15,000 MW diol was relatively unsuccessful (only 65%). However, after purification, this batch was re-acrylated by following the same steps again and the result was 98% acrylation. The acrylation reactions for several batches that were not used in subsequent experiments were considered unsuccessful (40-85%) likely due to variably high humidity (due to weather), and inefficient removal of ethylene glycol or methanol prior to reaction. There were also numerous acrylation reactions that were considered unsuccessful (despite up to 100% acrylation) due to the presence of a strong orange-to-brown colour which could only be partially removed by post-reaction purification (even after three repeated purification cycles). This colour was present to much less significant extents in successful reactions (i.e. batches used for experiments) as well and is believed to be a sign of the formation of a complex between TEA and PEC 162.
Table 3-4: Properties of PEC Diacyl Batches used in All Experiments.

<table>
<thead>
<tr>
<th>Experiment Name</th>
<th>Batch ID#</th>
<th>Mn (Da) estimate</th>
<th>Degree of Acrylation (%)</th>
<th>Colour</th>
<th>Average Sol Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimize Sol Content</td>
<td>5</td>
<td>6,500</td>
<td>100</td>
<td>light yellow</td>
<td>6 (4 to 10)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2,000</td>
<td>96</td>
<td>white</td>
<td>< 5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3,000</td>
<td>88</td>
<td>light yellow</td>
<td>> 10</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5,500</td>
<td>100</td>
<td>light yellow</td>
<td>< 5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8,000</td>
<td>100</td>
<td>yellow</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>15,000</td>
<td>65, 98</td>
<td>yellow</td>
<td>Not Avail.</td>
</tr>
<tr>
<td>Mechanical Testing</td>
<td>1</td>
<td>2,000</td>
<td>96</td>
<td>white</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3,000</td>
<td>88</td>
<td>light yellow</td>
<td>> 10</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5,500</td>
<td>100</td>
<td>light yellow</td>
<td>< 5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8,000</td>
<td>100</td>
<td>yellow</td>
<td>20</td>
</tr>
<tr>
<td>In vitro Ox Deg</td>
<td>1</td>
<td>2,000</td>
<td>96</td>
<td>white</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6,500</td>
<td>100</td>
<td>light yellow</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8,000</td>
<td>100</td>
<td>yellow</td>
<td>20</td>
</tr>
<tr>
<td>In vivo Deg & Biocompatibility</td>
<td>4</td>
<td>6,000</td>
<td>99</td>
<td>white</td>
<td>< 5</td>
</tr>
<tr>
<td>Porous Fabrication</td>
<td>2</td>
<td>3,000</td>
<td>88</td>
<td>light yellow</td>
<td>Not Applic.</td>
</tr>
<tr>
<td>BSA Release Study</td>
<td>1</td>
<td>2,000</td>
<td>96</td>
<td>white</td>
<td>Not Applic.</td>
</tr>
</tbody>
</table>

![NMR spectrum of diacrylated PEC](image)

Figure 3-5: NMR spectrum of diacrylated PEC. Note that acylated group protons present and that there is no peak at 4.9ppm to correspond to the terminal hydroxyl peak, (100% acrylation).
3.3.3 UV Crosslinking to Produce PEC Elastomers

A 2^3 factorial experiment was conducted to determine which conditions of polymer concentration, initiator amount, and time of exposure to UV light should be used for future UV crosslinking. Before conducting the experiment, the effect that polymer concentration would have on sol content was unknown. A more dilute polymer concentration would dilute free radicals (reducing crosslinking efficiency), but on the other hand a more concentrated polymer concentration would increase the viscosity, impeding the migration (therefore propagation) of the free radicals which are situated at polymer chain ends (reducing crosslinking efficiency). For initiator amount, a higher concentration of initiator provides more opportunity for initiation and results in a higher concentration of free radical end groups during initiation stage. However, the amount of initiator should be kept to a minimum to ensure that there are minimal biocompatibility issues due to initiator. Time was suggested to affect crosslinking completion since more time would allow more decomposition of initiator into free radicals (up to a certain point), however the time exposure to UV light should be kept as short so as to not affect protein stability.

Using the statistical analysis software JMP, linear regression was performed on the Table 3-5 results of UV crosslinking at two levels of each of polymer concentration, time of UV exposure, and amount of initiator. Triplicates were performed for Run #2 (3.0 g PEC per mL dioxane, 2 min UV exposure per side, 1.5wt% of DMPA) to take reproducibility into consideration.
Table 3-5: Results for the UV crosslinking experiment to determine the minimum sol content attainable within the levels tested.

<table>
<thead>
<tr>
<th>Run #</th>
<th>Sol Content (%)</th>
<th>PEC Concentration in Dioxane (g/mL)</th>
<th>UV Time (min)</th>
<th>Amount of Initiator (wt %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.1</td>
<td>1.8</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>2a</td>
<td>3.7</td>
<td>3.0</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>7.8</td>
<td>1.8</td>
<td>5</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
<td>3.0</td>
<td>5</td>
<td>1.5</td>
</tr>
<tr>
<td>5</td>
<td>7.4</td>
<td>1.8</td>
<td>2</td>
<td>3.0</td>
</tr>
<tr>
<td>6</td>
<td>4.1</td>
<td>3.0</td>
<td>2</td>
<td>3.0</td>
</tr>
<tr>
<td>7</td>
<td>9.7</td>
<td>1.8</td>
<td>5</td>
<td>3.0</td>
</tr>
<tr>
<td>8</td>
<td>6.1</td>
<td>3.0</td>
<td>5</td>
<td>3.0</td>
</tr>
<tr>
<td>2b</td>
<td>6.4</td>
<td>3.0</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>2c</td>
<td>4.7</td>
<td>3.0</td>
<td>2</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Table 3-6: Results of parameter estimates for the linear regression of UV crosslinking experiment

<table>
<thead>
<tr>
<th>Term</th>
<th>Estimate</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>-2.0364</td>
<td>0.0163</td>
</tr>
<tr>
<td>X_2</td>
<td>0.4146</td>
<td>0.1433</td>
</tr>
<tr>
<td>X_3</td>
<td>0.3958</td>
<td>0.4522</td>
</tr>
</tbody>
</table>

There is no effect of UV time exposure or initiator amount given the ranges tested ($p > 0.05$). However, there may be an effect of polymer concentration in dioxane ($p = 0.0163$). A negative parameter estimate indicates that 3.0 g/mL may have been better than 1.8 g/mL for crosslinking efficiency and therefore, 3.0 g/mL was used for all further crosslinking of PEC. Since the ultimate desired application of this material is for protein delivery, as a precaution to prevent denaturation of protein, 2 minutes per side was chosen for future elastomer batches. Since 1.5% initiator is sufficient, the minimal level was chosen, recognizing that higher photoinitiator amounts may affect biocompatibility.
For each of the PEC elastomers batches used in subsequent experiments, the sol content measured is found in Table 3-4. Sol content is a measure of the efficiency of crosslinking, and with several exceptions, was quite low (usually 5%). It is not surprising that for batch #2 (3000 MW) the sol content is 10% since the degree of acrylation for this batch was only 88%. Sol content for batch #7 was not available due to significant polymer loss against glassware due to sticking during sol removal, which is a sign of high sol content. It is reasonable that batches with a stronger yellow color (batches 6 and 7) have higher sol contents because the UV light during crosslinking could not penetrate through the prepolymer sample depth, but these batches also have a higher molecular weight and therefore the lower sol contents could be also due to higher viscosity during the crosslinking impeding the movement of radical chain ends. Sol content was not measured for batches used in the porous fabrication or BSA release study because the soluble portion was not solely a measure of uncrosslinked material considering the high content of low molecular weight (and therefore soluble) porogen.

As another confirmation of successful crosslinking, the ATR-FTIR results for diacrylated PEC showed a band at 1650 cm$^{-1}$ (corresponding to the acrylate groups) which was not present when ATR-FTIR was conducted on PEC elastomers (see Appendix A, Figure 7-5).

3.3.4 Mechanical Properties of PEC Elastomers

Based on the equation below, which is derived from rubber elasticity theory, Young’s Modulus is directly proportional to crosslink density, and inversely proportional to the molecular weight between crosslinks. Thus, low molecular weight PEC diacryl prepolymer, which should result in PEC elastomers with a low molecular weight between crosslinks, will have a high Young’s Modulus and will be stiffer.
Equation 3-11

\[E = 3RT(n) = 3RT\left(\frac{\rho}{M_c}\right) \]

Where
- \(E \) = Young’s Modulus
- \(R \) = gas constant
- \(T \) = temperature
- \(n \) = crosslink density

\(\rho \) = polymer density (1.42 g/cm\(^3\), obtained from Empower Materials)

\(M_c \) = average molecular weight between crosslinks

The Young’s modulus for each of the five PEC elastomers batches before sol removal can be found in Figure 3-6. As expected, PEC prepolymer possessing a lower molecular weight was stiffer, therefore has a higher Young’s modulus and, according to Equation 3-11, a higher crosslink density. Furthermore, when fitted with a polynomial curve, Young’s modulus is found to be approximately proportional to \(M_n^{-1} \) which is the relationship predicted by the rubber elasticity equation. This also implies that the molecular weight of the prepolymer is approximately equal to the molecular weight between crosslinks.

Sol was removed for all five batches of PEC elastomers, however only three sets produced dogbone shapes that were still intact. For the highest molecular weight (15,000 MW), after the DCM washes during drying, significant polymer had adhered to glassware and was not recoverable. The lowest molecular weight apparently exhibited a low tear resistance since it experienced enough swelling during the sol removal process that crack propagation from small bubbles caused the dogbones to break in half.
Figure 3-6: Young’s modulus for five batches of PEC elastomers before and after sol removal. Data was fit using an power curve for “before sol removal”. Insufficient data points were available to curve fit the “after sol” series. Error bars indicate 95% confidence intervals. N = 3.

The overall trend for Young’s modulus compared to prepolymer molecular weight for the sol-free elastomers is the same as that for sol-containing elastomers – high molecular weight prepolymer result in more flexible material and vice versa. Due to the plasticizing effect of the soluble content, all values for Young’s modulus increased after sol removal. The highest molecular weight (8000 MW) prepolymer had the largest increase in Young’s modulus after sol removal, but it also had the highest sol content which may have been due to the stronger yellow color as compared to other batches (preventing UV light from fully transmitting the thickness of the sample), and may be due to the higher viscosity of the 3 g/mL PEC when it is made from a relatively higher MW.
Figure 3-7: Young’s modulus of PEC elastomer batches (before sol removal) compared to linear starting material, 60 kDa PEC. Error bars indicate the 95% confidence interval.

