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Abstract

Businesses look &ig Dataas an opportunity to gain insights for improving their services. The derivation
of such insights requires using different data mining techniquatur®ldata mining tools like WA or

R hawe been in development for yeaffiey implement large numbeof data mining algorithms and can
support sophisticate@nalytics However, these mature tools are designed to run on a single machine
making them unsuitable to handle Big Data. Using these tmajgires data mining and statistics
knowledge, and some of them, like R, are hard to learn.

Businesses do not always have the technical skills required to carry osralgtics Even if they do,
it is challenging to find a tool with the needed algonighthat supports distributed processing to handle the
Big Datahigh arrival velocity and large volumeélhe Businessésnalyticalrequirementsanbe addressed
by ConsumableBig Data Analytics, that is,solutions that allow businesses to dBig Data Analytics
themselves using theirimouse expertise.

In this work, we provide a Consumabmalyticsso | ut i on t o me ealyticallmeedsb usi ne
First, we conduct a survey of existigalytics solutions to identify possible areas of improvement to
provide Consumabl@nalytics. Second, instead of developing distributed data mining algorithms to handle
Big Data we developthe Data Mining Distribution (DMD) algorithm and the Laf#elare Disjoint
Partitioning (LADP) algorithmto distribute the execution dll existing singlemachine data mining
algorithmswithoutrewriting a single line of thecode This gives users the flexibility to use any available
data mining library, have algorithnike Hoeffding Treerun 70% to 95% faster and achieve ufdl8%%
increase irprediction accuracyrhird, we developthe free and open source QDrill soluti@nimplement
our DMD and LADP algorithms for distributefinalytics QDrill implements our proposedistributed
Analytics Query Language (DAQLinterfacethat adds Anigtics capabilities to the regular SQL syntax
and allowsintegrationwith Business Intelligence (BI) tool$ his allows businesses to use theihouse

expertise to d®ig DataAnalyticsusingthe spreadsheets and visualizatiohtheir Bl tools
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Chapter 1

| nt roducti on

In the Big Dataera, we all, in one form or another, participate in generating BajaDatais
heterogeneous. d¢an bestr uctured, which is generated by applications like Customer Relationship
Management (CRM) and Enterprise Resource Planning (ERP) systems and typically stored in rows
and columns with a wellefined schemas. It can lBemi-structured, which is generated by
sensorsyeb feeds, event monitors, stock market feeds, and network and security systems. Semi
structured data usually have mel@ta that describes their structure, however this structure does
not always fit in rows and column8ig Datacan also beunstructured, which is typically
generated bpeople in forms such a®cial media, text documents, videos, audio and images.
Along with having a variety of data formaRig Datais generated ihuge volumesat arapid
velocity with no obvious way of telling theeracity of it. With such properties, data has outgrown
the ability to be stored and processed by many traditional systéanyika et al. 201]L
The value of data is realized through insights, taking into consideration that the utility of some
data poing declines very quickly. Increasinglysinessesuccess has become dependent on how
quickly and efficiently they can turn the petabytes of data they collect into actionable information

[Turner et al. 20112



1.1 Motivation

Big DataAnalytics offers businessethe means to discover hidden patterns in such data and use
these patterns to predict the likelihood of future evémalytics can béescriptivewhichis used
to summarize what happendtcan bePredictivewhich utilizes a variety of statistical, meting,
data mining, and machine learning techniques to study recent and historical data, thereby allowing
businesse® make predictions about the futufdere is also aamergingorm of Analytics called
Prescriptive Analytics that recommendsne or morecourses ofaction and showshe likely
outcome of each decision.

Businessesieed to overcome a humber of challenges to reap the benefitmlytics The
work in this thesis aims at addressing these challenges to empower businesggsdictioeBig

DataAnalyticsto make predictions about the future and use that to recommend courses of action

1.1.1Analytics on Heterogeneous Data

The first challengeis to runAnalytics on heterogeneous data to support the business need of
analyzing data from many sousckke relational database, excel files, twittang FaceboaKThis

requires joining data of different formats (structured, ss&mictured and unstructured) that is
distributed across heterogeneous data stores (Relational Databases, NoSQL Databases and
filesystems) and putting them in a format that can be processed by the data mining algorithms.
Most of the existing libraries use an ExtrdcansformLoad (ETL) operation to extract the data

from the different stores and transform their format to an aablpschema. This approach is time

consuming and requires having all data available beforehand.

1.1.2ConsumableBig Data Analytics

The second challengés overcomingthe businesa s e lack @f datamining and statistics
knowledge needetb cary out theAnalytics processAnalytics is the application of computer
science, data storage, data mining and machine learning, statistical analysis, artificial intelligence

and pattern recognition, visualization, operations research, Business Intelligence (Bl) and busines
2



and domain knowledge to reabrld data sources to bring understanding and insights te data

oriented problem domaind {irneret al.2013. Analytics beingmultidisciplinary, makes it very

hard for businesses to find the needed technical skills to BipprataAnalytics
ConsumableAnalyticsis one of the main trends to address this challenge and overcome the

unavailability ofAnalytical skills by makingAnalyticseasier to useConsumablénalyticsrefers

to increasing the impact of the skills already existingnrorganization by producing tools that

makeAnalytics easier to build, manage, and consutBd/] 2012]. ConsumabléAnalytics can be

in the form of using a familiar interface or programmiagguage. It can be in the form of

simplifying or hiding thedata accesandthe distributedexecution of thé\nalyticsalgorithms

1.1.3Distributed Data Mining Algorithms

Thethird challenges distributingthee x e cut i on of t he e xingalgoithmg far s e
to handle th&ig Datahuge vdumes. The majority of existingata mining libraries lik&', WEKA,
RapidMinefonly support sequential singteachine execution of the data mining algorithms. This
makes these libraries unsuitable for dealinidp the Big Datahuge volumes.
Scalable distributed data mining libraries likpache Mahod; Cloudera Oryx , Oxdata
H20°, MLIib” [Sparkset al.2013 and Deeplearning4jrewrite the data mining algorithms to run
in a distributed fashion oHadoop[White 2009 and Spark[Zahariaet al.2010. These libraries
are developed by searching the algorithms for parts to be executed in parallel and rewriting them.
This process is complex, time consuming and the quality of the modified algorithm depenlis entire

on the contributorsdéd expertise. This makes th

1 R: https://www.Fproject.org/

2WEKA: http://www.cs.waikato.ac.nz/ml/WEKA/
3 RapidMiner:https://rapidminer.com/

4 Mahout:https://mahout.apache.org/

5 Oryx: https://github.com/cloudera/oryx

6 H20: http://Oxdata.com/h2@/

" MiLib: https://spark.apache.org/mllib/

8 Deeplearningj: http://deeplearning4j.org/
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[Koliopouloset al.2015. They also fail to support as many algorigas the singleode libraries
(e.g.WEKA.

Another approach to distribute the data mgnalgorithms while still using the alreadyisting
solutions is to add support ftapReducgd Deanand Ghemawa®004 to the sequential single
machine data mining libraries to enhance their scalabiistributed WEKABasé, Distributed
WEKAHadoop? ard DistributedWEKASpark! [Koliopouloset al.2015 packages exterd/EKA
to access theladoopDistributed File System (HDF$$hvachkeet al.2010, HadoopandSpark
respectivelyRHadoop? allows runningR code orHadoopand access #dDFS. These extensions,
however, leave it to users to put the data into the right format, create the rigittatzetand write

theMapReducégobsto distributethe data mining algorithms.

1.2 Thesis Statement

The lack of skilled data ahgsts in many organizationsan be overome in the short term by
addressing three technical challenges. These challengesxaogiting Analytics on heterogeneous

datasets, providing an easg-use interface for Analytics, and distributing the Analytics execution.

1.3 Contributions

We m&e five contributions in this thesis in our pursuit to meet the business need for having a
Consumabldig DataAnalyticssolution.

The first contributionis conducing a survey[khalifa et al. 2016awhere we evaluate the
existing Analytics solutions in terra of capabilities and ease of usgur survey covers the entire
Analyticsprocessmaking ita corner stone for businesses to figure out the solution that best meets

their analytical needs and their-iouse technical skillsThe survey o helps researchers, us

9 DistributedWEKABasehttp://goo.gl/wcJrCa

10 DistributedWEKAHadoophttp://goo.gl/69IVLE
1 DistributedWEKASparkhttp://goo.gl/swngFD
12 RHadoophttps://goo.gl/CsZad3
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included, in identifyingfuture research are&s achieving a true Consumabfmalytics solution
that empowers business users tdAdalyticsthemselves.

Thesecond contributioiis developing thénalyticsAdaptorto address thérst challengeof
runningAnalytics on heterogeneous ddthalifa et al 2016p The AnalyticsAdaptortransforms
the data loaded from heterogeneous sources to a data structure that can be processed by the data
mining algorithms. This way, algorithms from more than da& mininglibrary can be used
together, leaving it to th&nalytics Adaptor to resolveéhe interlibrary data format conversion.

Thethird contributionis introducing theDistributed AnalyticsQuery Language (DAQLp
address theecond challengef providing an easyo-use interface for imouse expertisgkhalifa
et al 2016h. TheDAQL extendsheSQL syntax by adding a number of keywords and User Defined
Functions (UDFs) to invoke the data mining algorithms from within the SQL statements. This
allows businesses to use spreadsheets and visualizations from their Bl tools to do soghisticate
distributedBig DataAnalyticswith minimum technical skills requirements.

Thefourth contributionis presenting two novel algorithms called Beta Mining Distribution
(DMD) algorithm and théabelAware Disjoint Partitioning (LADPalgorithm toaddress théhird
challengeof providing distributedAnalytics[khalifa et al 2016c Those algorithms distribute the
execution of singlenachine data mining algorithms without rewriting any of their code and without
any user involvement. This allows ring the algorithms oBig Datg giving users the flexibility
to use anylgorithm,and havingthe algorithms run faster amdth betterprediction accuracy.

The fifth contributionis compiling theAnalytics Adapter the DAQL language and both the
DMD and LADP algorithms into ourQDrill ** opensource solution. Th&Drill distributes the
execution of singlenachine data mining algorithms (currently oMEKA is supported) to work
on Big Datastored in any data store (SQL, file system, NoSQL) using simple SQLxsimta

integrate with any BI tool. Th@Drill is opersource productionready and available online for

13 Our QDirill opensource solutionhttp://cs.queensca/~khalifa/gdrill
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free.So far, t has597visits from 29 countries ant8 downloads since released in June 2016. We
are expectinghose number® increase once we integrate and ship our solutionAp#the Drill

andthe IBM Analytics flagship, thdBM SPSS Modeler

The contributions of this work can be summarized as follows:
1. We conduct aSurvey [Khalifa et al.20165] to helpin better understamog the Big Data

Analyticsfield, the available solutiorendto identify future research areas

2. We design and developthe Analytic Adaptor [khalifa et al. 201@] to transform the
heterogeneous data to a data structure that can be processed byrttiridgtalgorithms.

3. We design anddevelop theDistributed Analytics Query Language (DAQL]Jkhalifa et
al. 2016] to addAnalytics capabilities to standard SQL allowing using spreadsheets and
visualizations from any Bl tool to do sophisticated distribulgegiDataAnalytics

4. We design anddevelop theData Mining Distribution (DMD) algorithm and the Label
Aware Disjoint Partitioning (LADP) algorithm [khalifa et al. 2016&] to distribute the
execution of singlenachine data mining algorithms to hanBig Datahuge volumes.

5. We develop theQDrill opensource solutior® to integrate everything we developed in
this thesis QDrill distributes the execution of singeachine data mining algorithms
(currently onlyWEKAIs supported) to work orBig Datastored in any data store (SQL,

file system, NoSQL) using simple SQL syntax to integrate with any BI tool.

1.4 Thesis Organization

The rest of thisthesis is organized as follow€hapter2 describes theBig Data Analytics
Ecosystems providing theackground and related work. Chapsetlustrates the architecture of
our QDrill solution covering or AnalyticsAdaptorextension andur DAQL LanguageChapted
introduces the data mining algorithms taxonomyd our DMD and LADP algorithms for
distributing the different types of algorithm@haptei5 has the evaluation for o@Drill solution.

Finally, Chapte6 draws conclusionand lists some future work opportunities.
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Chapter 2

ThBi g Data Analytics Ecosyste

A softwareecosystemin general, consists of the set of software solutions that enable, support and
automate the activities and transactions by the actors in the associated social or business ecosystem
and the organizations that provide these solutiBns¢h 2009 A Big DataAnalyticsEcosystem,
in particular, is a set of software solutions to support the activities associated with transforming raw
Big Datainto meaningful insightsA Big DataAnalytics Ecosystentypically includes solutions to
supportthe following [Chapman et al. 20010
9 Data Exploration:analysts go through the data, usinghad queries and visualizations,
to better understand the data;
91 Data Preparation:analysts clean, prepare, and transform the data for modeling using
batch processing to ritaomputational and 10 intensive operations;
1 TrainingModeling Train data models, using iterative processing, on the prepared data
9 Scoring trained models are used to score the unlabeled data.
In this thesiswefocus onPredictiveAnalytics The goal oftheAnalyticsis to build a predictive
model using araining datase{(labeled datasethat has the property of interest (Target) already
known. The predictive model relates the features extracted from the Training data to this Target

property. The preditve model predid (scores) the Target value for new datacordswith an



unknown Targetuynlabeleddataset)Predictive algorithms are also call8dpervisedlgorithms
sincethey need supervision to build their predictive models by learning frotalieted data.

In this chapter, we survesplutionsavailable for creatin®ig DataAnalyticsEcosystems. The
main purpose of this survey is to better understand the different ecosystem components and their

capabilities and limitations

2.1Big Data Analytics Ecosystem Taxonomy

Big Data Analytics

—

Storage Processing Orchestration Assistance Interface Deployment
A— A

Scheduling Provisioning Static

Batch Utilization

RDBMS Interactive Locality ¥pata Help pages, /
NoSQL Resources < Script Service
Data Preparation eet SW
Column In Database Operation Selection Graphical laas
Graph Workflow Generation Visualization ¥ SW/HW PaaS
Key/Value Incremental Fault Detection & Handling bundle
Document SaaS

Figure 1 The Big Data Analytics EcosystemT axonomy

We survey the current work in the areaRify Data Analytics Ecosystems from a practical
perspective, namely the components necessary to deal with the challenges of volume, velocity,
variety and veracity inherent iBig Data To present and compare the work we organize the
components into six capabilities or pibaof aBig DataAnalytics Ecosystenwhich are:

9 Storaget hat handles the datads huge volume, f a:

1 Processinghat meets thBig DataAnalytics processing needs;

9 Orchestrationthat manages available resources to reduce progdésia and cost;

1 Assistancehat goes beyond the interface and prowgleggestions to help users with

decisions when selecting operations and building degdytics process;
1 User Interfacahat provides users witmanvironment to build and run théinalytics

1 DeploymenMethod that provides scalability, security, and reliability.



We propose the taxonomy showrHigurel based on the six pillars. The taxonomy is used to
organize the different approaches used in each pillar. For each pillar we discuss the advantages and
disadvantages of the approaches, the way in which the approaches add@asB#iachallenges

and hidnlight the design and implementation similarities and differences among the approaches.

2.1.1Big Data Storage

Sincethe past decade, the amount of data organizations have to deal with has become phenomenal.
Over time, the requirements for data stordggngedd meet the exponentigcrease in data size,

arrival speed, and number of data formats. In this section, we diRalagonal Database
Management Systems (RDBMiB)lowed byDistributed Rle §stemgDFS)and ending withNot-

only Structured Query Langga Systems (NoSQL)

2.1.1.1Relational Database Management Systems (RDBMS).

RDBMSs are designed to ensure the ACID (Atomicity, Consistency, Isolation and Durability)

properties for storing structured data. But, in this erBigfDatg these systems have fioocess

large amounts of data with low latency while achieving high scalability. Recent RDBMSs

developments promise enhanced performance and scalability with an advantage over NoSQL of

providing the highetevel SQL language and ACID propertiggaftell 2A.1]. They also allow

operations (e.g. joins) and transactions to span many nodes. GrolingeGetlaiger et al. 2013

provide a comprehensive comparison between NoSQL and NewSQL stores for interested readers.
MySQL Cluster uses a sharedothing archiecture to shard data over multiple database

servers, with replication to support recoveBgaleDB is similar to MySQL Cluster, except it

implements a sharedhta architecture, giving access to every disk from every server. While this

approach limits itscalability, it allows using techniques like mttible indexing that speeds up

14 MySQL Clusterhttp://dev.mysgl.com/downloads/cluster/
15 ScaleDB:http://www.scaledb.com/
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the processing/oltDB¢is an opersource sharedothing distributed RDBMS that partitions tables
to fit in the distributed memory of multiple servers, eliminating the need to wait for the disk.
ScaleBasé uses unmodified singleode MySQL databases and implements a control Kayer

shard tables over them while providing partial SQL support for quergatidll 2011

2.1.1.2Distributed File System (DFS).

A DFS [Silberschatz et al. 2008 a file system, where files are stored in a distributed manner
across several machines and areessed using a client server architecture via a network protocol.
This allows storing all kinds of data, structured, sstrniictured and unstructured. The main goal

of DFSs is to provide transparency by hiding the underlying mechanisms from users, whidsh com

in many forms. Location Transparency, wherein, the name of a file is not related to its physical
location. Concurrency Transparency, where each user sees the same state of the file. Failure
Transparency, wherein, all users see the same state afteerafasure. Scalability Transparency,

where the DFS scales over heterogeneous hardware. Replication Transparency, where data is
replicated for fault tolerance, without user intervention, in a way that minimizes the write cost and
achieves reliability andvailability.

Google File System (GF$Fhemawat et al. 2008 a proprietary scalable DFS, designed to
meet Googlebs rapidly grQFadivides filas atb 84 MB replicaged si n g
chunks distributed on a cluster of one master andrakworkers. Th&FSperiodically balances
the data by replacing replicas to underutilized servers. The master maintains the metadata, while
the workers store the data chunks. The single master presents a single point of failubeyeoverc
by periodicallytaking snapshots of it. IBFS users must lease and write on the data primary copy,
which is then propagated to the other replicas.GR8works well with data intensive applications,

where data is appended and not overwritten.

16VolItDB: http://voltdb.com/
17 ScaleBasehttps://www.scalebase.com
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Hadoop Distributed FileStem (HDFS)Shvachko et al. 201G an open source DFS inspired
byGFSand desi gned Whie 2009 batchHabsl io massive parfallelisfmigure?2).
Unlike GFS HDFSsupports variable block size (64MB, 128MB, 256MB, sotha) are replicated
on the slaves (DataNode$)DFS does not implement leases and users can choose which data
replica is to be writtenHDFS does datdalancing during writes and not periodically liedS
Same asS5FS HDFSrelies on accessing the metaa stored on the master node (NameNode).
Hence, the availability of the entil¢dDFS is inhibited by the availability of this NameNode. To
prevent single point failure, a secondary NameNode is introduced, which periodically checkpoints

the primary NameNodand replaces it in case of failure.

_— Data blocks

.‘/ Replication ™ .
i H

__ —l
| DataNode  DataNode DataNode DataNode |
1

|
Rack 1 Rack 2

Figure 2 HDFS architecture

Cassandra File System (CF8)akshman and Malik 2010s a Hadoop compatible File
System, designed to overcome some of the processing overhédals®fUnlike GFSandHDFS,
it uses decentralized deployment with multiple masters, avoiding a single point of failure. It also
provides crosslata center replication for better failure recovery and availability.

On any of these DFSs, users can have their data stored in various fAI8@LM is a
lightweight datainterchange format that is easy to read and write by both human and machine.
SequenceFiteis a flat file consisting of binary key/value pairs, which t@ncompressed at the
value or the key/value levelFile [Lin et al. 201]is a columnar storage, where data are partitioned

in sorted vertical groupRCFile[He et al. 201]Lpartitions the data horizontally, then vertically,

18 JSON:http://json.org/
19 SequenceFilehttp://wiki.apache.org/hadoop/SequenceFile
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where columns belonging tbeé same row are located on the same note[Floratou et al. 2011

is a binary columnar storage that pi#otis the data into horizontaplits, then columns of each
split are stored in individual files. CIF uses a lazy approach to read the neededs¢tdadiimg to

it outperformingRCFile [Floratou et al. 2011 ORCFile°® does horizontal followed by vertical
splitting, then applies columnar compression and indexing within the row g@agpgiet! is a
columnar storage that supports nested structures;opemn encoding, and have a high write

performance by storing metadata at the end of the file.

2.1.1.3Not-only Structured Query Language Systems (NoSQL)

According to the CAP theorenBfewer 2012, distributed systems cannot have all three of
Consistency, Availaility and Partitioning toleranceélhere will be always a trageff between
them. NoSQL databaseBdkorny 2011 sacrifice the consistency, to have high availability and
scalability. Instead of supporting the ACID model, NoSQL databases support the BA®RE mo
which isBasically Available, Soft state and Eventual consistent. Along with supporting structured
data, NoSQL databases also support sstractured and unstructured data. NoSQL databases can

be classified int&ey/Value Column DocumentaindGraphstores according to their data model.

2.1.1.3.1Key/Value Database

Key/Value Databasis the most popular and simplest form of storage in NoSQL databases, where
data is stored as key/value pairs. Most key/value databases support insert, delete and update
operatims with a customizable key format. The value is opaque to these datastores, thus they only
support querying and indexing through the keys and not the values (data). A Key/Value datastore

is useful for storing multiple versions of data and is highly scalabling to key distribution.

20 ORCFile:https://orc.apache.org/
2! Parquethttp://parquet.incubator.apache.org/
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Examples of this category aremazon Dynamo DfeCandia et al. 200,7Voldemort Sumbaly
et al. 2012, Redig[Carlson 201B Riak?, andMemcacheDB.

VoldemortandRiakuse Multi Version Concurrency Control (MVCC), allowingittiple users
to concurrently access the same data, while others use a locking mechanism. All key/value
databases provide asynchronous updates and guarantee reading the latest versidxmaxzoapt
Dynamo DBwhich uses synchronous updates across multiptacenters for high availability.
Key/Value databases store data either in RAM or disk, except Redis, which stores data in RAM
and provides disk as a backigiak andRedisimplement MapReduce in their architecture while
Amazon Dynamo DBupports MapRedecwith the help of theAmazon EMR Servigeand

VoldemortusesHadoopto run MapReduce jobs.

2.1.1.3.2ColumnOriented Database

ColumnOriented Databas¢Abadi et al. 200Pis a schema oriented database, designed to store
data as columns rather than rows. In these stares, each row has a primary keyiamdmposed

of a variable number of column families, which in turn are composed of a variable number of
key/value pairs (columns). It is widely adopted by data warehouses, and ad hoc OLAP (Online
Analytical processing) query systems, where data is aggredfstesh compared to other NoSQL
databases, column oriented databases have a high locality reference which minimizes disk access,
improves the overall performance and reduces the storage requirements using compression
techniques like LZW. Some of the poputariumn oriented databases atBase[George 201]1
BigTable[Chang et al. 2008 CassandrgLakshman and Malik 20]1Gnd Platform for Nimble

Universal Table Storage (PNUTREJooper et al. 20Q8

22 Riak: http://basho.com/riak/

23 MemcacheDBhttp://memcachedb.org

24 Amazon EMR:http://aws.amazon.com/elasticmapreduce/
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BigTable is a proprietary data storage built @FS whereasHBase works on HDFS
Cassandraworks onCFSand PNUTSworks on any DFSHBaseand Cassandracan create a
column family, which groups multiple columns together, and stores them continuously on the disk.
BigTablerepresents the data using threddfie(Key, value and timestamp), also known as three
dimensional data storage. On the other hatiBase PNUTSand Cassandrasupport simple
key/value storage of data.