It is interesting to note that when the Young’s modulus of elastomers is compared to that of the 60 kDa linear PEC starting material, it is apparent that PEC elastomers are not as densely crosslinked as linear PEC. The crosslinks of linear PEC are regions of physical interaction between polymer chains, not covalent bonds, and are therefore not permanent. There are many advantages to using the covalently crosslinked PEC, notably, it allows for a porous structure to be maintained during extraction of porogens. It is expected that strain is more fully recoverable with the elastomers than for linear PEC, which undergoes creep. There is evidence here that crosslink density can be used to tune one measure of the material’s mechanical properties, which is relevant for the design of a biomaterial since surrounding tissue will respond differently depending on the mechanical properties of an implant. Furthermore, it is hypothesized that the crosslink density can tailor the cyclic mechanical properties and the in vivo degradation rate and this has implications for the use of these elastomers in tissue engineering. The necessity of cyclic
mechanical stimulation in the growth of many elastic soft tissues has well been established144, 148, 164, 165.

DSC results are found in Table 3-7. The T_g's for diol and diacrylate PEC (0.0°C and 10.7°C) indicate that they are very soft at room temperature. A possible explanation for the increase in T_g after acrylation is the number of extra purification steps which would have more efficiently removed low molecular weight plasticizing fractions. The T_g for the elastomer is 21.6°C and this increase further confirms successful crosslinking since the molecular weight goes from 6000 Da to essentially infinity. The fact that this temperature is below body temperature indicates that the elastomer will still be flexible when implanted.

\begin{table}
\centering
\caption{DSC results for 6000 MW diol, diacryl and elastomer.}
\begin{tabular}{|l|c|}
\hline
 & T_g (°C) \\
\hline
Diol & 0.0 \\
Diacrylate & 10.7 \\
Elastomer & 21.6 \\
\hline
\end{tabular}
\end{table}

As seen in representative tensile testing diagrams of linear PEC, Elast 5500, and Elast 8000 (in Figure 3-8) the shape of the stress-strain curve is characterised by a long period of linear deformation before rupture at the stress and strain at break points. No strain toughening is observed for elastomers. As expected, Elast 8000 is approximately 1.5 times more extensible than Elast 5500 (see Table 3-8). Linear 60 kDa PEC material is approximately 1.3 times more extensible than Elast 8000.
Figure 3-8: Representative stress-strain diagrams of linear non-crosslinked PEC, low crosslink density and medium crosslink density PEC elastomers.

Table 3-8: Stress and strain at break averages for linear PEC and elastomers. Averages reported ± standard deviation. N = 3.

<table>
<thead>
<tr>
<th></th>
<th>Strain at Break, ε_b</th>
<th>Stress at Break, σ_R (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 kDa linear PEC</td>
<td>9.3 ± 1.0</td>
<td>6.2 ± 0.8</td>
</tr>
<tr>
<td>Elast 8000</td>
<td>7.1 ± 0.5</td>
<td>5.9 ± 0.7</td>
</tr>
<tr>
<td>Elast 5500</td>
<td>4.7 ± 0.9</td>
<td>4.9 ± 0.5</td>
</tr>
</tbody>
</table>

3.4 Conclusions

In conclusion, the depolymerization process was calibrated such that a target molecular weight of low molecular weight PEC (from 2,000 MW to 10,000 MW) can roughly be achieved. It has been confirmed that depolymerization using this method produces PEC with a high ethylene carbonate unit fraction of over 82%. 60 kDa linear PEC was successfully depolymerized, acrylated and crosslinked to produce a range of PEC elastomer crosslink densities for subsequent experiments. UV photoinitiatiated crosslinking conditions were determined such
that sol content is low (~5%) and conditions are mild to prevent denaturation of protein drug during delivery experiments. It has been confirmed that PEC elastomers made from different prepolymer molecular weights possess different crosslink densities.
Chapter 4
Degradation and Biocompatibility of PEC Elastomers

4.1 Introduction

The first step in evaluating the potential of PEC as a new biomaterial is to determine its biocompatibility and degradation properties. The literature has shown that linear PEC degrades by a cell-mediated surface erosion mechanism47. Polymers that degrade by surface erosion are preferable to bulk eroding material because bulk erosion occurs by hydrolysis which produces acid implicated in protein denaturation109 and tissue inflammation117. Also, surface eroding polymers can possess a more predictable and controlled release profile since bulk erosion can accompany the formation of cracks and crevices that may result in mechanical failure41.

The degradation rate of linear PEC is too rapid (almost complete degradation in 2-3 weeks for \(>100\) kDa138-140) for applications in angiogenic growth factor delivery since they require sustained deliver of the growth factor for 3-4 weeks75,79-81. It was determined by Acemoglu \textit{et al.} that molecular weight and ratio of ethylene carbonate units in the polymer backbone affect the rate of \textit{in vivo} degradation. It is hypothesized that the degradation rate of PEC can be prolonged by crosslinking. Furthermore, it is predicted that the level of crosslink density (controlled by prepolymer molecular weight) and be used to tailor the degradation rate based on the application, as has been done for other crosslinkable biomaterials166. The focus of the following chapter is to evaluate the \textit{in vitro} oxidative degradation, and the biocompatibility and degradation properties of the PEC elastomers after subcutaneous implantation into rats.
4.2 Materials and Methods

The materials for the oxidative degradation experiments included potassium superoxide, 18-crown-6-ether, and 6M HCl and were purchased from Sigma Aldrich (Canada). The inhibitor-free tetrahydrofuran (THF) was purchased from Acros Organics. Haematoxylin and eosin stains were purchased from Sigma (Canada) and Masson’s trichrome staining kit (Accustain (R) Procedure HT15) was also purchased from Sigma Aldrich. Dichloromethane was purchased from Fisher Scientific.

4.2.1 In Vitro Oxidative Degradation

In vivo studies have shown that linear PEC degrades inappropriately fast for applications as a biomaterial for long term growth factor delivery or tissue engineering \(^{138, 140}\). To evaluate the hypothesis that the degradation rate of PEC can be prolonged by crosslinking and even tailored by the degree of crosslinking, an experiment was performed that measured in vitro oxidative degradation of PEC elastomers (as compared to linear PEC). Due to its structural similarity to poly(trimethylene carbonate)-based elastomers, (PTMC), which degrade predominantly by oxidative degradation \(^{49, 167}\), oxidative degradation is expected to play a major role in the degradation of PEC elastomers. Stoll et al. have also reported that linear PEC was not hydrolysable and was unaffected by the presence of hydrolytic enzymes, however it was degraded by superoxide anion. Others have also found oxidative degradation playing a major role in carbonate containing polymers \(^{168}\). It has also been shown (based on infrared spectra) that the superoxide anion is present during the in vivo oxidative degradation of linear PEC \(^{141}\).

Therefore, in vitro oxidative degradation of linear and crosslinked PEC was measured by superoxide anion in tetrahydrofuran (THF), a solvent that does not dissolve linear (or elastomeric)
PEC. The procedures from Lee et al. and Chapanian et al. were adapted, using a mixture of 0.01 M potassium superoxide (KO$_2$) in anhydrous, inhibitor-free THF. To enhance the solubility of potassium superoxide in THF, 0.002 M 18-crown-6-ether was also part of this oxidative degradation media. These conditions produce a high concentration of the superoxide anion as described in Figure 4-1:

$$\text{KO}_2 + \text{18-Crown-6 ether} \rightarrow \text{Aprotic Solvent}$$

![Chemical reaction](image)

Figure 4-1: Potassium superoxide and 18-crown-6 ether in THF produce a high concentration of the superoxide anion.

All glassware was dried before use, and the balance was purged with nitrogen as KO$_2$ was being weighed. Every attempt was made to keep conditions dry because potassium superoxide easily absorbs water and reacts quickly to produce potassium hydroxide, accompanied by a change in color from yellow to white.

PEC elastomers were prepared by crosslinking PEC diacylate batches (2100 MW, 6700 MW and 8100 MW) using the crosslinking conditions established in Section 3.3.3. Coupons for testing were cut using a biopsy punch to produce discs that were approximately 5 mm in diameter and 0.9 mm thick. The sol was extracted and calculated (as previously described) and then all discs to be tested were soaked in THF for 3 nights, changing THF once a day, to ensure that no THF-soluble components remained. The discs were then dried to a constant weight, added to oxidative
degradation media, and stirred on an orbital rocker for 1, 3, and 6 days. The oxidative degradation media was freshly prepared and exchanged (under argon) every two or three days, depending on whether the color of KO$_2$ was yellow or white.

When sampling after 1, 3, or 6 days, the discs were removed from oxidative media, acidified in approximately 0.5 mL of 6M HCl to terminate the superoxide reaction, washed three times in distilled water and then dried in a vacuum oven until constant weight. For each time point, discs were run in replicates of three or more. Statistical analysis for Day 3 and Day 6 mass loss data sets were conducted using one-way multiple comparisons ANOVA tests on KaleidaGraph statistical software (by Synergy Software, 2008), followed by the Bonferroni post-hoc test. The difference in mean mass loss between groups was considered significant if the p value was found to be less than 0.001 (>99.9% confidence).

4.2.2 In Vivo Degradation and Biocompatibility

4.2.2.1 Animal Studies

For in vivo degradation and biocompatibility, two groups were tested: (1) 60 kDa linear PEC, and (2) 6000 MW PEC elastomers. Linear PEC was evaluated in this experiment for comparison to PEC elastomers and to confirm previous results from the literature $^{138, 140, 141}$. Linear PEC was prepared by film casting in DCM, and PEC elastomers were prepared, as previously described, using a mould to produce a film approximately 0.9 mm thick. 5 mm discs were cut using a biopsy punch. Linear PEC was dried until a constant weight was obtained, while for the elastomers sol was extracted first using three overnight washes of DCM and then dried in a 40°C vacuum oven until constant weight. All discs were soaked in distilled water for at least 24 hours, air dried, lyophilized, and sterilized using UV light at an intensity of 50 mW/cm2.
In vivo experiments were performed by subcutaneous implantation into the back of adult male Wistar rats (Charles River Laboratories, P.Q. Canada) weighing on average 350 grams on the date of implantation (see Appendix B, Figure 7-6). All animal care was conducted following the guidelines of the Queen’s University Animal Care Committee code of ethics governing animal experimentation (protocol # Amsden 2007-043-R2). The rats were anaesthetized with 0.4mL of tamgesic. After the absence of corneal and tail reflexes, their backs were shaved and disinfected with iodine. The implantation surgery was conducted under aseptic conditions. For each rat, four 2 cm incisions were made to implant four polymer discs subcutaneously (see Appendix B, Figure 7-7). There were two rats per time point, per group. The first time point of interest was 1 week for both linear PEC and PEC elastomers, which was chosen to observe the initial inflammatory response for both groups. Based on mass loss data at each time point, a decision on the following time point was made. This was done to ensure that a range of mass loss was discovered for each group tested, while minimizing the number of animals that were sacrificed. The time points were 1, 2, and 3 weeks for linear PEC, and 1, 6, and 12 weeks for PEC elastomers. Protocols involving the use of rats were approved by the Animal Care Committee of Queen’s University in accordance with the guidelines of the Canadian Council on Animal Care.