All four databases partition data across the clusteGdagle BigTableandPNUTS recods
are partitioned using hashing into units called Tab{@étssandreand PNUTSsupport automatic
partitioning using hashing/sorting mechanisms. All four databases provide asynchronous data
replication on updates. Other th&assandra they provide lockingmechanism over data.
CassandraandPNUT Ssupport variable column length, hence they have a more flexible data model
thanHBaseandGoogle BigTableOnly PNUTSprovides both eventual and timeline consistency

models, the others only provide eventual corsisy.

2.1.1.3.3DocumertOriented Database

DocumeniOriented Databasis a schema less, more flexible Key/Value store, where the value can
be a document with complex data structuresJB®N The documentsédé content
to the system and can be indexad queriedMongoDB[Chodorow 2013 CouchDB[Anderson
et al. 201pandSimpleDB Habeeb 2010are some of the popular documentented databases.
MongoDB and CouchDB are open source solutions under the Apache license whereas,
SimpleDBis an Amazon proprietary cloud servi&mpleDBis a simple document store with no
support to nested documen@ouchDBandMongoDBare high performance document oriented
databases that support richer data modetsichDBand MongoDBprovide automatic sirding
across the cluster, whil8impleDBneeds manual interventio@ouchDB uses MVCC while
MongoDBsupports documesével atomic operationattell 201). All these databases support
asynchronous writing to the replicas and eventual consistency.

14



2.1.1.3.4GraphDatabase

Graph Databaseriginated from graph theory and stores data in graph structures presenting the
relationships between the data items. No indices are needed in graph databases since every data
point is directly connected by an edge to the related paints. Each data point (graph node)
contains details of the data. For associative datasets, a graph database is often faster and more
efficient than a relational database. Like Docurrmignted databases, graph databases do not
require join operationand can scale up for large datasets. Graph databases are powerful for graph
oriented queries like finding the shortest path between two nodes. They are highly scalable and
provides high availability through date replicatioNeo4j[Partner 2013 OrientDB [Tesoriero

2013 andInfinite Graph[Objectivity 2012 are some popular examples.

These three graph databases are labeled, directed,-pnoydérty, and provide ACID
consistency. Both vertices and edges can have multiple key/value properties asddoided.
columnoriented databases, these three databases use horizontal partitioning, where rows are held
separately, rather than being split into columns. Eachgrawp partition forms a shard that is
located on a separate machithdinite GraphusesObjectivityDB which was the first DBMS to
store a petabyte of objectdeodjuses native graph storage, which is optimized and designed for
storing and managing graph da@ientDB can use any filesysterNeo4juses a mastesiave
architecture with cache aiding, where the same master serves all requests of a particular user, to
make use of the cached datrientDB uses a multmaster replication and sharding, where any
node can serve arriving requests, to have better utilization over the dhfgée Graphsupports
parallel and loosely synchronized batch loader (aka eventual consistency), QuigiieDB

supports MVCC.

2.1.2Big Data Processing

Big DataAnalyticsinherited a number of centralized data mining solutions from th8igr®ata

era, where data ofd fit in a single node memory. These centralized solutionsfikend WEKA
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provide a huge set of algorithms but they do not scale to meBigHatarequirements. To solve
the scalability problem, Google introduddapReduc¢éDean and Ghemawat 20Ja4 manage and
process large muistructured datasets. Following that, Yahoo! develdpadoop[White 2009,
an open source implementation of MapReducklater incubated by Apachigallowing everyone
to benefit from it. Microsoft developed similar solutions, nan@bsmogZhou et al. 201pand
Dryad[Isard et al. 20(/or their internal usage.

As explained later in this section, not 8lig Data Analytics processes can be efficiently
executed on MapReduce. Beside the Batch processing approach that MapReduce was designed for,
other processing approaches have surfaced to deal with the diBeyduataAnalyticsprocessing
needs. These approaches can ategorized based on their intended application type. These
categories aréBatch processingnteractive processindterative processingncremental/Stream

processingApproximate processingndin-Database processing

2.1.2.1Batch Processing.

Batch processing is designed to execute a series of jobs without manual intervention. This makes
it perfect for scenarios where a program needs to have a single run on a huge dataset. MapReduce,
and its open source implementatidadoop are popular batchrocessing frameworks because of

their scalability, faultolerance, eas®-program and flexibility.

Reducer

Reducer

-

Input data Map Intermediate  Shuffe  Reduce Output data

Phase data on DFS Phase Phase on DFS
on DFS

Figure 3 MapReduceDataflow

25 Apache Hadop: http://hadoop.apache.org/
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MapReduce, as presentedrigure3, consists oMap, Shuffle andReducephases, which are
executed sequentially, utilizing all nodes in the cluster. Ivilyephase, the programmerovided
Map function (Mapperprocesses the input data and outputs intermediate data in the form of
<key, value>tuples which get stored on disk. TBaufflephase then groups values to the same
key together and sends them te treduce nodes over the network. Finally, the programmer
provided Reduce function (Reducergads the intermediate data from disk, processes it and
generates the final output. The Map/Reduce functions are executed in parallel over a set of
distributed da files in a Single Program Multiple Data (SPMD) paradigm.

With the growing popularity of MapReduce, centralized data mining solutions started adding
support for MapReduce to enhance their scalabilitpistributedVEKABas€,
DistributedVEKAHadoog® and DistributedVEKASpark! [Koliopoulos et al. 201packages
extendWEKAto acces$IDFS, HadoopandSpark[Zaharia et al. 201QbrespectivelyRHadoop?
allows runningR code onHadoopand access tBlIDFS. This extension, however, leaves it to the
users to write the MapReduce programs themselves which requires extra expertise.
Radoop[Prekopcsak et al. 20 &xtendsRapidMineps to run onHive [Thusoo et al. 200%nd
Mahout’. IBM Analytic Serve? extendsSPSS Modelétto run scalable distributedinalytics on
Hadoop

One of the main MapReduce issues is the high IO overhead caused by writing intermediate and
inter-job data to disk and having to read them in again. SolutiondHékd®mop Online Prototype
(HOP) [Condie et al. 20J0and Walmart Labs MuppefLam et al. 201R aim at improving
MapReduce efficiency, while maintaining its desirable properties. HBE runs unmodified

Hadoopj obs and uses memory i nst éMappeta@the ahesh&and,t o pi r

26 RapidMiner:https://rapidminer.com/
27 Apache Mahouthttps://mahout.apache.org/
28|BM SPSS Analytis Serverhttp://www-03.ibm.com/software/products/en/sgs®lyticserver/
22|BM SPSS Modelerhttp://www-01.ibm.com/software/analytics/spss/products/modeler/
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modifies MapReduce by replacimgducerswith updaers. Updaterswork in the same way as
reducers xcept they use a live imemory data structure (a slate) to summarize all data seen so far.

A slate is defined for each key and is continuously updated as more data arrives.

2.1.2.2Interactive Processing.

The freqent writing to disk and the extensive communication between nodes in the MapReduce
shufflephase to support fadblerance, hinders efficient support for interactive applications. Some
solutions are proposed to supplorteractiveAnalytics

Google Dremel[Melnik et al. 201D (aka Google BigQuenf) leverages massive parallel
processing, nested data modelling and columnar storage to improve retrieval efficiency for
interactiveAnalytics scenariosDremelis a Google proprietary solution that executes its query in
parallel without being translated to a sequence of MapReducelodrseluses multievel tree
processingKigure4). Leaf servers only scan the needed columns in padalietmediate servers
carry out parallel aggregation on the scanned data. Finally, the root server aggregates the
intermediate results. However, with columnar storage the number of columns accessed affects
performance. Google has introdudaalverDrill [Hall et al. 2012to have data in memory for faster
computations. However, this makes it constrained by the available memory.

Client

vt

Root server E
vt

Intermediate é
it
Leaf servers é
with local I—GITP I_e
e 38888

DFS

Figure 4 Dremel Query Execution How

30 Google BigQueryhttps://cloud.google.com/bigquery/
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Apache Drilf* andCloudera Impal& offer open source implementations@bogle Dremel
Moreover, they support querying and joining data from different sources, which is not supported
in Dremel Architecturewise, Drill does not implement a dedicated root server like the others.
Instead, anprill node (aka Drillbit) can accept queries dratome the root server (aka driving
Drillbit), which eliminates the issue of having a single point of failinél only has leaf servers,
which exchange data among themselves to carry out the aggregations, reducing data movement.
Drill supports dynamicchema discovery, where users can define the schema (column name, data
type, length) in the query, or I€till discover the schema from the metadata fordeticribing
data formats. On the downsidesill adopts an optimistic execution model and doespeosist
intermediate data, making it fatilttolerant.

Apache T€2 introduced inHadoop 2.0aims at generalizing the MapReduce paradigm to
support interactive queriegezgroups all MapReduce jobs of Analyticsquery into a singldez
job, eliminating the overhead of launching multiple jobs. Tagob still consists of mappers and
reducers, howevd@rezmerges some of the mappers and reducers together to minimize the overhead

for materializing intermediate outputs to the DFS and ¢wide better data locality.

2.1.2.3lterative Processing.

Iterative computation arises naturally in Da&aalytics. Machine learning operations (e.g., in
stochastic gradient descentnieans clustering, etc.), require several passes over the training data
for thealgorithm to converge. Designed for long running processes, MapReduce does not natively
support iterative computation. For that, users must write a sequence of MapReduce jobs and
coordinate their execution. Even with that, MapReduce still lacks a mechiamnisensing output

results without rereading them from disk, which causes a big hit to performance.

3t Apache Drill: http://drill.apache.org/
32 Cloudera Impalahttp://impala.io/
33 Apache Tezhttp://tez.apache.org/
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HalLoop[Bu et al. 201pandiMapReducg¢zZhang et al. 2013anodify MapReduce and its API
to add iteration supportiaLoopmodifies the MapReduce task schknt to schedule the same job
tasks on the same nodes in each iteration, thus enabling the reuse of data across iterations.
iMapReducereates the mappers and reducers only once at the beginning of the job, and uses them
in subsequent iterations. This regs the overhead of creating new MapReduce jobs for each
iteration.iMapReducellows asynchronous execution, where output is streamed to the next task so
that it can start without waiting for previous tasks to finistapReduce hec k poi nt s t he
output every few iterations for fattiblerance and only persists the final outgriter [Zhang et
al. 2011h adds prioritized iteration tdMapReducédor a faster convergence.

The Main Memory MapReduce (M3R$hinnar et al. 20J2and Twister [Ekanayakeet al.

2019 work on speeding up the execution of unmodifidddoopiterative jobs.M3R uses in
memory pipelining between mappers and reducers to achieve the iterative job performance of
HalLoop without the burden of using new APTwisterrelies on a message broker to which nodes
can publish/subscribe to communicate and transfer their data, wherigergton data is cached

in memory. BothM3R and Twisterare constrained by the available memory and do not support
fault-tolerance withiran iteration, making them only useful for short jobs running on highly reliable
clusters with large memory.

Apache Maholtis a scalable distributed machine learning library, where the machine learning
algorithmsare implemented as a sequence of MapReduce jobs with an outside driver program to
control loop executionMahoutaddsAnalytics capabilities toHadoopbut still suffers from the
MapReduce high 10 overhead for rereading Hdérdata from diskHivemall[Yui and Kojima
2013 adds machine learning capabilitiesHve [Thusoo et al. 20Q9However,Hivemallqueries
are still translated to MapReduce jobs with igtdr data written to disk. To overcome the

MapReduce high 10 overheadjvemall amplifies the taining data (replicates each row several
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times) and then randomly shuffles this amplified dataset to emulate the iteration effects without
having several MapReduce steps.