4.2.2.2 Degradation and Characterisation

At each time point, two rats per group were sacrificed. The tissue surrounding one of the discs (from one of the two posterior positions) from each rat was obtained for histological staining. For the remaining three discs per rat, the explants were removed from surrounding tissue and their wet mass was recorded. These discs were dried in a 50°C vacuum oven until a constant weight was recorded. Discs were not treated with for the removal of adherence cells or thin tissue. The
water uptake was calculated as shown in Equation 4-1, and the mass loss due to \textit{in vivo} degradation was calculated using Equation 4-2.

\[
\text{water uptake (\%) = 100} \times \frac{m_{\text{wet}} - m_{\text{dry}}}{m_{\text{dry}}}
\]

\text{Equation 4-1}

Where \(m_{\text{wet}} \) is the polymer disc mass immediately after explanation,

\(m_{\text{dry}} \) is the polymer disc mass after explanted and dried until constant mass.

\[
\text{mass loss (\%) = 100} \times \frac{m_{0} - m_{\text{dry}}}{m_{0}}
\]

\text{Equation 4-2}

Where \(m_{0} \) is the (dry) polymer disc before implantation.

Differential Scanning Calorimetry, DSC (Mettler Toledo, DSC1) was conducted to determine the glass transition temperature, \(T_{g} \), which is a measure of the flexibility of the polymer disc. Since \(T_{g} \) is a function of bulk disc molecular weight and crosslink density, it provides insight into the degradation mechanism. Scanning Electron Microscopy, SEM (JEOL JSM840 SEM, Peabody) micrograms were obtained for one explant per rat (\(n=2 \) per time point), which was first freeze-fractured using liquid Nitrogen, to get qualitative visual information about how the polymer is degrading. Sol content was also measured for PEC elastomers using Equation 4-3:

\[
\text{sol content (\%) = 100} \times \frac{m_{\text{dry}} - m_{\text{elast}}}{m_{\text{elast}}}
\]

\text{Equation 4-3}

Where \(m_{\text{dry}} \) is the explanted disc mass after drying to a constant mass (before sol extraction)

\(m_{\text{elast}} \) is the disc mass after sol extraction in DCM and drying.
4.2.2.3 In Vivo Biocompatibility

In vivo biocompatibility was assessed by investigating whether the biomaterial elicited a persistent inflammatory response, which was measured by the number and types of cells surrounding the implant and by the presence and size of a fibrous capsule around the implant at each time point during degradation. Hematoxylin and eosin staining (H&E) was used as a simple method of obtaining images of thin sections at low magnification and at high magnification for identifying cell types. Hematoxylin stains cell nuclei blue/black, while the eosin counterstain colours cytoplasm pink. Masson’s Trichrome stain was also used to distinguish cells from connective tissue (by staining collagen), therefore allowing the identification and measurement of the fibrous capsule. Using this trichrome staining procedure, cell nuclei appear black, the cytoplasm and muscle are coloured pink, and collagen is blue.

Immediately after explantation, the polymer discs and surrounding tissue were fixed in 4% formalin solution for at least 24 hours at 20°C. After trimming, processing and paraffin embedding the tissue, sections were cut at 5 μm intervals and stained with both H&E and Masson’s Trichrome stains. Fibrous capsule thicknesses were measured in ImageJ using microscope pictures of Masson's Trichrome stained discs from at least four different areas of the disc and more than 10 measurements per side of the disc were recorded. The average of these measurements is reported ± one standard deviation.

4.3 Results and Discussion

4.3.1 In Vitro Oxidative Degradation

As part of the host reaction to the implantation of a biomaterial, once phagocytes, particularly leukocytes and macrophages, have attached to the surface of the implant they are able to produce
highly reactive oxygen species, such as superoxide (\(\bullet O_2^-\)) and hydrogen peroxide in order to attempt to destroy the foreign material.170, 171170, 171 These species are highly reactive and participate in the biochemical reaction, referred to as the “respiratory burst”, which is characterised by one electron reduction of \(O_2\) into superoxide via NADPH or NADH oxidase.168 It has been shown by Dadsetan et al. that the superoxide anion (\(\bullet O_2^-\)) specifically is present during the \textit{in vivo} degradation of linear PEC.141 It is clear from the results found in Figure 4-2 that oxidative degradation by superoxide plays a role in the degradation of both linear PEC and PEC elastomers. While the oxidative degradation media simulates the intimate environment between phagocytes and the biomaterial surface (because it produces a high concentration of the superoxide anion), the time frame of degradation in this experiment likely does not reflect \textit{in vivo} degradation rates, but it can be useful for comparison purposes.

To demonstrate the reason for crosslinking, linear PEC degrades under these conditions about twice as fast as the PEC elastomer made from 8000 MW diacrylate (Elast 8000), as can be seen by Figure 4-2. At Day 3, this difference is statistically significant, with a p value of 0.001. The mass loss for linear PEC at Day 3, which is 68 ± 14%, is also statistically higher than that for all other elastomers (p ≤ 0.0001). Due to difficulty in handling the delicate linear PEC discs at Day 3 which had lost almost ¾ of its mass, an experiment for Day 6 linear PEC was not practical (especially considering that it was expected to have lost all of its mass by that point). By Day 6, Elast 8000 (low crosslinking density) lost over 84 ± 5% mass, and Elast 6500 lost 24 ± 2% of its mass. This difference between Elast 8000 and Elast 6500 is statistically significant with a p value of less than 0.0001.

Although the experiment for Elast 2000 Day 6 was conducted, it was noticed that the discs were chipped. Considering the brittle nature of this crosslink density (and the damage problems
discovered in Section 3.3.4 while removing sol content of Elast 2000 dogbones), this was not surprising. Subsequently, the data for Day 6 Elast 2000 could not be used for comparison due to disc damage.

![Figure 4-2: In vitro oxidative degradation of PEC and PEC elastomers at different crosslinking densities. Each point represents the average of replicates. N = 3 for Day 1 points, and N = 4 for Day 3 and Day 6 points. Error bars represent 95% confidence intervals for the means. Data for 2000 MW elastomer at Day 6 was excluded due to significant disc damage. Series curves were added to aid the reader in series identification only. * indicates that difference is significant (p=0.001 or less).]

Based on the different rates of degradation between PEC elastomer groups, this data suggests that the degradation rate can be tailored based on the crosslinking density. An in vivo investigation of PEC elastomer degradation with different crosslinking densities would be required to conclude whether or not the degradation rate can be tuned in the body.
4.3.2 *In Vivo Degradation*

Both PEC elastomers and PEC linear discs exhibited a nearly linear mass loss with time, which is indicative of a surface erosion mechanism. Surface erosion has advantages over bulk erosion for a biomaterial since for most bulk erosion processes, cracks and crevices can form throughout the device that may rapidly crumble into pieces. This is especially true for drug delivery applications since cracks and/or failure may cause a bolus/large release of the drug. These fragments may even cause unnecessary tissue irritation depending on the mechanical properties of the material and tissue location of the implant. Bulk eroding materials also possess more limited predictability of erosion and lack of protection of drug molecules to water.

![Graph showing mass loss over time for 60 kDa linear PEC and PEC elastomer made from 6000 MW PEC diacryl. Each point represents the average of quadruplicate values, where the error bars represent the 95% confidence intervals for the means. Linear trendline fitted to each set, where y = Mass loss (%) and x = Time after implantation in weeks.](image)

Figure 4-3: *In vivo* mass loss for linear 60 kDa PEC, and PEC elastomer made from 6000 MW PEC diacryl. Each point represents the average of quadruplicate values, where the error bars represent the 95% confidence intervals for the means. Linear trendline fitted to each set, where \(y = \text{Mass loss (\%)} \) and \(x = \text{Time after implantation in weeks} \).
The degradation rate of linear PEC is over 9 times greater than that of the PEC elastomer made from 6,000 MW diacrylate (Elast 6000). By Week 3, the linear PEC had lost 78 ± 11% of its mass, while by Week 12 Elast 6000 had only lost 37 ± 4%. This finding demonstrated that, as anticipated from the *in vitro* experiments, crosslinking PEC can be used to slow its *in vivo* degradation rate.

Mass loss during *in vivo* degradation appears to correlate well with the water uptake results seen in Figure 4-4. As degradation occurs, ethylene glycol is produced at the surface which attracts more water. Differential Scanning Calorimetry (DSC) was used to find the glass transition temperatures, (T_g) of the bulk polymers before and after *in vivo* degradation. The midpoint of the T_g found on the second heating cycle was used to measure the T_g since this is a reflection of the material property, not that which reflects the plasticizing effect of water. Therefore this T_g reported would be more useful for elucidating the mechanism of degradation. As seen in the representative thermogram for a PEC elastomer 6 weeks after implantation (Figure 4-5), a large evaporation endoderm is seen at 0°C (8 min) for the first heating cycle only, which is indicative of water retention. This endothermic peak was also seen for linear PEC samples for the first heating cycle only. This water plasticizes the PEC to possess a lower T_g (be more flexible) in the body.

For linear 60 kDa PEC before implantation, the T_g was found to be 15°C. This value is lower than that measured by Unger *et al.* for linear 242 kDa PEC (T_g of 31°C)\(^{142}\), however this difference is expected due to the difference in molecular weight. Dadsetan *et al.* also reported that the 240-285 kDa linear PEC used in their studies possessed a T_g range from 24-27°C \(^{141}\). Unger *et al.* found by wide angle X-ray diffraction that linear PEC is amorphous and so finding a glass transition temperature and not a melting point are to be expected.
Figure 4-4: Water uptake for PEC in vivo degradation study. Each point represents the average of quadruplicate values, where the error bars represent the 95% confidence interval on the mean. Series curves were added to aid the reader in series identification only.