Apache Sparfk [Zaharia et al. 201Qbs now the main rival tédHadoop Sparkdoes norun
Hadoopjobs, however, they can @xist on the same cluster usidgache MesofHindman et al.
2017. A Sparkjob runs in parallel with one reducer, which can be a bottlergkrkuses read
only Resilient Distributed Datasets (RDDs) to providenemory support for iterative jobs. RDDs
can also reconstruct themselves in case of failure to providetdéeriance without disk
checkpointingSpark however, is restricted to the size of available memory and has to reconstruct
the RDDs from disk if ituns out of memoryiLBasé&> [Talwalkara et al. 20J2ises theMLlib3®
[Sparks et al. 2013ibrary to provide distributed machine learning at scalespark Cloudera
Oryx¢” forks from Apache Mahouto run onSpark Oxdata H2C®® provides inmemory machine
learning and predictivéAnalytics on Big Data using Spark Deeplearning4p provides deep

learning algorithms implementation étadoopandSpark

2.1.2.4Incremental Processing.

Unlike previous categories which analyze edaiteest, incemental solutions analyze datae
motion. Data that is usually outdated quickly, thus fast reactions are required. Online algorithms
are used to process raamhe data streams, without having the entire input available, and before
data is saved to disk.his makes it ideal for continuous and incremem{ahlytics, as with
analyzing monitoring logs, sensor network feeds and high volume news feeds like twitter.

Incremental processing can be in the form of stream processing orbaicioprocessing.

34 Apache Sparkhttps://spark.apache.org/

35 MIBase:http://www.mlbase.org/

36 MILib: https://spark.apache.org/mllib/

37 Cloudera Oryxhttps://github.com/cloudera/oryx
38 Ocdata H20Ohttp://Oxdata.com/h2@/

39 DeepLearning4jhttp://deeplearning4j.org/
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2.1.2.4.1Streamprocessing

Stream processingrovides lowlatency as data is analyzed as soon as it arrives. However, it is
technically challenging as it requires devising online algorithms to analyze partial data and not to
wait for the complete dataset.

Apache Storffi and Apache S4 [Neumeyer et al. 20]Gre distributed streaming solutions
that can be used with any programming language and can scale to massive numbers of messages
per node per secon84asks users to develop their programs for a single key and not for the whole
stream likeStorm which simplifies the programso6 | ogic
HoweverS4uses a push model , which can cfdlSoen dat a t
on the contrary, uses a pull model, where the receivers pull the data when they can process it.
Apache Samza coming as part diladoop2.Q usesApache Kafk& publish/subscribe messaging
system to guarantee that data is processed in theibagdegves, and that no data is ever lost.

Microsoft Trill [Chandramouli et al. 2014s an irhouse stream processing solution for
temporal data, which consists of a payload and a validity interval defining the duration this payload
is contributing to tb output. Microsoft also offerStat! [Barnett et al. 2013designed for
progressive computations using the unmodifMitrosoft StreaminsighfChandramouli et al.
2017 temporal streaming engine. Another Microsoft solutioN@ad* [Murray et al. 201Bthat
allows iterations in streams to handle scenarios with changing input. Google hafi\ieeel
[Akidau et al. 201Bin-house system that allows users to create stream graphs and define the
application code for each graph node, while it handles thinconis data flow, data persistence

and failure recovery.

40 Apache Stormhttps://storm.incubator.apache.org/

4 Apache S4http://incubator.apache.org/s4/

42 Apache Samzattp://[samza.apache.org/

43 Apache Kafkahttp://kafka.apache.org/

44 Microsoft Naiad:http://research.microsoft.com/ers/projects/naiad/
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IBM InfoSphere Strearftsis a component of the IBMnalyticssolution. It supports analyzing
data continuously at high rates using +#&@e machine learning. Streams supports-tiome
modifications where input streams, output streams and operations can be added or removed
dynamically without restarting the system. It also allows embedding user dééimadnd C++

Analyticsroutines.

2.1.2.4.2Micro-batch processing

Micro-batch processingresents a middiground between streams and batch processing. It has
higher latency than streams as it buffers the input, and only process it when the buffer is full.
However, micrebatching is less technically challenging as it allows the use of existing batch
algorithms.

Using this approachy,ahoo! NovgOlston et al. 201Jlallows users to create workflows Big
programs to process continually arriving d&@park Streamirf§ extendsSparkto allow joining
stream data with historical data using the s&@parkcode written for batch processing. The
streams library plugin Hockermann and Blom 20]12adds online processing support to
RapidMiner It provides generic streaming wrappers of RapidMineroperations to make them

run on partially available data and dethem the rest as it arrives.

2.1.2.5Approximate Processing.

Designing theAnalytics process involves many trial and error attempts till the best operations are
found. Using traditional MapReduce means analyzing the whole dataset, which is very time
consuming and impractical. Quick retrieval of approximate results from a small reptigeenta
sample should be enough to draw a conclusion.

TheEarly Accurate Result Library (EAR[)aptev et al. 201j2extendsHadoopto allow early

termination and incremental computation, along with providing aimerindicator to estimate the

45 |BM Infosphere Streamdguttp://www-03.ibm.com/software/products/en/infosphsteeams/
46 Spark Streaminchttps://spark.apache.org/streaming/
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achieved accuaicy so farEARLprovides early approximate results by iterating over data samples
and aggregating the results until an acceptable accuracy is re&&fRdmodifies Hadoopby
(i) keeping themapperslive even after they are done, to be used inéxeiteration, (ii) pipelining
themappersoutput directly to theeducers and (i) allowingreducersto start before theappers
are finished to support incremental computation.

BlinkDB[Agrawal et al. 201PextendsHive to provide fast approximate rdts with statistical
error guarantee8linkDB uses a dynamic sample selection strategy to select an appropriately sized
sample based on the desired query accuracy or responsdBtink®)B maintains a set of pre
computed and carefullghosen data sampleso that when a query arrives, it can be directly
executed on the appropriate sample. SamplBfnkDB are chosen using an optimization formula
that considers the data distribution, past queries, storage constraints and several other system related

factors.

2.1.2.6In-Database Processing.

MapReducebased solutions are considered by some to be better suit@igf@rata Analytics
because of their scalability and flexibility. Others support parallel databases, which have been
extensively studied for decades, and enhanced with a lot of optimization techniques that were
refined over time. However, parallel databases require adafélled schema, which is unsuitable
for multi-structured data. They typically run on highd servers, which makes them an expensive
option.

In-DatabaseAnalytics allows users to run machine learning on data without moving it out of
the database. This solvéise data movement issue and allows using database techniques like
clustered indices to outperforhiadoop Microsoft SQL Server Analysis Services (SSA8dw

users to run data mining operations on their data withirMB&QL database. Users can train

47MS SSAS:http://www.microsoft.com/ems/serveicloud/solutions/businesatelligence/analysis.aspx
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models, save and use them later for predicting unlabeled data. ThereNgAdd*e [Hellerstein
et al. 2012 an open source library for scalable distributgdhlyticsthat runs within the database
engine.

Hybrid solutions attempt to have the high perfante of parallel databases by harvesting all
the benefits of database query optimization, while yielding the same fault tolerance and scalability
of MapReduceHadoopDB[Abouzied et al. 20J0nstalls a database system (€2gstgreSQ).on
each Hadoop node where Hadoop takes care of the task coordination and communication.
HadoopDBacceptdliveQLqueries as input, usébveto transform them to MapReduce jobs, then
assigns as much work as possible (like joins, conditional scans, etc. ) to the locabdatadpaery
processing on each node. Results retuned from local database instances are then aggregated and

further processed usirdjve.

2.1.3Analytics Orchestration

Big Dataanalytic solutions require the orchestration of complex analytic jobs and workflows to
achieve the wuserds goal s. This orchestration

scheduling and resource provisioning to satisfy user requirements.

2.1.3.1Scheduling.

Scheduling is the process of allocating jobs to the available resources, wkiileiziteg resource
utilization and data | ocality. The Schedul er
assigns resources to it from the available resources. Resources include memory, CPU, network and

disk, bounded to one physical node.

2.1.3.1.1ResourcaJtilization.

Hadoop 1.0 has a number of shortcomings when it comes to resource management. One of the main

shortcomings is having a fixed number of map and reduce slots per node. This causes the cluster to

48 MADLIb: http://madlib.net
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be undetilized as it forces new map tasks taitwhen all map slots are taken, even if the node
has idle resources. The same applies for the reduce tasks and slots. A second shortcoming is the
restriction of having a single job tracker to handle only up to 4000 nodes limiting scalability.

Apache Hadop YARNakaMapReducedr Hadoop 2.0 [Vavilapalli et al. 201Bsolves the
above issue¥ARNdoes not use the slot configuration paradigm. Each node's resources (e.g. CPU
cores and memory) are allocated to the applications when requested. It separates the cluster
resource management from the application management, which increases the efficigncy

resource utilizationY ARNalso supports neMapReduce applications.
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Figure 5 YARN Operation

YARNiInvolves three main components, showrFigure5: (i) Resource Manager (RM3$
installed per cluster to manage the available resources. It Applrations Manager (AsMyhich
accepts the submitted applications and negotiates with the Scheduler to obtain the necessary
resources for executing an application. R also has th&cheduler, which is responsible for
allocating resource containers to applications based on their resource requests. A resource container
encapsulates computational resource elements like memory, CPU, network and disk into one entity.
A container is bountb one node but a node can hold multiple containers. The scheduler ensures
fairness and data locality, but not fault tolerance. (ii)There i&pglication Master (AMper job
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that manages its lifecycle, computes its required resources, and commuhiesg¢eetjuirements

to theRM. (iii) A Node Manager (NMjuns on every worker machine to launch containers for
applications once allocated by tR&. Each container is wrapped by a Container Launch Context
(CLC), defining environment variables, dependendesurity tokens, etc.

Another example i$ReS[Doka et al. 201 a metascheduler for running workflows over
multi-engine environmentsReS automatically matches distinct workflow parts to the right
engine(s) according to multiple criteria (like costigperformance), deploy and run them without
manual intervention. This schedule is ideal for scenarios where no single engine/store is suitable
for all required computations/data.

Adoop[Hamdaga et al. 201,50n the other hand, is ldadoop historybased scheduler for
volatile, nondedicated, athoc environments where underutilized computing resources in the
existing IT infrastructure are useidoopuses the nodes' availability history and current utilization
to make scheduling decisionsdadynamically readapts task assignments according to the nodes
availability. It also replicates tasks to provide a guaranteed minimum availability level for each

task.

2.1.3.1.2Data Locality

Data locality is adesign goal of many system¥dvilapalli et al. 2013Deelman et al. 2005,
Ranganathan and Foster 2D0dRrefers to the degree to which data and processing doeated
on the same physical node. For daiznsive jobs, the network has been shown to be a potential
bottleneck Faharia et al. 2010a, DeancaGhemawat 20Q8Thus, data locality has a significant
impact on the job performance since a higher data locality means less data transfers over the
network. However, data locality comes with its own problems. For example, nodes storing input
data tendd become hotspots while other nodes are untiized [Elshater et al. 2015
PegasugDeelman et al. 20Q5s a workflow management system. It uses a Replica Location

Service (RLS) to achieve data locality. TRegasusscheduling algorithms queries thé&Rto
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retrieve data replica locations for the incoming tasks. RLS stores the mappings of the files logical
names to the physical locations of their replicas.

Ranganathan and FostdRgnganathan and Foster 2p0idd it inefficient for scheduling
algorithmsto only target processor utilization with no regard to data retrieval cost. Targeting data
intensive applications, they proposed decoupled scheduling that separates the job scheduling policy
from the replication policy. The solution consists of three dalees: an External Scheduler (ES)
that assigns nodes to jobs, a Local Scheduler (LS) that prioritize jobs on the local node and a Dataset
Scheduler (DS) that calculates data popularity and handles data replication.

Zaharia et al.Zaharia et al. 201Qaoted that fair scheduling conflictgith data locality. Fair
scheduling compromises data locality as jobs might be scheduled away from their input data. They
propose the delay scheduler which relaxes the fairness constraints for a better data locality
oppatunity. The delay scheduler can postpone a job allocation for a certain small duration in the
hope that a container becomes available on the node holding the required data. The delay scheduler
is considered the only data locality aware scheduler amonguirent Hadoop and YARN
schedulers Vavilapalli et al. 2013 The delay scheduler goes through three phasedlo(e
Locality, where the scheduler tries to schedule the incoming task on a node that stores the input
data. (ii)Rack Locality used if node locality is not possible, where the scheduler tries to schedule
the incoming task to a node on the same rack where the input data exi€f-8iitch Locality
which is the worst case, where the scheduler assigns the incoming taskffesaitch node,
located on a different rack to avoid task starvation.

Guo et al. Guo et al. 201Ppropose a mathematical model for the MapReduce data locality
problem to find the optimal schedule for maximizing data locality. It shows that schedultigenu
MapReduce tasks together gives a better performance than the delay scheduling approach, where

the scheduling is done on a task by task bases. One of the reasons behind this better performance
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is that it considers the impact of each task assignoretite other tasks, while the delay scheduler
does not.

Pixida [Kloudas et al. 201]5s a Sparkscheduler that works on minimizing the traffic while
processing datasets that span multiple data centers. It models the scheduling goals as a graph
partitioningproblem. It then searches for opportunities to avoid data movement between the data

centers by allocating tasks to where data exist.

2.1.3.2Provisioning.

Provisioning aims at allocating resources and data to jobs while minimizing the job execution time

and moneary <cost. The provisioner receives the u
budget. Then it tries to find the best set of
while stildl being within the sowaemprovsionngitbget . F

allocate resources to jobs, or data provisioning, to allocate data to jobs.

2.1.3.2.1Resource Provisioning

Given the large set of the different resource types provided by cloud providers, it becomes
challenging to find the best combinaticdhor e sour ces t o perform the re
SLOs and budget. Moreover, the provisioning systems need to manage theffgantween
different user objectives (e.g. minimizing monetary cost verses minimizing running time), which
is not alway a straightforward task.

TheResource Set (RS) Maximiz&lambatla et al. 20Q9s designed to provision MapReduce
jobs to minimize the monetary cost, while achieving the best possible performance. Given that the
default Hadoop configuration is not fit &r all jobs, this algorithm works on choosing the best
Hadoop configuration (e.g. the number ohappersand reducer$ based on the job and the
provisioning conditionsRS Maximizestores a set of optimum configurations for the different job
types and chaes one of them for new jobs based on the job type. Building this configurations

database to cover a wide variety of jobs and configurations (more than 150 configuration values)
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is not always feasible. AlsRS Maximizeassumes that there is a fixed numtsiecloud machines
in the resource pool, preventing it from automatically scaling up as new machines are added.

Conductor[Wieder et al. 2012is a system that orchestrates execution of MapReduce jobs on
the cloud by choosing the most suitable cloud ses/according to the user defined objectives (e.g.
reducing the execution time or minimizing the cos&)nductorprovides an abstraction layer to
allow combining services (e.g. storage, computation) from different providers to meet the user
goalsinthdbest way possi bl e. It supports integrati/|
clouds to provide hybrid deploymen@onductoralso considers the dynamic pricing of the cloud
services (e.g. Amazon EC2 spot instaffgmsces change every 10 minutes)

Purlieus[Palanisamy et al. 201 tvorks on minimizing the network distance between compute
and storage nodes. FirBurlieusdefines the proper set of physical machines that should store the
input datasets based on the job type. For example, it digsithe data blocks across the network
to utilize all the physical machines for ingheavy jobs, where the mappers generate small
intermediate data. Afterwards, it attempts to deploy mappers close to the nodes storing input data
blocks and reducers closethe mappers that generate the intermediate data.

Mian et al. Mian et al. 201Bformulate the provisioning problem and design a framework to
predict the cost of executing datdensive workloads given a set of configurations. A
configuration defineshe number of cloud machines and their specifications. This approach begins
with exploring all possible configurations based on the predicted monetary cost of each
configuration. The search space is described as a Directed Acyclic Graph (DAG) where each nod
in this graph represents a unique configuration and each edge represents a possible movement (e.g.
add the cheapest VM, add the same VM, upgrade and so on) from one configuration to another.

Greedy search algorithm is then used to traverse this grdipld tthe optimal configuration.

4 AWS Spot instancesttp://aws.amazon.com/ec2/purchasomiions/spoiinstances/
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Kllapi et al. Kllapi et al. 201] study the tradeff between the completion time and monetary
cost for executing workflows. They propose a greedy provisioning algorithm to find the optimum
assignment of cloud resources éxecuting a workflow while satisfying the user's budget.

Mao and HumphreyMlao and Humphrey 20]13ropose two autscaling algorithms to
minimize the job turnaround time (the time elapsed from job submission to the job completion)
within budget constraistfor executing workflows using cloud resources. The schedfilsig
algorithm assigns more budget to high priority jobs in the workflow. Then, it determines the fastest
execution plan and accordingly acquires the required cloud resources. On the nthethba
scalingfirst algorithm finds first the type of cloud resources needed based on the budget constraint
and then schedules the workflow jobs to them.

Mesos[Hindman et al. 20]1is a platform for sharing cluster nodes between multiple
frameworks, sut as Hadoop and Spark. Mesos introduces a distributedetw@b scheduling
mechanism where it decides how many resources to offer each framework and the frameworks can
then use their own scheduling to decide which resources to accept and which compotations
on them.

Li et al. [Li et al. 201% propose a latenegiware algorithm for running higépeed realime
data streams on Hadoop. The algorithm searches for the minimum number of nodes that maximizes

throughput without violating the latencgquirements.

2.1.3.2.2Data Provisioning

The Data Locality Scheduling techniques, discussed in the previous section, assume that the
number of replicas per data block is fixed during execution. However, this can hurt performance
and data locality, especially if senof the nodes in the cluster have more data than the others. The
different data provisioning techniques below allow a variable number of replicas per data block

and automatically replicating these blocks as the demand on them increases.
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ScarlettfAnanthanarayanan et al. 2Q1es theHadoopjob history logs in a previous unit of
time (e.g. days or weeks) to replicate offline the data blocks based on their observed access
statistics.Scarlettcomputes the data replication factor constrained bytainebudget and uses a
replica ageing to delete old replicas.

Adaptive Data Replication for Efficient Cluster (DAREpad et al. 201Jlassigns an adaptive
replication probability to data based on the 4mral data access requests it receives, ignoring
network cost.DARE helps achieving better data locality by replicating data blocks to remote
machines under a disk budgBYARE is scheduler independent and can work with Eagoop
scheduler (e.g. Delay or FIFO scheduler) to increase data loEslRE s still an off-line system,
but it works with smaller time units compared to Scarlett.

CostEffective Dynamic Replication Management (CDRWEi et al. 201Dis a replication
placement scheme fétadoopthat calculates the ideal number of replicas perlolatzk to satisfy
the availability requirements. Howev&DRMdoes not support increasing the number of replicas

dynamically during rusiime.

2.1.4Big Data Analytics Assistance

With the increasing sophistication 8halytics processes and the exgnowing numbe of data

mining algorithms and techniques, organizations find it hard to hire employees with thedrequire

experience irBig DataAnalytics According to the Mckinsey repoilanyika et al. 201}l there

is a widening talent gap in the workforce, whereir2B¢8, the demand for skilled data scientist

could be 50 to 60 percent more than the expected supply, and that is only in the United States.
Consumablé\nalyticsprovides a solution for narrowing tealyticstalent gap. The idea is

to increase the impaof the skills already existing in organizations by providingpial assistance

to makeAnalyticseasier to build, manage, and execlB&[ 2012]. Assistance can be Static, where

it always shows the same content no matter what dataset is being anatatiedasSistance is

useful in aiding users with configuring operations but not with selecting them. Novice analysts are
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typically overwhelmed with the large number Ahalytics techniques making them unable to
confidently select the right technique andeafthave to resort to time consuming trial and error
[Serban et al 2013

Experts have years of hanrds knowledge on selecting techniques for different contexts. But
even they are now finding it hard to keep up with the -@veneasing number of operatioasd
they usually tend to use the methods that have proven to be successful in tiseist gt al
2013. To support both novice and expert analysts in selecting the best suited technique from this
plethora of different techniques, several researchange tproposed Intelligent Assistance.
Intelligent Assistance aids users in choosing and configuringribbticsoperations based on the
input dataset and the analysis goals. It covers data preparation, selecting opekattytics

workflow generation ad fault detection and handling.

2.1.4.1Static Assistance.

Static assistance provides the means for users to learn to usmabptics solution and its
operations. Once users become familiar with the solution, however, static assistance is no longer
needed and ay even become an obstacle that slows down expert users. The types of static

assistance include the following:

2.1.4.1.1Tooltips

A single sentence describing an operationbds f
description of the inputsand outputso ol t i ps wusually appear as user
icon. They represent the simplest way of providing assistance. Their usefulness however is limited

to new users. As users gain more experience, tooltips can become more annoying than useful.

2.1.4.1.2Help Pages

A reference manual that users can use to learn more about the operations. They are usually provided

as web pages with text and images describing how to use the operations. Sometimes, they also
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include the algorithms, making them very useful whemetlie a need to extend or modify some

operations.

2.1.4.1.3Wizards

A sequence of dialog boxes that guide users through a series afefield steps. Wizards are

well suited for complex, repetitive or unfamiliar opwvas. For exampleRapidMiner offers
wizardsfor churn reduction and sentiment analysis. Wizards usually do not allow users to configure

al | of an operationbs parameters in order to
wi zar ds, an AAdvancedo opt i oersetdf pammatersi Sbmed t 0
expert users find wizards slowing them down by forcing them to go through unnecessary steps or

posing limitations by not giving access to all parameters they need to configure.

2.1.4.2Intelligent Assistance.

Over the last several dates, the fields of Statistics and Machine Learning have contributed
numerous algorithms for data mining. Users nee
algorithms to produce useful and meaningful results. Most exiatiadytics solutions oty offer

static assistanceSgrban et al 2013; Charest 2D0%tatic assistance, being context and data
independent, cannot help users to effectively select the apprajmigigicsoperations. Intelligent

Assistance can help in this regard by providiogtextaware dataware assistance.

2.1.4.2.1Data Preparation

It is one of the most important phases in Amalytics process, it affects all the steps that come
after. It includes determining promising and irrelevant attributes, attributes that need to be split and
those that need to be combined, along with handling any malicious data like outliers, missing
values, etc.Data preparation is challenging as it needs to deal with different data formats,

granularities and degree of completeness based on the method of acquiring the data. Data
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preparation is also domaspecific which makes it tricky, especially for analyste/ive a business
domain.

Ontologiescan provide intelligent decision support mechanisms in data preparation, relieving
some of the burden of users and resulting in a faster developmentAridahgics process. An
ontology represents the concepts withohoanain and specifies how the concepts are related using
logical axioms Gruber 1998

Ontologies are typically expressed in the Web Ontology Language (OWL) or the newer version
OWL2 [Bechhofer et al. 20Q4nd edited in editors such Beotégé®. Using the explicit knowledge
represented in an ontology, new implicit knowledge can be inferred using logical reasoners or
inference enginedNang et al. 200Usuch ad-act++5: [Tsarkov and Horrocks 20P&nd Pallet?

[Sirin et al. 2007, Readers interested in rea&rs can check Abburdbburu 2012 and Dentler
et al. Dentler et al. 201J1for their extensive surveys on the different ontology reasoners.

Ontologies are being used in Bl solutions to facilitate data integraiairef al. 2007; Martin
et al. 2011 and for the ExtracfTransformLoad (ETL) operations in data warehousiSsgiprrone
et al. 2009 For data preparation, ontologies can be used to represent the different domain concepts.
These concepts can be common concepts such as temporal conceptshigecgmnappts, etc. or
more domairspecific concepts for a targeted domains like a credit card ontdf@gsiqntis et al.

2009.