Figure 4-5: Representative thermogram showing two heating cycles for PEC elastomer 6 weeks after implantation. Heating cycle started from -80°C and heated to -130°C at 10°C/min.
For a surface eroding noncrosslinked material, it is expected that there would be no decrease in molecular weight, and therefore, in glass transition temperature until the polymer has been almost completely degraded, since the glass transition temperature is a bulk property. On the other hand, for bulk eroding materials, the glass transition temperature is expected to decrease as mass loss increases, if not before \(^{172}\). No decrease in \(T_g\) is seen (Figure 4-6) at any point and therefore the DSC results support a surface erosion mechanism (representative DSC thermograms are found in Appendix B, Figure 7-9). For linear PEC, there is a slight increase in \(T_g\) in the first week of \textit{in vivo} degradation from 15°C to 18°C, but from week 1 to week 3, the \(T_g\) remains at 18°C. The slight increase in \(T_g\) initially may be due to the higher solubility of the lower molecular weight fraction in the \textit{in vivo} extracellular environment, and is extracted from the bulk. This lower molecular weight fraction was plasticizing the bulk in the first week and therefore when it has been extracted, \(T_g\) increases.

For the PEC elastomers, \(T_g\) increases slightly from 19 to 23 °C in the first two weeks, although it is expected that \(T_g\) remains constant throughout elastomer \textit{in vivo} degradation since the molecular
weight does not significantly change for thermosetting elastomers. One possible explanation for this is that either the dangling chain ends at the surface or the lower crosslink density sections are being degraded first, leaving behind regions of higher crosslink density. This is plausible since these are expected to be more accessible to the macrophages. Since dangling chain ends act as a plasticizer, and lower crosslink density sections are more flexible, the residual polymer (if this theory holds true) would be a less flexible material with a higher T_g and so the data supports this possibility.

After one week, the elastomers showed a small measurable sol content of $5 \pm 2\%$ and the sol content remains at roughly this value throughout the 12 weeks. This result is indicative of a surface erosion mechanism. Sol content is another bulk property and therefore is not influenced by surface changes. As ethylene glycol is produced during degradation, it is water soluble and is being continuously carried away by surrounding fluid which explains why there is no accumulation of degradation products in the disc which would elevate the sol content throughout degradation. For a surface erosion mechanism, adherent phagocytes release reactive species that have a limited half-life, and therefore their action is limited to the surface 173 where low molecular weight by-products can quickly be extracted.

<table>
<thead>
<tr>
<th>Week</th>
<th>Average Sol Content (%)</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.26</td>
<td>2.39</td>
</tr>
<tr>
<td>6</td>
<td>3.91</td>
<td>1.37</td>
</tr>
<tr>
<td>12</td>
<td>5.15</td>
<td>3.12</td>
</tr>
</tbody>
</table>

As can be seen in Figure 4-7 and Figure 4-8, both linear PEC and PEC elastomer degrade by surface erosion. For linear PEC, before implantation there is a relatively smooth surface, with a
few bubbles and surface ripples caused by the film casting process. At Week 1, there are two distinct surface regions: one smooth and relatively unaffected, and a rough pitted region that had been degraded by inflammatory cells. This rough region covered more than half of the face of the disc. By Week 2 these rough surface features had covered the entire pitted surface of the disc and the roughness was coarser, as can be seen by the cross section. The Week 3 sample still had a blanket of tissue surrounding it (fibrous capsule), under which degraded pits can be seen.

The degraded surface of PEC elastomers is similar to that of linear PEC, except less pronounced. Before implantation, a few surface imperfections can be seen, and by Week 1 only a slight roughness was seen on the cross section. By Week 6 (at ~25% mass loss), the surface looked the same as linear PEC did at 1 week (17% mass loss) with regions of roughness. At week 12, a blanket of tissue had surrounded the elastomers, under which a deep pit of degradation could be seen.

4.3.3 In Vivo Biocompatibility

To investigate the biocompatibility of the PEC elastomers in the rat model, the area of tissue surrounding the implant was observed, and histological staining was performed. There were no gross signs of inflammation around any polymer discs (redness or swelling) at the time of explantation (see Appendix B, Figure 7-8). Hematoxylin & Eosin (H&E) and Masson’s Trichrome stains were used since cellular density, the presence of various types of immune cells, and collagen deposition at the disc-tissue interface were of interest.
a) Wk 0 – 60kDa linear PEC

b) Wk 1 – 60kDa linear PEC

c) Wk 2 – 60kDa linear PEC

d) Wk 3 – 60kDa linear PEC

Figure 4-7: SEM micrographs at 100x magnification for 60 kDa linear PEC throughout in vivo degradation. (b) R indicates the rough pitted surface area, S indicates the smooth surface area. (d) Arrow highlights the blanket of tissue covering a degraded pit.
Figure 4-8: SEM micrographs at 100x magnification for PEC elastomer (6000 MW) throughout in vivo degradation. (c), R indicates the rough pitted surface area, S indicates the smooth surface area.
(d) Arrow highlights the blanket of tissue covering a degraded pit.
For PEC elastomers, an expected inflammatory response was seen at the site of implantation. At Week 1, numerous granulocytes were seen at higher magnification, as identified by multi-lobed nuclei (see Figure 4-9b) as well as cells that appear to be macrophages. The number of granulocytes in the field of view greatly depended on the area from which the picture was taken. The side of the disc that faced the rat’s body (rather than skin) had a significantly larger number of granulocytes, which is explained by the shorter distance for leukocyte extravasation from the main bloodstream to the disc. Erythrocytes can also be seen in Figure 4-9b.

At Week 6, cellular density at the interface between the disc and surrounding tissue had decreased and the development of a collagenous layer surrounding the implant was apparent, which measured to be $72 \pm 18 \mu m$ thick. Vascularization developed around the implant site and could be seen as granulation tissue in Figure 4-9c-d. At Week 12, the fibrous capsule thickness was measured to be $62 \pm 11 \mu m$ and this layer was avascular. This fibrous capsule was comparable to that seen for poly(trimethylene carbonate)-based elastomers.35

For linear PEC, although cellular density of what appeared to be macrophages and other inflammatory cells was high surrounding the Week 1 implant, there were very few cells that could be identified as granulocytes on either side of the disc. Perhaps this is due to the fact that there has been significant degradation (almost 20%) by Week 1 and granulocytes are the first inflammatory cells to respond to injury. Linear PEC may degrade so quickly, that in 1 week it is at a more advanced stage of the wound healing process. At Week 3 a collagenous capsule layer was present and its thickness was variable. The fibrous capsule layer was measured to be $78 \pm 38 \mu m$. As compared to PEC elastomers, the fibrous capsule contained a higher cell density, including large cellular nodules at the disc-tissue interface, which may contain multinucleated giant cells as would be expected.
Figure 4-9: Histological sections stained with H&E or Masson’s Trichrome for PEC Elast 6000 during *in vivo* degradation. PEC label indicates the implant void, as compared to the surrounding tissue. (b) G = granulocytes (multi-lobed nuclei), E = erythrocytes (c) and (e) FC = fibrous capsule, (d) GT = granulation tissue.
Figure 4-10: Histological sections stained with H&E or Masson’s Trichrome for PEC Elast 6000 during *in vivo* degradation. PEC label indicates the implant void, as compared to the surrounding tissue, (e) FC = fibrous capsule, (f) arrows indicate to cell nodules.
The 60 kDa linear PEC investigated in this work degrades \textit{in vivo} at a faster rate than the 72kDa linear PEC in Acemoglu \textit{et al.} when mass loss is normalized to surface area, as seen in Figure 4-11. This is likely due to differences in polymer backbone composition, specifically the ratio of ethylene carbonate to ethylene oxide. Acemoglu \textit{et al.} identify the incorporate ether function ratio (IEF) as a variable that affects the rate of biodegradation. The 60 kDa tested here has an IEF of 3% or less, since the least depolymerised batch has an IEF of 3.2% and the IEF only increases as ethylene carbonate units depolymerise. On the other hand, (while the 72kDa IEF was never explicitly stated) the batch in Acemoglu which is approximately the same molecular weight (66 kDa) has an IEF of 12%. The IEF of the 60 kDa linear PEC could not be measured directly, since NMR is not an appropriate characterisation technique for polymers over 10,000 Da.

![Figure 4-11: Normalized mass loss data comparison for the \textit{in vivo} degradation data found in the present study (60 kDa), as compared to that from Acemoglu \textit{et al.} which was 72 kDa.](image-url)
The experimental results confirmed that PEC elastomers as well as linear PEC degraded by a surface erosion mechanism and strongly suggest that it is mediated by phagocytic cells. It has also been shown by Stoll et al. that linear PEC in vivo degradation is a cell-mediated process and is dependent on close contact between PEC and the cells. This was shown by evaluating intraperitoneal in vivo degradation using “free” PEC tablets and comparing results to PEC tablets which were enclosed in a Teflon device, separated from the environment by membranes of 10 and 160 micron pore size. After 2 weeks, no degradation was observed for membrane-surrounded tablets but significant mass loss (84%) was seen for “free” PEC. Also, Cha et al. observed that degradation on PEC films only occurred where J774.A cells (mouse monocyte-macrophage cell line) had adhered.

The biocompatibility of PEC elastomers is comparable to that of PTMC elastomers in Chapanian et al and they elicit a mild inflammatory response. As compared to that of PEC linear, the fibrous capsule around the PEC elastomer is more defined, however a reduction in inflammatory cells are seen at the interface of the last time point which may indicate a stabilization of the inflammatory response.

4.4 Conclusions

60 kDa Linear PEC degrades much more quickly than PEC Elastomers both in vitro and in vivo. There is also some evidence to support that the oxidative degradation rate can be tailored by the degree of elastomer crosslinking. Tunable degradability makes PEC elastomers more appropriate for applications in drug delivery and tissue engineering.
Both linear and elastomeric PEC degrade in vivo by a cell-mediated surface erosion mechanism as proven by linear mass loss profiles, SEM showing a pitted surface but unaffected bulk cross sections, consistently low sol contents throughout degradation, and glass transition temperatures that do not decrease for the time period investigated.