Concepts can represent attributes desasi€ri bing
Ghasem et al. 201.3Concepts aarepresents metrics, which are quantifiable indicators to measure
the performance al ong t hese eRuilsGhasereetal 20l8r e x an
Metrics can have a default favorable trend such as down for cost or up for revenue arahthey

have common value ranges, for example setting age value rangeg¥]id1R], [13-19] [Rais

50 Protégéhttp://protege.stanford.edu/
51 Fact++:https://code.google.com/p/factplusplus/
52 pellet: http://clarkparsia.com/pellet
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Ghasem et al. 2013, which can be wused to identify mal:.
ATeeno, AAdulto can be t he ranguagedike&mantic Web&uae usi ng
Language (SWRY) and a rule engine.

Data labels (column names) and values are created using different nhaming and formatting
conventions making ontologies by themselves insufficient for making sense of a dataset. Natural
Language Processing (NLP) engines are thus needed to help map the different naming and
formatting conventions to the ontology concepaiEGhasem et al. 201.3BM WatsonAnalytics
[RaisGhasem et al. 201 & one of the systems that uses both ontologies and NLP to automatically
semantically annotate the data for a better understanding.

The MiningMart project[Morik and Scholz 2004uses a different approach in helping users
with data preparatiorMiningMart stores the best cases of data preparation workflows that were
designed by experts. Users can then choose one of these cases as a starting point and adapt it to

their problem.

2.1.4.2.2Selecting Operations

Selection is implemented by having a set of preconditfongach operator and using simple
matching with the input data to recommend an operator. However, this approach does not consider
the quality of the results achieved using the recommended operator. Given the large set of operators
available today, a triand error approach of all valid operators can be very time consuming.

Expert Systems (E§pply a set of rules, hand crafted by experts, to recommend opdigkors.
WatsonAnalytics[RaisGhasem et al. 20],3for example, proposes an ES that definegtaof
preconditions for using each operator and a set of scoring rules to measure the usefulness of using

an operator on a given dataset. The ESs present the simplest way of providing intelligent assistance.

58 SWRL: http://www.w3.0rg/2001/sw
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However, it is cumbersome to generate ruleot@call possible cases and all available operators
[Serban et al. 2013

MetaLearning Systems (MLSdiffer from ESs in that rules are learned automatically from
prior runs Berban et al. 2013A MLS models the relationship between input data propsediel
an operatoro6s performance to recommend operat
learning algorithm is used in tligata Mining Advisor (DMA]GiraudCarrier 200%to learn the
operatorsé performance on ol datasdaothe leardihgiade KNN
without retraining. The downside of MLSs is that to give good recommendations, they need to be
trained on a large set of input datasets representing most of the cases that the system will see. All
operators also need to be smbion all training datasets.

Ontology Reasoners (ORje similar to ESs in the sense that both are based on a set of rules.
However with OR, some rules can be inferred, so that experts do not need to explicitly define every
possible rule $erban et al. Z8]. The Ontology of Core Data Mining Entities (OntoDbbre)

[Panov et al. 20]4resents a step towards the development of a standard data mining ontology. It
provides representations for dataset properties, data mining algorithms and constraiftslG8e
(Workflow INstance Generation and Specializatigygtem Gil et al. 201)implements reasoning

to automatically fill in the gaps in adnalyticsworkflow with the best suited operators.

2.1.4.2.3Automatic workflow generation

It is one of the most advancedts of intelligent assistance. It combines both data preparation and
operation selection. Based on the input data and existing problem, users receive a set of workflows
to solve the problem.

One approach i€aseBased Reasoning (CBRyhich stores a set ofases (workflows)
designed by experts and use them as templates for new problems. The CBR eliminates the need to

train a recommendation model as with MLS, but it requires more human involvement to build and
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clean the cases database. CBR is known to be&fgoalomains that are not completely understood,

where knowledge is insufficient at the time of implementation but evolves oveiSottarji 2013
CharestCharest 200[/proposes a data mining intelligent assistance framework based on CBR

and ontologieto assist noexperts throughout thenalyticsprocess. First, it allows users to select

the problem domain and then shows them a list of cases that successfully worked with this problem.

Users can then select any of these cases and adapt it to theamdewmprThe framework only

supports simplénalytics is not extendable and only supports WWEKAoperations. That being

said, Charestodos work presents a big sekperfs. i n pr¢
Acquiring a large case base for CBR not always applicable or easy to do. Artificial

Intelligence (Al) planning techniques like thigerarchical Task Network Planning (HTINNau et

al. 199§ provides a more powerful way to pl&malytics workflows for undecidable and unseen

problems Nau et al. 2004 The HTN implemented in eProPfnKietz et al. 201D uses

hierarchical abstraction planning, which consists of starting with an abstract workflow, and then

recursively decomposing each of the workflow abstract components until a sequenulecabke

operations that sati sf KesledgelDiscowery im DatabasapWidual i s o0

Mart (KDDVM) systenfiDiamantini et al. 2009autilizes theKDDONTOontology Piamantini et

al. 2009 to build the workflow using a bottom up appch, which adds operators till the top

operator accepts the input dataset.

2.1.4.2.4Fault Detection and Handling

With Big Data huge amounts of data must be processed, thus havidgq#igics process fail
before completion is expensive and unacceptable. itjgall assistance can help with minimizing
the occurrences and impact of such failures. It can provide validation capabilities that include

checking input compatibility to operations, en

54 eProPlanhttp://www.elico.eu/eproplan.html
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computational ath storage resources are available prior to execution. Ontologies can be used to
represent the metdata for each operation describing all its characteristics, requirements and
constraints. For example, tiéINGSsystem (il et al. 201] uses ontologies andles to validate

the created workflows before execution.

Even with validation, failures still can happen due to situations like unexpected hardware
failure, a bug in an operation or a faulty value in the input dataset. For these situations, intelligent
assistance can provide failure handling and compensation, which can be divided into eperation
level and workflowlevel [Yu and Buyya 200k Operationlevel techniques mask operation failure
by trying to reexecute it, execute it on an alternate resournd, @sing checkpoints to save
processed data. Workflelgvel technigues manipulate the workflow structure to deal with
erroneous conditions. They include executing alternate implementations of faulty operations,
executing multiple redundant copies of theneaoperation, and executing uskfined exception
handling methods. For interested readers, Russell eRassgll et al. 2006present a list of

workflow exception patterns and their handling and recovery mechanisms.

2.1.5Big Data Analytics User Interfaces

Since Big Data Analytics is a multidisciplinary science, we can find users from a variety of
backgrounds. Analytics solutions usually assume a certain user background and design the
solutionds interface accor di negviropmentTHoweser,thé | ows
consequence is that the full power of Analytics solution is limited to those users with the
presumed background knowledge.

In this section, the five main user interface approaches are presented. Their pros and cons are
discused and the intendad s e sulsséd is definedcriptspresent the most flexible environment
for experienced users who can use their programming and data mining skills to deAigpiyties
process SQLl-based interfaces (SQL8gJlow users with a databasackground to d&nalytics

using the familiar SQL languag&raphbased interfaces (Graphicalsilow less experienced
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users to dragnddrop different analytic operations to create compkexalytics without
programmingSheetsre for business users, whet provides a familiar Spreadsheet environment.

Most recentlyVisualizationdor representing the data in an easy and interactive way.

2.1.5.1Scripts.

Instead of having users implementing the algorithms from scratch, Scripts phonalygicsat the
programming level, where users createAhalyticsprocess by developing programs that interface
with these analytic tools. This interface can be the Command Line Interface (CLI) or the provided
Application Program Interfaces (APIs). Scripts pretke most flexible and powerful environment
for users. However, Scripts are low level languages that requires writing a lot of obfuscated code
for even simple tasks. This makes most novice users prefer other interfaces.

The most widely used sdlans inthis category ar&° made by and for statisticiargdatlab®®
for engineers anWEKA' for data miners. Recentlpythorie has become one of the most widely
used languages foAnalytics especially by application developers developing proprietary
techniques o modifying existing techniques. A large number/Afalytics libraries have been
developed fotPython creating a single familiar environment, where users can do both, general
purpose programming amhalytics.

Following the same trend, Microsoft offeF$#°, a crossplatform functional language=#
provides libraries for fetching data from different sources and allows users to use the .NET machine

learning libraries to dénalyticswith simple code.

55 R: http://www.r-project.org/

56 Matlab: http://www.mathverks.com/products/matlab/
57TWEKA: http://www.cs.waikato.ac.nz/ml/weka/

58 Python:https://www.python.org/

59 F#: http://fsharp.org/
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IBM uses GooglelagFe in its Biglnsightssolution to preessBig Data Jaqglis a functional
language for analyzing larggeale semstructuredJSONdata. One of the maidiaqgl features is
using lazy evaluation to only fetch data when needed.

Apache Pig} uses thePig Latin languaggOlston et al. 2008to abstract coding MapReduce
Analyticsjobs without using the Java MapReduce idioms.

Most of the Scripts solutions are centralized. They provide a large set of algorithms, but can
only run on a single node, which means that they are not scalable ttheBeg Dataanalytic
processing needs. Recently, a number of libraries have been developed to provide a scalable
distributed implementation of the machine learning algorithms Begloopand Spark so that
users do not have to write the MapReduce proesdtliemselves. For example, tHlewpal
Wabbif? , Apache Maho(t, Cloudera Ory%*, Oxdata H2G® andMLBasé® [Kraska et al. 2013
solutions implement distributed machine learning techniques at scale. They are easier to use,

require no previous MapReduce knodde, and are optimized for parallel processing.

2.1.5.2SQl-based interfaces (SQLS)

Working with data is synonymous with using SQL to database users. Howev&igvidlatg data

does not only reside in relational databases. SQL solutions provide a unified Sifdcentever

the differentBig Datastores. They provide a familiar environment for database users to work with
Big Data SQL-based solutions providenalyticsat the data level where users createfthalytics
process usingnalyticsqueries. Using SQL arttie standard JDBC/ODBC interfaces, the familiar

Bl tools that autayenerate SQL code can still be used to interact BigrData

60 Jaql:https://code.google.com/p/jagl/

61 Pig: http://pig.apache.org/

62 \Vowpal Wabbit:http://hunch.net/~vw/

63 Apache Mahouthttps://mahout.apache.org/

64 Cloudera Oryxhttps://github.com/cloudera/oryx
65 Oxdata H20http://Oxdata.contf20-2/

66 MIBase:http://www.mlbase.org/
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In SQLs, the standard SQL syntax can be extended to add new functionalities by writing User
Defined Functions (UDFs). The UBKlevelopment is not done in SQL, which means it is not an
option for all users. Without UDFs, users are limited to whatAhalytics solution provids,
making SQLs not as extendible as Scripts. However, SQLs can reduce the learning time for users
familiar with the SQL syntaxSQL solutions can be divided in®ig Data SQL and Machine

Learning SQLsolutions

2.1.5.2.1Big DataQuery Languages (BDQL

TheBig DataQuery Languagesnly offer basic querying functionalities, like filtering, aggregation

and selection, but have no machine learning capabilities. The most widely Bia@insolution

is Apache HivgThusoo et al. 2009, whi ch t r a HiweQlgtedes totMapReadw s er 6 s
batch jobs.Google Dreme]Melnik et al. 201D(publicly available as GoogBigQuery’ service),

Cloudera Impalé& and Apache Drilb® provide interactive querying oBig Data Spark SQI°
(previously known asharR [Xin et al. 2013 uses inmemory comptations to further accelerate

query processingMicrosoft SCOPE[Zhou et al. 201Ris a SQLlike language that creates
optimized query execution plans inspired by parallel databases optimization techniques for

Mi crosoftds Ma@oBmosindbrgad[ssard enal. ROGh s

2.1.5.2.2Analytics Query LanguagdaQL)

TheAnalytics Query Languaggsovide the machine learning capabilitiesBi2QL solutions lack.
From these solutions, tHeata Mining Query Language (DMQLI[Han et al. 199pattempts to
establish a standard for data mining query langu@gdgsre6). TheDAEDLUS FrameworkOrtale
et al. 2008 introduces theMO-DMQL that can be expressed using the 3W algebraic framework

[Johnson et al. 2000which is similar to relational algebréFigure 7 and Figure 8). Microsoft

67 Google BigQueryhttps://cloud.google.com/bigquery/
68 Cloudera Impalahttp://impala.io/

69 Apache Drill: http://incubator.apache.org/drill/

70 Spark SQLttps://spark.apache.org/sql/

42


https://cloud.google.com/bigquery/
http://impala.io/
http://incubator.apache.org/drill/
https://spark.apache.org/sql/

introduces th®ata Mining Extension (DMX) query languageang et al. 2005n its SQL server

to run indatabase Analytics Figure 9, Figure 10 and Figure 11). Hivemall [Yui and Kojima

2013 extendsHiveQL with a scalable machine learning library, where models can be created and

used from withinHiveQL statementgFigure 12 and Figure 13). Meo et al. Meo et al. 199p

propose a specialized SQL extension for only association rules niiiguge14). SQL-TS[Sadri

et al. 2001 is another specialized SQL extension thdtighly optimized for complex time series

guerieg(Figurelb).