An inflammatory response accompanies the in vivo degradation of PEC. For the PEC elastomer, this is characterised by numerous granulocytes in the first week, followed by granulation tissue, and a thin fibrous capsule. For the linear PEC, many inflammatory cells (that appear to be macrophages) were present at the surface within the first week however, no granulocytes could be identified, likely due to the fact that significant degradation has already occurred by 1 week. Throughout 3 weeks, cell nodules are seen at the interface of the formed fibrous capsule and implant.
Chapter 5

PEC Elastomer as a Porous Protein Delivery Device

5.1 Introduction

The main goal of this section is to investigate the potential of porous PEC elastomers as protein delivery devices, with the ultimate application of therapeutic angiogenesis in mind. This was done by identification and testing of key formulation parameters that were expected to be important in controlling the release profile of bovine serum albumin (BSA) which was used as an example protein. BSA was selected for the purpose of screening the potential of PEC elastomers as delivery devices since it is often used as a diluent/excipient (and a major component) in the final formulation of many growth factor delivery devices and therefore tracking its release is meaningful. Albumin is also commonly used as a model/example protein in preliminary drug release testing and therefore literature results can be compared. It has also been shown in Chapanian et al. that for a trimethylene carbonate based elastomer system, the in vitro release rate of rat serum albumin for about 2 weeks was very close to that of VEGF, and therefore preliminary release data based on albumin may provide guidance in choosing the growth factor loading.

One requirement of this protein delivery device is that the scaffold is porous. This is expected to reduce the formation of the fibrous capsule since there is greater surface area for host cell infiltration meaning better integration into the tissue. The fibrous capsule can also be a barrier to the diffusion of the drug. Low molecular weight poly(ethylene glycol), PEG, was evaluated as a pore-forming agent for this purpose. PEG was selected because it is water soluble,
nontoxic and biocompatible \(^{30}\) which means that it can potentially be used as a porogen that is slowly extracted from the device in the body. This was hypothesized to minimize the initial burst release, which is often seen in the first 24 hours \(^{90}\), and provide another parameter for adjustment of the release kinetics \(^{181}\). Molecular weights lower than the renal threshold (10,000 Da) were selected so that PEG could be safely excreted \(^{182}\). PEG is widely used in many biomedical applications.

5.2 Materials and Methods

Poly(ethylene glycol)s of 400 Da (PEG 400) and 8000 Da (PEG8000) were purchased from Sigma Aldrich (Canada). Terminally acrylated glycerol-initiated star-poly(trimethylene carbonate) (PTMC) (see Appendix C, Figure 7-10) (used to set up the porogen fabrication process) was prepared as described in Chapanian \textit{et al.} \(^{35}\). Bovine serum albumin (BSA) and albumin–fluorescein isothiocyanate conjugate (FITC-BSA) were purchased from Sigma Aldrich (Canada). Isopropanol was purchased from Fisher Scientific. Paraffin wax used to make paraffin beads was “Parowax” (made by CONROS Corporation, North York, ON).

5.2.1 Fabrication of Porous Scaffolds

Two acrylated polycarbonates were used in this section in developing porous polymer elastomers: 3000 Da poly(ethylene carbonate) diacrylate, and 3000 Da star-poly(trimethylene carbonate) triacrylate. PTMC triacrylate was used instead of PEC diacrylate for determining porogen loading/composition due to availability. Once the parameters were established, PEC diacrylate was used to confirm that the desired porous architecture could be achieved for PEC elastomers. Since its chemical structure and physical properties at 3000 Da are similar to that of PEC, PTMC was expected to be an appropriate material for this purpose.
PEG and 2,2-dimethylacetophenone (photoinitiator) were added to the solvent-free acrylated polycarbonate and then thoroughly mixed before spreading onto a glass mould for UV crosslinking using the parameters determined in Section 3.3.3. Unlike the previously described elastomers, the acrylated polycarbonate was not dissolved in dioxane prior to mixing/crosslinking in order to avoid dissolving the PEG. PTMC elastomers were prepared with 0 to 60% (wt/wt) PEG 8000 and/or 0 to 60% (wt/wt) PEG 400. PEC elastomers were prepared using different levels of both PEG 8000 and PEG 400 after the discovery that a combination of the two porogens was required for ease of mixing, ease of handling and to produce elastomers with appropriate mechanical properties and porous structures.

It was hypothesized that after the incorporation of PEG 8000 (a solid crystalline material) into PEC diacrylate, it could be extracted (after crosslinking) to form a defined pore structure within the elastomer. Different ratios of PEG 400, which is a viscous clear liquid at room temperature, were additionally incorporated because it was hypothesized that it could produce microchannels to connect the pores formed by the solid PEG8000 particles. In assessing the resultant porous architectures formed and the role of each PEG 8000 and PEG 400, each elastomer scaffold was carefully removed from the mould, and placed in distilled water to extract PEG. The elastomers were immersed in water for several days changing the water each day, until the dimensions of the elastomer stabilized (indicating full water penetration, dissolving all PEG). The samples were then dried overnight in a 50°C oven.

Porosity was assessed in three ways. The first method was based on a measured density according to Equation 5-1 and Equation 5-2. Three samples were cut from each porous elastomer batch for calculation of ε_1.

87
Where $\varepsilon_1(\%) = \text{porosity of elastomer based on the disc mass and dimensions.}$

ρ_{porous} [g/cm2] = calculated density based on measured disc diameter, d, and measure disc thickness, t, after PEG removal by distilled water.

ρ_{elast} [g/cm2] = polycarbonate density (1.42 g/cm2 for PEC, 1.3 g/cm2 for PTMC).

m_{porous} = mass of elastomer disc after PEG extraction and drying.

The error for ε_1 was determined by estimating the precision of the mass balance and caliper used to measure m_{porous}, d, and t and propagating the error (see Appendix C, Equation 7-1).

The second method for calculating porosity is based on a modified Archimedes Principle technique. Three samples were cut from each porous elastomer batch. Each dry piece was immersed in 2-propanol, sonicated for 60 seconds and placed in a vacuum dessicator (20 in Hg) for 1 hr. During this time, propanol fills all the interconnected void space. Excess propanol was removed carefully, and the disc was weighed immediately. Porosity was calculated using the following equations:

$$V_{voidspace} = \frac{m_{wet} - m_{dry}}{\rho_{isopro}}$$ \hspace{1cm} \text{Equation 5-3}
\[V_{\text{elast}} = \frac{m_{\text{dry}}}{\rho_{\text{elast}}} \]

\[\varepsilon_2(\%) = \frac{V_{\text{voidspace}}}{V_{\text{voidspace}} + V_{\text{elast}}} \]

Where
\(V_{\text{voidspace}} = \) volume of the pores [cm\(^3\)]
\(V_{\text{elast}} = \) volume of elastomer [cm\(^3\)]
\(m_{\text{dry}} = \) mass before isopropanol immersion [g]
\(m_{\text{wet}} = \) mass after isopropanol immersion [g]
\(\rho_{\text{isoprop}} = \) density of isopropanol (0.786 g/cm\(^2\))
\(\rho_{\text{elast}} [\text{g/cm}^2] = \) polycarbonate density (1.42 g/cm\(^2\) for PEC, 1.3 g/cm\(^2\) for PTMC)

Thirdly, scanning electron microscopy, SEM, (JEOL JSM840 SEM, Peabody) was conducted to observe the porous architecture formed. Dry samples were freeze-fractured and pulse gold sputter coated before SEM.

To help assess the distribution and contribution of each of PEG 8000 and PEG 400 in the final porous architecture, Differential Scanning Calorimetry, (DSC) was also conducted on a sample of 40% PEG 8000 + 20% PEG 400 + PEC (“40/20 PEG”) before porogen extraction, as well as on PEG 8000 and PEG 400 alone.
5.2.2 BSA Release from Porous PEC Elastomers

For crosslinking porous BSA-loaded elastomers, 1.5% photoinitiator and PEG 400 were mixed well into PEC diacrylate, followed by evenly mixing in PEG 8000. Then, a suspension of protein particles was added, mixed, and the resulting thick polymer solution was transferred into a glass mould. The UV crosslinking conditions used were those determined in Section 3.3.3.

To produce the protein particle suspension, the method in Guan et al. was followed with a modified concentration of BSA in DMSO of 275 mg/mL before vortexing at a high speed for 2 minutes. The BSA which was added to the DMSO was composed of 10% FITC-conjugated BSA (FITC-BSA) and 90% BSA and was first dissolved in phosphate buffered saline (PBS pH 7.4), lyophilized, and then sieved through a 45 μm mesh prior to adding to DMSO. The protein concentration in DMSO used here is significantly higher than that used in Guan et al. because minimal DMSO is desired to prevent the PEG porogens from dissolving or misshaping. The BSA particles of Guan et al. produced particles of 0.3 ± 0.2 μm in diameter as measured by SEM image analysis and since a higher concentration was used here (providing a high shear force to break up particles) the particles within the elastomer should also be on the order of micrometers. Fluorescently-labelled BSA was chosen in order to visualize the protein particles distribution and size before and after the release study.

The formulation parameters of interest were: molecular weight of the PEC diacrylate, BSA loading, protein particle size, and porogen composition. The formulation parameters were evaluated by first attempting to prepare the elastomers described in Table 5-1 with both 2000 MW PEC diacrylate, and 5500 MW PEC diacrylate.
Table 5-1: Elastomers prepared for BSA delivery release experiment. Φ is the volumetric fraction loading of BSA in PEC.