USE DATABASE<database_name>

{ USE HIERARCHY <hierarchy_name> FOR <attrp> }
FIND [characteristic, discriminate, classification, association]
[ AS <rule_name>] [accordin g to <attributes>]
RELATED TO <attr_or_agg_list>

FROMc<relation(s)>

[ WHERE<condition(s)>]

[ OREDER BY <order_list>]

{WITH [<kinds_of>] threshold = <value> [for <attribute(s)>]}
[ DISPLAY IN <chart_or_table_name>]

RULES

Figure 6 DMQL Query Structure

CREATE MODEL <model_name> AS MINE <mining_algorithm>
FROM <<table>>

WHERE <mining_algorithm>.param 1 =val 1
<mining_algorithm>.param n=val g

Figure 7 DEADALUS Training

SELECT <Query>.<column>,<table>.< column>
FROM <Query>, <model_name>, <<table>>

WHERE <table>.<column> = val AND <Query>.<column> = val

Figure 8 DEADALUS Scoring
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CREATE MINING MODEL <model_name>
( <<attributes datatype>>, <label datatype> PREDICT )
USING [Microsoft Decision Tree]

Figure 9 DMX Create Predictive Model

INSERT INTO <model _name>

( <<attributes>>, <lab el>)
OPENROWSET(O60d®Mums@ame@med, Opasswordo
0 S E L E<xattributes>>, <lab el >

FROMc<training_dataset_table> 0

)

Figure 10 DMX Training

SELECT <identification_attibute> , <model_name> . <label>
PredictProbability( <model_name> . <label> )

FROM<model_name> PREDICTION JOIN <testing_dataset_table>

ON <model_name>.<attribute 1> = <testing_dataset_table>.<attribute 1>
AND

<model_name>.<attribute n> = <testing_dataset_table>.<attribute n>

Figure 11 DMX Scoring

CREATE TABLE <model_name> AS
SELECT <label>, cast(<<feature>> AS <<datatypes>>) AS feature FROM {
SELECT TRAIN_MODEL (<<feature>>,<label>) AS
(<label>,<<feature>>,<<weight>>,<<covar>>)
FROM <training_dataset_table> )t
GROUP BY <label>, <<feature>>;

Figure 12 Hivemall Training

CREATE VIEW <prediction_table_name>

AS SELECT <rowid>, <score>, <label> FROM (
SELECT <t.rowid>, <m.label>, <m.score>
FROM <testing_dataset_table>t LEFT OUTER JOIN

<model_name> m ON (<<t.feature>> = <<m.feature>>) );

Figure 13 Hivemall Scoring
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MINE RULE < Rule Name> AS

SELECT DISTINCT l..n item AS BODY, 1..1item AS HEAD,SUPPORT, CONFIDENCE
WHERE HEAD.item IN (<SQL Query>)

FROM <table>

WHERE <table>.<column> = val ¢&

GROUP BY <table>.<column>

CLUSTER BY <table>.<column>

HAVING COUNT(*) <= <count value>

EXTRACTING RULES WITH SUPPORT: <value>, CONFIDENCE: <value>

Figure 14 Meo et. alMining Association Rules

SELECT B.PageNo, C.ClickTime

FROM Sessions

CLUSTER BY SessionNo

SEQUENCE BY clickTime

AS (A,B,C)

WHERE A. page TAND B.pageXype= 6 Y 6AND C.pageType= 6 Z 6 ;

Figure 15SQL-TS Time Series Query

Looking at the existing AQL solutions, we find the following shortcomings. B&QL and
MO-DMQL are theoretical with no implementations. They also do not discuss distributed queries
for handlingBig Data The language from Mest al.only supports modeling association rules and
SQL:-TSonly supports complex time series queries. The closest to anfpiaviully functioning
AQL for Big DataAnalyticsareDMX andHivemall They support different data models and use
SQLandHiveQL, respectively for data exploration and preparation. However, they rewrite the data
mining algorithms to run in a distributédshion, thus their supported algorithms are still limited

compared to other sequential singlede data mining libraries.

2.1.5.3Graph-based Interfaces (Graphicals)

With the increasing sophistication ahalytics performed by organization8ig DataAnalytics

has become a very complex process that can incorporate tens or even hundreds of operations.
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Graphicals support such sophistication without the need to write code. Their interface typically
consists of two main areas: a panel and a canvas. The panel histdsf slipported operations,
where each operation represents a workflow task that is always carried out\fafulefAalst and
VanHee 2001 Users can drag and drop these operations into the canvas and connect them together
to create a workflow. Some Gulaicals support sutvorkflows that consists of a set of tasks and
possibly further sulvorkflows to allow reusing frequentiyccurring tasks. However, Graphicals
have a number of shortcomings, namely not all of them support distributed execution, calsdition
loops, and extensions.

A large number of Graphical solutions have been developed both by industry and academia.
RapidMinef! is the most widely used Graphical solution. It useswgatkflows, wizards, and
quick fixes extensively, making complex wdikiy's easier to design and interpret. It also has
connectors foWWEKAandR. Radoog Prekopcsak et al. 20]L.éxtendsRapidMinerusingHive and
Mahoutto supportAnalyticsat scale on top dfladoop while hiding the complexity of distributed
DataAnalytics

IBM SPSS Modelé&r is a commercial solution providing a range of advanced algorithms and
techniques for textAnalytics decision management, predication and optimizatiodeler
supports conditionals, iterations, and -sutrkflows usingPythonscripts, which requires having
good programming skilldBM Analytic Serve® extendsModelerto provide scalable distributed
Analyticson Hadoop

WINGS (Workflow INstance Generation and SpecializafiGil)et al. 201] is an intelligent
Graphical solution that uses semantic reasoning to help users design complex wowkflNGS
uses workflow templates to automatically complete and validate workflows based on the

operationsd® and WaGSeas betesridedwithqew opeeatars written in any

* RapidMiner:http://rapidniner.com/

2|BM SPSS Modelerhttp://www-01.ibm.com/software/analytics/spss/products/modeler/

7 |BM SPSS Analytics Servehttp://www-03.ibm.com/software/products/en/sgs®lyticserver/
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language and encapsulated in its Shell script wrappesupports parallel execution but does not
explicitly support sulworkflows or control constructs, however, this can be done impliSeyHi
et al. 2013

Kantere and Filatov{antere and Filatov 20]propose a framework for expressing complex
workflows in an abstract manner, adaptable to the user role, interest and expertise. The framework
also prepares the workflow tasks for execution on a range of erfgiisesl on the execution

semantics of the individual tasks.

2.1.5.4Sheets

Sheets are the closest to providing consumaialytics as they offer the most familiar
environment for business users but they are not designed to BamnBlata They are more focused
on data exploration and preparation, and require moving the prepared data to another solution for
modeling, which is very costly witBig Data

Microsoft offers theExcel Analytics solution (Power Query, Data Analysis Expressions
(DAX) Languagé , Data Mining addin?”), where users can use tRewer QuerySheet GUI to
fetch and merge data from different sources and do data preparation and transformai#X The
language keeps track of all executed steps to support undos, and the Data Mifimgesdidthe
prepared data to the SQL server for modelRmuyer Querys limited to a maximum of 1,000,000
record® per dataset. For that, Microsoft offévicrosoft Tabulare, a serveibased solution for in
databasénalyticson structured datMicrosoft DaytongBarga et al. 202Zan be used to offload

Excel 6s operations to MapReduce on the cloud

“WINGS Shell Script wrappehttp://goo.gl/mhgnDH
S Power Queryhttp://social.technet.microsoft.com/wiki/contents/articles/18542.pawery.aspx
76 DAX: http://social.technet.microsoft.com/wiki/contents/articles/677.powergatdanalysis
expressionslaxlanguage.aspx
7 DataMining Add-in: http://office.microsoft.com/ewal/excelhelp/datamining-addins-
HA010342915.aspx
8 Power Query limitationghttps://goo.gl/FjM7aV
7® MS Tabular:http://technet.microsoft.com/aws/library/hh212940.aspx
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Google OpenRefifg is a browsebased, spreadshesttle tool designed for data exploration
and preparation but does not support data tmaféJnlikeEx c e | 6 s P, OpeeRefin€an e r y
handle any number of records as it only shows a data sample to users. HOpewngtefinestill
runs on a single machine and is thus |Iimited
IBM Cogno§! provides a simple GUI for manipulating data in the form of spreadsheets and
data cubes. As with previous solutio@®gnosuns on a single machine, making it limited to small
and medium datasets. IBM offers thgiglnsights BigSheé®s which is a browsebased,
spreadsheedtyle tool inIBM InfoSphere Biglinsights that enables business users to explore,

manipulate and analy&ig Datausing the underlyingdadooplayer for distributed processing.

2.1.5.5Visualizations

With Big Datg users can own in the excessive volumes of data. This can lead to analyzing the
wrong or incomplete set of attributes or becoming frustrated with the vimallytics process.
Visualization solutions are designed for business users to allow them to have an interactive
conversation with their data.

IBM WatsomAnalytic$* [RaisGhasem et al. 201 allows users to go from data to analysis in
seconds without any setup or configuration. It allows users to use visualization and natural language
to understand their data. telies onIBM SPSSAnalytics Server and IBM Big Insightsto
automatically build and use data models, and oR#edly Adaptive Visualization Engine (RAVE)
for interactive visualizations. On the down siatsonAnalyticsrequires data to be prdeaned
outside the Watson framework. It does not output an analytic model to use for further analysis, and

it does not specify how the analysis outputs were achieved making it hard to trust the outputs.

80 Google OpenRefinénttp://openrefine.org/

811BM Cognos:http://www-01.ibm.com/software/analytics/cognos/

82|1BM Big Sheetshttp://goo.gl/d4E9PG

83 |BM Big Insights:http://www-01.ibm.com/software/data/infosphere/biginsights/

84 Watson Analyticshttps://www.analyticszone.com/homepage/igdplayNeoPage.action?CT=ISM0056
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Microsoft offers Power Vielw as part of itd?ower Blsolution forExcel 2013andSQL Server
2012 As with Watson Analytics Power View provides interactive data exploration and
visualization to support intuitive dabc reporting in a familiar environment. Howeveower View
does ot support data modeling, and it requires loading all data first which limits the analysis to the
size of the available memory.

SAS VisuaAnalytics® powered by the&sASAnalyticsframework’, is designed to empower
business users with limited technical Iskito do Analytics using Hadoop without any
programming. In addition to data exploration, users can do sophistiaddgdicslike forecasting
using a dragand-drop approach.

MicroStrategy Visual Insigkt andtablea® allow users to access data from multiple sources
(spreadsheets, databases, or HDFS) and present them in interactive visualizations for analysis. The
Analytics capabilities of those solutions are limited as they do not implement machine learning
techniqus. Their power comes from their availability on mobile devices and allowing users to

share visualizations.