<table>
<thead>
<tr>
<th>Elast ID</th>
<th>PEG 8000 (%)</th>
<th>PEG 400 (%)</th>
<th>BSA (%)</th>
<th>PEC (%)</th>
<th>Φ</th>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>40</td>
<td>0%</td>
<td>no BSA added (CONTROL)</td>
</tr>
<tr>
<td>B</td>
<td>40</td>
<td>20</td>
<td>12</td>
<td>28</td>
<td>30%</td>
<td>BSA added after sieved (no DMSO/vortex)</td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>20</td>
<td>12</td>
<td>28</td>
<td>30%</td>
<td>BSA added in DMSO (suspension)</td>
</tr>
<tr>
<td>D</td>
<td>40</td>
<td>20</td>
<td>5</td>
<td>35</td>
<td>13%</td>
<td>BSA added in DMSO (suspension)</td>
</tr>
<tr>
<td>E</td>
<td>60% paraffin</td>
<td>12</td>
<td>28</td>
<td></td>
<td>30%</td>
<td>BSA added in DMSO (suspension), paraffin extracted (THF)</td>
</tr>
<tr>
<td>F</td>
<td>50</td>
<td>30</td>
<td>12</td>
<td>8</td>
<td>60%</td>
<td>BSA added in DMSO (suspension)</td>
</tr>
</tbody>
</table>

BSA-loaded porous PEC elastomer formulations are listed in Table 5-1. As a control, Elastomer A contained no protein, but contained 40/20 PEG. To see whether the method used from Guan et al. for producing small diameter protein particles was effective and beneficial for this delivery system, Elastomer B was prepared with 12% weight fraction “dry” BSA, which was sieved and then mixed into PEC diacrylate without any DMSO or solvent. Elastomer C was prepared with 40/20 PEG and 12% BSA and was used as a base case for comparison to other formulations. Elastomer D was prepared to evaluate the effect of BSA loading, and contained a lower loading of 5% BSA. To assess the performance of PEG as a porogen, Elastomer E was prepared from paraffin beads for comparison purposes. The paraffin microbeads were fabricated by dropwise addition of melted paraffin wax into a 0.003% PVA solution vigorously stirred and heated to 65°C. Paraffin droplets were solidified by quenching in stirred, ice-cold water. The beads were then sieved to produce 100-250 micron beads. Elastomer F was prepared to evaluate the effect of a higher overall porosity by preparing with 50% PEG 8000 and 30% PEG 400.
Table 5-2 describes the intended comparisons to be made between groups in assessing the effect of the formulation parameters on release characteristics.

Table 5-2: The comparisons made between BSA-loaded elastomer conditions.

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>A to B</td>
<td>Identify BSA on SEM (and its effect on porous structure if applicable)</td>
</tr>
<tr>
<td>B to C</td>
<td>Effect of DMSO on release kinetics and porous structure</td>
</tr>
<tr>
<td>C to D</td>
<td>Effect of BSA loading on release profile</td>
</tr>
<tr>
<td>C to E</td>
<td>Compare choice of porogen</td>
</tr>
<tr>
<td>C to F</td>
<td>Effect of overall porosity on release profile</td>
</tr>
</tbody>
</table>

Half of the Elastomer C batch was also washed in THF overnight for seven nights in an attempt to extract PEG. Differential scanning calorimetry (DSC) was used to measure the PEG remaining. The intention was to perform a release study on Elastomer C both with or without PEG so that it could be determined whether PEG minimizes the burst release, as hypothesized. However, it was not possible to fully remove PEG even after 1 week of THF washing, and therefore only Elastomer C containing PEG (without any THF/PEG extraction) was used in the release studies.

To conduct the BSA release study, batches were lyophilized to remove DMSO until they measured a constant weight, or for 1 week (whichever was longer) and then 5 mm discs were punched out of each elastomer listed in Table 5-1. Four discs were punched for each group (three discs for quantification of BSA and a fourth disc to determine PEG remaining through DSC). Each disc was placed in 1.75 mL of release media, which consisted of PBS (pH 7.4) containing 0.01% sodium azide to prevent bacterial growth and 0.0005% BSA as a sacrificial protein for adsorption to the sample vial. The vials were gently stirred on an orbital shaker at 37°C for a month.
At sampling points, each disc was removed from the vial, dabbed on a KimWipe and transferred to a vial containing fresh PBS. The disc dimensions were recorded before and after the release experiment, and at various sampling points. The release solutions were filtered and assayed using HPLC injecting duplicate 100/200 μL of each sample depending on the concentration (Thermo Scientific HyPURITY C18 column 5um particle size with column dimensions 250mm x 4mm with a 10x4mm drop-in guard column cartridge, mobile phase A: 99.9%v/v water, 0.1% TFA, mobile phase B: 80% v/v acetonitrile, 19% water, 0.1% TFA; UV detection at 214 nm). DSC was also performed at 1 week and 4 week time point discs to measure the amount of PEG remaining. SEM was used after the release experiment to observe the porous structure formed by the expected extraction of PEC and BSA particles. Laser scanning confocal microscopy was also used before and after release to evaluate the particle size and size distribution, which was calculated using the “Analyze Particles” tool of ImageJ, analyzing four confocal images per group taken before the release of each disc.

5.3 Results and Discussion

5.3.1 Fabrication of Porous Scaffolds

Porosity measurements for all porous PTMC scaffolds prepared are found in Table 5-3. Based on Equation 5-1 and Equation 5-3, ε_1 is a measure of all void/non-polymer space, but ε_2 considers only the interconnected void space (space contacted by isopropanol). Therefore, the comparison of these two values provides a measure of interconnectivity of the porous structure.
Table 5-3: Porosity of porous PTMC elastomers prepared. ε_1 values are the mean of triplicates ± 95% confidence intervals. ε_2 values are the mean of triplicates ± 95% confidence intervals.

<table>
<thead>
<tr>
<th>PEG 400 (wt/wt %)</th>
<th>PEG 8000 (wt/wt %)</th>
<th>ε_1 (%) from measured density</th>
<th>ε_2 (%) from 2-propanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>29</td>
<td>33.3 ± 3.2</td>
<td>15.6 +/- 4.2</td>
</tr>
<tr>
<td>0</td>
<td>38</td>
<td>40.2 ± 3.4</td>
<td>24.6 +/- 6.0</td>
</tr>
<tr>
<td>0</td>
<td>60</td>
<td>64.4 ± 2.0</td>
<td>66.4 +/- 0.4</td>
</tr>
<tr>
<td>38</td>
<td>0</td>
<td>5.2 ± 5.3</td>
<td>6.3 +/- 3.7</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>47.8 ± 2.9</td>
<td>32.2 +/- 13.0</td>
</tr>
<tr>
<td>25</td>
<td>12</td>
<td>17.4 ± 4.6</td>
<td>11.5 +/- 2.7</td>
</tr>
<tr>
<td>21</td>
<td>39</td>
<td>55.0 ± 2.5</td>
<td>49.9 +/- 4.2</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>55.0 ± 2.5</td>
<td>55.2 +/- 4.8</td>
</tr>
</tbody>
</table>

SEM micrographs were also examined to characterise the porous structures formed, as seen in Figure 5-1. When a low loading of PEG 8000 is the only porogen used (29% or 38%), the pores were not fully interconnected, as seen by a discrepancy in measured porosity values. SEM showed a well-defined closed pore structure with pores from 50 to 250 μm in diameter. In addition, elastomers made with only PEG 8000 (especially 60% PEG 8000) were very difficult to evenly mix, and once crosslinked were fragile. PEG 400 incorporated on its own was not a very effective porogen, as seen by low porosities measured and based on SEM cross sections, with only a few small pores/bubbles. However, when both PEG 8000 and PEG 400 were incorporated pores were formed that were more interconnected. These pores were not as circular and well defined as the pores in Figure 5-1 a) and b), but they were also approximately 50 to 250 μm in diameter.

As expected PEG 8000 was the major pore-former, and PEG 400 helped to connect the void space by plasticizing the PTMC during mixing before UV crosslinking. DSC results for PEG 8000 and PEG 400 as compared to that for Elast 40/20 PEG provide additional confirmation that
PEG 8000 is the pore-former and PEG 400 is more dispersed throughout the elastomer matrix (see Appendix C, Figure 7-11). The PEG 400 incorporation is also very important in order to produce elastomers that can be handled with ease.

It was decided that a total porogen weight fraction of about 60% was an appropriate starting point to produce the desired porous structure. This was selected based on the ease of mixing the formulations in the previous section. It was expected that if enough PEG was added then the fraction of acrylated PEC would be too little to effectively crosslink. To confirm which combination of PEG 8000 and PEG 400 was the best choice for creating PEC elastomers, four different PEC elastomers were prepared as outlined in Table 5-4:

Table 5-4: Porosity of porous PEC elastomers prepared. Values for ε_1 porosity are the mean of triplicates, including 95% confidence intervals based on error propagation and estimated precision of mass balance and calliper (see Appendix C, Equation 7-1). Values for ε_2 porosity listed are the mean of triplicates, with 95% confidence intervals.

<table>
<thead>
<tr>
<th>PEG 400 (%)</th>
<th>PEG 8000 (%)</th>
<th>ε_1 (%) from measured density</th>
<th>ε_2 (%) from 2-propanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>40</td>
<td>58.9 ± 2.5</td>
<td>56.4 +/- 2.9</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>61.3 ± 2.4</td>
<td>59.6 +/- 1.2</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>57.6 ± 2.6</td>
<td>49.6 +/- 5.0</td>
</tr>
<tr>
<td>15</td>
<td>37</td>
<td>52.0 ± 2.9</td>
<td>48.7 +/- 4.2</td>
</tr>
</tbody>
</table>
Figure 5-1: SEM micrographs of PTMC porous elastomers at low (20x or 30x) and high (100x) magnification.
Since porosity measurements are close, and based on the SEM micrographs the porous structures formed once again are highly porous and interconnected. The best elastomer in terms of a balance of properties when handling and the measured porosities was 40% PEG 8000 + 20% PEG 400 (“40/20 PEG”) and so this porogen level was selected for use in subsequent experiments.

As compared to the 40/20 PEG of PTMC, the pores are less defined and less circular for PEC. This may have been a result of more thorough mixing, but mixing is difficult to standardize for small scale processes. It is unknown how exactly this difference in pore morphology (between two samples with approximately equal porosity and interconnectivity but different pore shape) would affect cell response. It is also unknown how the cells would respond to PEG initially contained in the pores and slowly releasing out. Therefore, these would be interesting questions to answer in future work. Keeping this in mind, and especially that the mixing process is not standardized, SEM images must be examined for each batch.

![SEM of PEC porous elastomers at low (20x) and high (100x) magnification.](image)

5.3.2 BSA Release from Porous PEC Elastomers

In order to investigate the potential of PEC elastomers as protein delivery devices, bovine serum albumin (BSA) was used as an example protein. BSA has been used often for preliminary
screening of protein delivery devices, and is commonly used as an excipient in final formulations. BSA is a hydrophilic globular protein with a molecular weight of 66 kDa so its release would provide insight into the potential of the approach for delivering a growth factor (e.g. Human recombinant VEGF is 38.2 kDa and also hydrophilic).

Elastomers from Table 5-1 were prepared and crosslinked successfully with 2000 MW PEC diacrylate, with the exception of Elastomer F. For Elastomer F, the fraction of PEC was very low (8%) and therefore acrylate content was not high enough to effectively crosslink (as indicated by a liquid suspension in the mould after crosslinking, rather than an elastomeric solid film).

It was anticipated that the molecular weight of the PEC diacrylate would affect the fabrication process by changing the difficulty of mixing in components, potentially resulting in a different porous structure. However, it was discovered that even a molecular weight of 5500 Da was too high to evenly mix in all components. Since it was not possible for the 5500 Da PEC, only 2000 MW PEC elastomers listed in Table 5-1 were used for the release study.

HPLC was used to measure the concentration of total BSA in the release media at every time point. Using this data and calibration information (see Appendix C, Figure 7-12), the cumulative mass fraction released was calculated and compared for all groups (see Figure 5-3). As expected, for Elastomer A there was no peak corresponding to BSA released at any sampling time point. When 12% weight fraction of BSA was incorporated into the elastomer without the DMSO and vortexing steps (Elastomer B), the release of protein was extremely fast, and reached its plateau of 72% total release in only 2 days. The release of BSA from Elastomer D, which possessed 5% BSA that was prepared with DMSO and vortexed before loading, was slightly slower, but reached a plateau of 60% after 5 days.
The volumetric fraction loading (φ) for Elastomer B is above the typical percolation threshold of ~30% for polymer matrices and therefore (assuming the BSA filled pores are randomly distributed within the polymer matrix) this quick release is reasonable, but undesirable for controlled drug delivery applications. According to percolation theory, at a high loading, the pores are connected and therefore there are many paths that BSA can use to escape into release media. At a low loading, most of the BSA pores are isolated and only a few are connected and able to transport the BSA outside the disc. On this basis, the high efficiency of release of Elastomer B is not surprising. However, percolation theory cannot explain the difference in release profile between Elastomer C ($\varphi = 30\%$) and Elastomer D ($\varphi = 13\%$). Although Elastomer C possessed a higher initial loading of BSA of 12% weight fraction (φ above the typically observed critical value), the release of BSA was more prolonged but incomplete (maximum of only 25%, reaching this value by 19-24 days). Interestingly, the release of Elastomer E, which is also 12% BSA ($\varphi = 30\%$), had the lowest efficiency of release (maximum of 10% released) but more quickly reached its plateau by 4 days. Therefore, the release profiles cannot be explained simply by percolation theory.

These results showed that the use of BSA without DMSO/vortex or using paraffin wax as a porogen does not result in favourable release characteristics and demonstrated the most common problems faced in protein delivery (very rapid release, or very low incomplete release). It was originally thought that Elastomer B would possess larger particles than that of the other groups since the DMSO/vortexing step was omitted. However, based on confocal image analysis in ImageJ, the average particle size for Elastomer B and Elastomer C are approximately the same (13.0 ± 1.1 μm for Elastomer B, 14.4 ± 1.4 μm for Elastomer C). In fact, this analysis revealed that the average particle size across all elastomer groups was about 9-14 μm and that over 75% of
Figure 5-3: BSA release results for PEC elastomers. Error bars represent standard deviation.

Figure 5-4: Change in PEC elastomer disc size during BSA release study, expressed as percent increase from the initial value.
all particles analyzed were between 3 and 11 μm. Therefore, the differences in release profiles seen in Figure 5-3 were related to factors other than particle size differences. Confocal microscope images also confirmed that there was an even distribution of BSA initially (around the PEG-filled pores) for all elastomer groups and the conclusion of incomplete release in Elastomers C and E (Figure 5-5).

In order to evaluate how long PEG stays within the pores of each elastomer, disc size and DSC analysis were used. Figure 5-4 indicates the change in disc size throughout release as PEG (a highly water soluble substance) draws in water from the release media. There may also be some water drawn in due to the BSA present which is also very hydrophilic, as seen for Elastomer E which contains no PEG and swells to 10%. As PEG and BSA are released, the water content and size of the disc decreases. Results for disc size correlate well with the DSC results in Table 5-5, showing higher integrations of endothermic PEG melting peaks when disc swelling is higher.

<table>
<thead>
<tr>
<th></th>
<th>PEG Enthalpy of melting Before Release (J/g)</th>
<th>PEG Enthalpy of melting 1 Week (J/g)</th>
<th>PEG Enthalpy of melting 4 Weeks (J/g)</th>
<th>Melt Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-78.70</td>
<td>-4.08</td>
<td>-4.98</td>
<td>59.0 ± 1.7</td>
</tr>
<tr>
<td>B</td>
<td>-77.68</td>
<td>-0.53</td>
<td>-1.27</td>
<td>60.3 ± 0.6</td>
</tr>
<tr>
<td>C</td>
<td>-72.56</td>
<td>-21.24</td>
<td>-6.64</td>
<td>62.0 ± 1.7</td>
</tr>
<tr>
<td>D</td>
<td>-81.17</td>
<td>-3.10</td>
<td>-1.86</td>
<td>60.0 ± 1.0</td>
</tr>
</tbody>
</table>

Table 5-5: DSC results showing the integration of endothermic melting peaks for PEC elastomers throughout BSA release experiment. Melt temperature value reported is the average of the temperatures at 0, 1, and 4 weeks ± standard deviation. Midpoint of the temperature is reported. No melting points were found for Elastomer E before release.

Not surprisingly, Elastomer B swelled immediately to over 30% as PEG (and as a result BSA) was being released from the disc. By 5 days, almost all of the PEG (and BSA) had been
extracted, as indicated by shrinking of the elastomer to almost its original size and by DSC at 1 week. Elastomer D results were very similar: the rapid increase in disc size to over 25% (PEG extraction) accompanied the rapid release of BSA, corresponding with a very low PEG content remaining, as measured by DSC. Elastomer A provides the control for comparison. In the presence of 40/20 PEG only, water was quickly drawn in to a maximum disc size increase of over 15% by half a day. In contrast to all other elastomers tested, Elastomer C takes 6 days to reach its maximum of almost 25% increase. This slower PEG extraction matched with a slower BSA release, which is expected to be due to decreased interconnectivity. This hypothesis was confirmed clearly by observing the SEM micrographs of Elastomer C compared to all other groups (see Figure 5-6 and Figure 5-7). Elastomer C possessed many small pores, with an average diameter of 10 μm (measured in ImageJ) and only very few large pores (diameter 50μm). The cross section showed very little visible interconnectivity between void spaces. DSC results confirm that unlike any other elastomers tested, there is significant PEG still remaining at 1 and 4 weeks.

This difference for Elastomer C of slower PEG extraction, slower disc size increase, slower and incomplete BSA release can be attributed to more DMSO added before crosslinking which reduced the interconnectivity of the overall porous network. In order to maintain the same vortexing conditions (and therefore the same shear force on the particles which presumably determines particle size), the concentration of BSA in DMSO remained the same between Elastomer C and D. As a result, in order to achieve twice the BSA loading, Elastomer C contained twice as much DMSO as Elastomer D and this may have caused the PEG to molecularly distribute to an undesirable extent, leaving behind porosity that was not interconnected.
Figure 5-5: Confocal microscope images of BSA-loaded PEC Elastomers before and after release. 100X magnification. Red scale bars represent 200 μm.
Porosity data again confirms this hypothesis, that Elastomer C was less interconnected, as shown by a difference in ε_1 (44%) and ε_2 (12%) (see Table 5-6). The porosities for other elastomer groups were expected based on the results in the previous section.

For the control disc, Elastomer A, the SEM micrograph is similar to that previously fabricated (in the previous section). The result of this fabrication process is a highly porous, highly interconnected architecture with average pore size of about 100 μm and micropores within the walls of the larger pores of 10-15 μm as determined by ImageJ.

Table 5-6: Porosity measurements of PEC elastomers after completed BSA release study.

<table>
<thead>
<tr>
<th></th>
<th>Porosity, ε_1 (%)</th>
<th>Porosity, ε_2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>61</td>
<td>59</td>
</tr>
<tr>
<td>B</td>
<td>66</td>
<td>60</td>
</tr>
<tr>
<td>C</td>
<td>44</td>
<td>12</td>
</tr>
<tr>
<td>D</td>
<td>52</td>
<td>46</td>
</tr>
<tr>
<td>E</td>
<td>58</td>
<td>54</td>
</tr>
</tbody>
</table>

The release of BSA from Elastomer E was rapid but incomplete. It is possible that this result is due to complete entrapment of most of the remaining BSA particles.

No release profile presented in Figure 5-3 represents the ideal profile for the delivery of protein drugs for controlled release. However, the results from Elastomers B, C and D demonstrate that the level of DMSO added affects the release rate: the more DMSO that is added, the narrower the interconnected channels and the slower and less complete the release of BSA is. A more promising release profile might be obtained by investigating the release of BSA from an intermediate loading fraction of BSA (7% BSA for example).
Figure 5-6: SEM micrographs of PEC elastomers after BSA release.
Figure 5-7: High magnification (500x) SEM micrographs of Elastomer C.
5.4 Conclusions

PEG can be incorporated into PEC or PTMC before UV crosslinking to create a highly porous structure (almost 60%) which is interconnected. PEG performs better as a porogen for BSA delivery than paraffin beads which result in a quick release for about 4 days, and a low plateau of released drug. Preliminary release results in PBS (pH 7.4) at 37°C can be explained by hypothesizing that added DMSO allows the PEG to be well dispersed within the elastomer disc, creating pores which are not interconnected. Due to this, PEG extraction and BSA release are slower and incomplete at 4 weeks.
Chapter 6

Conclusions and Recommendations

Therapeutic angiogenesis is one of the many promising applications of local protein delivery. Linear poly(ethylene carbonate), PEC, has many advantages as a protein delivery device since it degrades without producing acidic byproducts (like many other commonly used synthetics), and possesses good cytocompatibility and immunocompatibility. However, high molecular weight linear PEC degrades almost completely in 2-3 weeks, which is inappropriately fast for the application of therapeutic angiogenesis since it has been shown that the delivery of angiogenic growth factors must be sustained for 3-4 weeks to producing functional, stable new blood vessels. It was hypothesized that the in vivo degradation rate could be decreased to a more appropriate rate if PEC was crosslinked. Therefore, the goal of this work was to create biodegradable crosslinked PEC elastomers, to evaluate them as a new biomaterial in terms of biocompatibility and degradation properties, and to conduct preliminary release studies using porous protein-loaded PEC elastomers.

Solid PEC elastomers of a range of crosslink densities were successfully prepared using a photo-initiated free radical crosslinking reaction of highly acrylated PEC from 2000 Da to 12,000 Da for characterisation by NMR, DSC, ATR-FTIR, sol content, and uniaxial tensile testing. These elastomers possessed a high ethylene carbonate unit fraction of over 82%, and the UV crosslinking conditions were selected such that the sol content was high (~5%) and conditions were mild to prevent denaturation of protein therapeutics.
Data presented here and in the literature indicated that the degradation mechanism of PEC elastomers is the same as that for linear PEC observed. This *in vivo* degradation mechanism is a cell-mediated surface erosion mechanism that is initiated by the superoxide anions secreted by adherent inflammatory cells. This is evidenced from the surface morphology which shows surface pitting, linear mass loss profiles for up to 12 weeks after subcutaneous implantation in rats, and *in vitro* oxidative degradation which confirm that the superoxide anion causes significant degradation of PEC elastomers. The *in vivo* degradation rate of PEC elastomers prepared from 6000 Da acrylated prepolymer was over 9 times slower than that of linear PEC (37 ± 4% in 12 weeks for PEC elastomers compared to linear PEC which had degraded to 78 ± 11% mass loss in only 3 weeks). This finding supports the hypothesis that the degradation rate of linear PEC can be prolonged to become more appropriate for protein delivery applications when crosslinked to form an elastomer. Furthermore, *in vitro* oxidative degradation results for different crosslink densities suggest that the oxidative degradation rate may be adjusted by the prepolymer molecular weight. This has positive implications for applications of PEC as a tissue engineering scaffold for a range of soft tissues since the desired degradation rate of the scaffold is determined by the rate of tissue regeneration.

A mild inflammatory response was observed during *in vivo* degradation studies of PEC. The response after 1 week for the PEC elastomer was characterised by numerous granulocytes at the implant-tissue interface, followed by granulation tissue, a fibrous capsule which was measured to be 72 ± 18 µm at Week 6 and 62 ± 11 µm at Week 12. For linear PEC at 1 week, while many inflammatory cells were observed at the interface, no granulocytes could be identified, likely due to the fact that significant degradation has already occurred by 1 week and therefore the inflammatory response is in a later stage. At Week 3, the fibrous capsule was variable in thickness and was 78 ± 38 µm and the disc-tissue interface contained large cellular nodules which
may have contained multinucleated giant cells as would be expected for a typical foreign body response.

For preliminary protein release screening, release experiments were performed for various formulations of BSA-loaded porous elastomers that were prepared by adding a vortexed DMSO suspension of BSA particles (3-14 μm diameter) into the acrylated polymer before crosslinking. The process for creating these particles was adapted from the literature in Guan et al. where it was shown that prepared basic fibroblast growth factor particles prepared in this way were found to be bioactive for 21 days into the in vitro release175. A process of making these elastomers porous was developed which simply involved the additional incorporation of low and high molecular weight PEG into the acrylated polymer before crosslinking. Porous material that had been prepared with 40% PEG 8000 and 20% PEG 400 in this way possessed highly interconnected pores from 50 to 250 μm in diameter and overall porosity of up to 60%. PEG was selected because it is water soluble, non-toxic and does not elicit a significant immune response and therefore can be extracted within the body as a hypothesized parameter for controlling the release.

BSA release results showed that PEG was a better porogen for this purpose than paraffin beads since elastomers prepared with paraffin beads resulted in a quick release of about 4 days, and a low plateau of released drug of only 10%, which may be due to limited interconnectivity. For comparable conditions, the release results for PEG created porous elastomers showed a prolonged release of about 2 weeks and then reached a final plateau of about 25%. Although this release was the more favourable release profile out of the formulations screened (which displayed extremely rapid release), it is still not the ideal protein release profile for this application which would release at a sustained rate for 3-4 weeks reaching nearly 100% release. Nevertheless, it
was identified that the amount of DMSO in the protein particle suspension which is mixed into the acrylated polymer mixture before crosslinking is an important formulation parameter that affects the release profile by more evenly distributing the porogen therefore restricting pore interconnectivity. This was demonstrated by release results, disc swelling, PEG extraction profile, and SEM micrographs to come to this conclusion. Without DMSO, the release of BSA from 12% BSA loaded elastomer is complete within a few days. On the other hand, when DMSO has been used in protein particle fabrication, the BSA release from 12% BSA loaded elastomers reaches a plateau of only about 25% in 19-24 days. Although the release profiles shown here are not appropriate for angiogenic growth factor delivery due to high burst release and/or incomplete release as they have been formulated, a formulation parameter was identified that can be used to adjust the release potentially showing a more appropriate release profile.

To further investigate the properties of PEC elastomers for applications as a new biomaterial, the following is a list of recommendations:

1. Optimize the purification process for depolymerized and acrylated polymers when higher purity products are of interest (e.g. for future in vivo experiments).
2. Acrylate using 0°C (ice bath) to reduce the formation of TEA-complex coloured product, which may decrease the efficiency of the crosslinking step.
3. Prepare the PEC diol polymer in the range of 3,000 to 8,000 MW for future studies since this is the most promising region (in terms of ease of acrylation, handling and processing).
4. Conduct an in vivo study to measure degradation of different PEC crosslink densities testing the suggested result presented here: that the in vivo degradation rate can be adjusted by the crosslink density (by the prepolymer molecular weight). Full
characterisation (molecular weight, and ethylene carbonate composition) is required to equally compare PEC in vivo degradation results.

5. Conduct immunohistochemistry to confirm the identification and number of macrophages during future biocompatibility studies.

While the present study shows that PEC elastomers may be promising as a new biomaterial for many applications, the protein-loaded porous formulations produce release rates that were not ideal for angiogenic growth factor delivery since they experienced burst release and/or incomplete release. In the future development of PEC elastomers as protein delivery devices, it is recommended that:

1. A formulation should be prepared for BSA release investigation which is intermediate to that of Elastomer C (12% BSA) and Elastomer B (5% BSA) since this is likely to produce a more prolonged release that is more efficient (complete). While the protein suspension concentration in DMSO was held constant between DMSO-containing elastomers within this work in order to maintain the same protein particle size, it was found that this DMSO vortexing step did not significantly decrease the size of the protein particles. The addition of DMSO was beneficial in prolonging the release, however. Therefore, it is also recommended that a different protein particle suspension concentration be investigated.
Chapter 7

References

2. Pennisi E. Bioinformatics - gene counters struggle to get the right answer. Science 2003 AUG 22;301(5636):1040-1.

35. Chapanian R. DEVELOPMENT AND CHARACTERIZATION OF BIODEGRADABLE ELASTOMERS FOR LOCALIZED ANGIOGENIC GROWTH FACTOR DELIVERY. Queen's University, Kingston, Ontario; 2009.

117

69. VEGF improves myocardial blood flow but produces EDRF-mediated hypotension in porcine hearts. Journal of surgical research; JUN; ; 1996. .

86. Chapanian R, Amsden BG. Combined and sequential delivery of bioactive VEGF(165) and HGF from poly (trimethylene carbonate) based photo-cross-linked elastomers. J Controlled Release 2010 APR 2;143(1):53-63.

121. Bioadsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. Journal of controlled release; FEB 14; AMSTERDAM; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS: ELSEVIER SCIENCE BV; 2000. NR: 36; TC: 176; J9: J CONTROL RELEASE; PG: 12; GA: 285FK.

122

145. Scaffolds for engineering smooth muscle under cyclic mechanical strain conditions. Journal of biomechanical engineering-transactions of the asme; JUN; ; 2000. .

Appendix A

Preparation and Characterisation of Poly(ethylene carbonate) Elastomers

Poly(alkylene carbonates) basic reaction:

\[
\begin{align*}
\text{C-C} & \quad + \text{CO}_2 \rightarrow \left[\begin{array}{c}
\text{CH} \quad \text{CH} \quad \text{O} \\
\text{C} \quad \text{C} \\
\text{R}_1 \quad \text{R}_2
\end{array} \right]_n \\
\end{align*}
\]

Figure 7-1: Copolymerization of poly(alkylene carbonates) from Empower Materials.

Figure 7-2: During photoinitiator decomposition, 2,2-dimethoxy-2-phenylacetophenone (DMPA) undergoes α-cleavage to form a benzoyl radical and a benzoyl ketal radical, and subsequently the benzoyl ketal undergoes β-cleavage to form a methyl radical and methyl benzoate (Borer, 1978). The benzoyl and methyl radicals are most effective in initiating chains, thus attacking the monomer molecule to form an active monomer molecule which can undergo propagation reactions.
Figure 7-3: Photoinitiated crosslinking of PEC to form an elastomeric polymer network.
Figure 7-4: Batch #1 diol after purification in CDCl3. Note that the terminal hydroxyl peak disappeared (not exchangeable).

Figure 7-5: ATR-FTIR results for PEC diacrylates (top two spectra), and PEC elastomers (bottom two spectra). The band at 1650cm⁻¹ (indicated arrows) corresponds to the acrylated groups which disappear after crosslinking, as expected.
Appendix B

Degradation and Biocompatibility of PEC Elastomers

Figure 7-6: Location of subcutaneous PEC disc implantation into Male Wistar rats.

Figure 7-7: Representative photograph of rat sacrificed at Week 1 containing PEC elastomer implants with four sutures intact.
Figure 7-8: Representative photograph of PEC elastomer implanted into subcutaneous pocket at the time of explantation. No signs of inflammation (redness or swelling) can be seen macroscopically. (Week 6 time point)

Figure 7-9: Differential Scanning Calorimetry results for PEC depoly (red), PEC diacryl (dark blue), PEC Elast 6000 at Week 0 (green), PEC Elast 6000 at Week 1 (purple), PEC Elast 6000 at Week 6 (light blue), PEC Elast 6000 at Week 12 (brown).
Appendix C

PEC Elastomer as a Porous Protein Delivery Device

Figure 7-10: Chemical structure of terminally acrylated glycerol-initiated star-poly(trimethylene carbonate) (star-PTMC)

\[
\Delta \rho = \rho \left[\frac{\Delta m}{m} + 2 \frac{\Delta D}{D} + \frac{\Delta h}{h} \right].
\]

Equation 7-1
Figure 7-11: DSC for porous PEC elastomer with 40/20 PEG, as compared to that of PEG 8000 alone or PEG 400 alone.

Figure 7-12: Calibration curve for total BSA (10% FITC-BSA, 90% BSA) for HPLC assay.

\[y = 86555x + 331064 \]

\[R^2 = 0.9954 \]