2.1.6Big Data Analytics Deployment Methods

The ecosystem is composed of many overlaid components that need to be integrated together.
Deploying and maimtining such ecosystem can be complex, challenging, and beyond the
capabilities of the ifhouse IT team in many organizations.

Deployment methods differ in terms of access needs, IT cost, security, data privacy, scalability,
maintenance complexity and tirefirst-insight. First, the Product model, where users buy and

setup the solution on their infrastructure. As solutions become more complex, there is a shift

85MS Power Viewhttp://goo.gl/OvOVh8

86 SAS Visual Analyticshttp://www.sas.com/en_us/software/busineggslligence/visuabhnalytics.htmi
87 SAS: http://www.sas.com/

88 MicroStrategyhttp://www.microstrategy.com/us/software/products/visaaight

8 Tableauhttp://www.tableau.com/
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towards a Service deployment model where the setup and maintenance of the solutions are

outsoured.

2.1.6.1Product

Organizations use the product deployment model to ensure their data security and privacy, and to
handle large volumes of esite data. However, this model (i) requires a large upfront cost to buy
the solution, (ii) needs an IT team to seanp maintain the solution, and (iii) has limited scalability
bounded by the organizationds resources.
Most of theAnalytics ecosystem components are available for free Hagloop), however,
integrating them is technically challenging and time consumingurber of solutions integrate
all needed components intdSaftware Bundle (SVWvhich organizations can buy and deploy on
their infrastructureHortonworks Data Platform (HDPJ provides an integrated solution using
open source solutions likeladoop Pig, Hive, Spark Yarn etc. Other solutions provide a
Software/Hardware Bundle (SW/HWsually using powerful servers. Organizations can buy these
solutions and build their owBig Data Analytics cloud. Oracle Exalytic¥ is an example,

providing powerful toud nodes (servers) designed foniemoryAnalytics

2.1.6.2Service

In the Service model, a service provider gives organizatiorsdeorand access to tig Data

Analytics Ecosystems and organizations are charged on grayse basis. This model allows
orgarizations to outsource the software and infrastructure setup and maintenance to the service
provider, and gives them better scalability and availability using the larger and more reliable service
providerdés infrastruct urie.modeldstbecontingoneof hermamus r e

factors in the increased adoption Bfg Data Analytics [GUuemes et al. 2013 However,

%0 Hortonworks Data Platfornhttp://hortonworks.com/hdp/
%1 Oracle Exalyics: https://www.oracle.com/engineersgstems/exalytics/index.html
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organi zations are stild]l chall enged by the serv
moving theirBigDatat o t he provider és cl oud.

One proposed solution to the service model
architecture is split, with data storage and p
while the coordination anélnalytics services are provided by the public cloudifemes et al.

2013. While this solution solves the data movement and privacy problems, it eliminates a lot of

the Services advantages, where the organization still has to setup and maintainAtsatytios
ecosysterand i nfrastructure. Another solution woulc
and running thénalyticson the data as it arrives. The main problem facing the implementation of

this solution is that mogtnalyticssolutions are batch based avekd all data in order to start.

Analytics Platform as a Service (APaa%)llows the Platform as a service (Paa%)oud
deployment model to deliver highly customizable vielsed services covering the dpeend
process of arnalyticssolution, from acquing data to reporting results to eaders. Thé\PaaS
model provides a platform for organizations to develop, run, manage and shaventigiics
without the complexity of building and maintaining the software ecosystem or the infrastructure.

Amazon WeBervices (AWS5} provide an infrastructure for the different components of the
AnalyticsecosystemEBSandS3for scalable storag&C2for scalable ordemand computation,

EMRfor MapReduce as a servidRDSfor storing structured data, abynamoDBfor semi and
unstructured data.

Google BigQuens? is an online ordemandAPaaSsolution, where users can upload their
datasets to the Google cloud, analyze it using -BKgl queries, and get charged per terabyte

processed and stored. IBM offers thralytics for Hadoopg* APaaSsolution, which is a cloud

92 Amazon Web Servicesittp://aws.amazon.com/

9 Google Big Queryhttps://cloud.google.com/bigquery/

%4 |BM Analytics for Hadoophttp://www-01.ibm.com/software/data/infosphere/hadoop/triatslh
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version of theiBiglnsightssolution deployed on theBluemix PaaSloud. RapidMiner Clouép
offers a similar service. HP offers thAVENn OnDemarfd APaaSsolution that runs on their
version of theOpenStack cloud platform, codenamedP Heliorf®.. EMC2 offers theGreenplum
Unified AnalyticsPlatform (UAP)[EMC 2013, a highend APaaSsolution hosted on thEMC
Greenplum Data Computing Appliance (DGA9ud, which provides massive parallel processing
power to peed up thénalytics performed usinggASand otherAnalytics engines. Xu et alXqu
et al. 2015 propose an architecture for providing rate APaaS The architecture uses RESTful
web services to wrap and integrate the different data storage and dizig seirvices.

IBM WatsonAnalytics?, Tableau Onlin&° and MicroStrategyAnalytics Expres®! use a
Softwareas-a-Service (SaaShnodel where users can only analyze their data using interactive

visualizations without being able to develop thamalytics processes.

2.1.7Summary

In this section, we summarize ifable1 the different approaches used in the six pillars. It should
be noted that an ecosystem can implement one or more approach within the same pillar to support

more use casespfiroaches within a pillar complement one another and are not mutually exclusive.

Table 1 Big Data Approaches for the Six Pillars

Approach Advantages Disadvantages Examples
RDBMS - High performance - Low scalability MySQL Cluster, ScaleDB, VoltDB, ScaleBg
- Ensure consistency - Mostly only store structure
DFS - Highly scalable - lcil%tasupport for querying GFS, HDFS, CFS
% - Store any data format data
g NoSQL - Highly scalable - Mostly only support DynamoDB, Voldemort, Redis, Riak,
- Store any data format eventual consistency MemcacheDB, HBase, BigTable, Cassan(
- Support querying data PNUTS, MongoDB, CouchDB, SimpleDB
Neo4j, OrientDB, InfiniteGraph

% RapidMiner Cloudhttps://rapidminer.com/documentation/cloud/
% HP HAVENn OnDemandhttp://www.vertica.com/hverticaproducts/ondemand/
97 Openstackhttps://www.openstack.org/
%8 HP Helion:http://www.hpcloud.com/
% Watson Analytichttps://www.analyticszone.com/homepage/web/displayNeoPage.action?CT=1SM0056
100 Tableau Onlinehttp://www.tablea.com/products/online
101 MicroStrategy Analytics Expreshttp://www.microstrategy.com/us/free/express
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Approach

Advantages

Disadvantages

Examples

Processing

Batch - Executeseries of jobs - High 10 overhead MapReduce, Hadoop, Spark, HOP, Mupp|
without manual interventior| - No loops support DistributedVEKABase,
- Fault tolerant - Long execution time
DistributedVEKAHadoop, RHadoop, Rado
IBM Analytic Server
Interactive - Shorter execution time - Weaker fault tolerance Dremel, BigQuery, PowerDrill, Drill, Imapal
- Support aehoc queries - No loops support Tez
Iterative - Loop support - Weaker fault tolerance Haloop, iMapReduce, Priter, M3R, Twiste
- Machine learning support Mahout, Hivemall, MLBase, Oryx, H20,
Deeplearning4j
Incremental || - Handle datdn-motion - Weaker fault tolerance Storm, S4, Samza, Trill, Stat!, Naiad,

(realtime)

MillWheel, InfoShpereStreams, Nova,
SparkStreaming

Approximate

- Fast retrieval of partial
results

- Long execution time to ge
the complete results

EARL,BlinkDB

In-Database | - Ensure consistency - Low scalability SSAS, MADLIb, HadoopDB
- in-databasé\nalytics - Mostly only structured dat
Resource - Increase resource utilizatio| - High 10 and network YARN, Adoop, IReS
Scheduling and reduce cost overhead

Data Locality

- Reduce |10 and network

- Increase waiting time for

Pegasus, [Zaharia et al. 2010a], [Guo et

c J
% overhead resources holding data 2012], Pixida
:;) Resource - Reduceexecution time - Increase cost to reduce | RSMaximizer, Conductor, Purlieus, [Kllapi
5 Provisioning | ~ Reduce execution cost execution time al. 2011], [Mian et al. 2013], [Mao and
o - Increase execution time tq
reduce cost Humphrey 2013], Mesos, [Li et al. 2015]
Data - Reduce 10 and network - Increased waiting time for Scarlett, DARE, CDRM
Provisioning overhead data replication
Q Static - Easy to develop - Not very helpful Tooltips, Help Pages, Wizards
G
g Intelligent - Provide suggestions on cay - Hard to develop Ontologies, IBM Watsornalytics,
2 bases to help userdth MiningMart, DMA, WINGS, [Charest 2007
different experience levels
Script - Very flexible and powerful { - Low level R, Matlab,WEKA, Python, F#, Jaq|, Pig,
CL, APl | &xpertusersand -Hardtoleamand use \/oyna) Wabbit, Mahout, Oryx, H20, MLBa
programmers
SQL - Provide SQL interface to | - Less flexible than Scripts | DMQL, DAEDLUS, QDrill, DMX, Hivemall,
work onBig Datafor R
database administrators SQLTS, [Meo et al. 1996]
ol Graphical | - Providedraganddrop - Less flexible than Scripts | RapidMiner, IBM SPSS Modeler, WINGS
S . )
5 i for novice users [Kantere and Filatov 2015]
£ - Allow creating sophisticate:
= workflows
Sheet - Provide familiar interface fq - Only supports simple Excel Analytics Tabular, OpenRefine,
business users operations Cognos, BigSheets
Visualization | - Provide interactive analysig - Only supports simple IBM WatsonAnalytics, PowerView, SAS
for business users operations Visual Analytics Microstrategy Visual Insigh
Product - Better data privacy and - Expensivefime consuming HDP, Oracle Exalytics
security - Less scalable
% Service - Cheaper - Weaker on the data priva¢ AWS, BigQuery, IBMAnalyticsfor Hadoop,
£ - Faster to seip A SEEY HP HAVEN OnDemand, EM&Greenplum
3 - More scalable - Difficult to work when hug ' P
o amounts of data need to JUAP, IBM WatsonAnalytics, Tableau Onling
Qo

uploaded

MicroStrategyAnalytics Express, RapidMing
Cloud, [Xu et al. 2015]
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2.2 Limitations of Current Solutions

Each of the discussethalyticssolutions brings some features not available in the others, but also
adds some limitations and overheads. While there has been a continuous improvémaiytios
solutions to address differeAnalytics scenarios, there are still some gaps. In thisiaecwe
define the specifications for futuBeg DataAnalyticsEcosystems to provide improved and broader
support to organizations needs for the diffedemlytics scenarios.

1 Extensibility. Solutions can become obsolete if they are designed to onpodug fixed
number of data stores aAthalyticstechniques. It is thus crucial for futuBéy DataAnalytics
solutions to have a pldig architecture to support adding new algorithms and data stores.

1 Seamless data integratiowith organizations having #ir data in multistructured formats and
distributed across heterogeneous data stores, fligrddata Analytics solutions need to
provide an abstraction layer to hide these details from users. They need to allow users to join
this data together while mimizing data movement.

1 Seamless engine integratiddmalyticsconsists of multiple operations to transform raw data to
meaningful insights. Usually in the data preparation phase, SQL or script engines are used to
have interactive aliloc queries. Then in the modeling phase, machine learning engines like
Mahout WEKA etc. are used. This requires futiig DataAnalytics solutions to be able to
integrate engines in a single pipeline and handle teeémgine compatibility issise

9 Distributed processingThe majority of existing machine learning engines are locdahesag
like R, running on local machines and cannot scale to dealRBigtibata Distributed engines
like Mahoutand local engine extensions liRHadoopre-implement the algorithms which
makes their development time consumigtureBig DataAnalyticssoluionsneed to be able
to distribute the execution of existing algorithms without rewriting them

1 Approximate and incremental processiighile designing thénalyticsprocess, users are not

usuallysure of which operation to usghis makes them try diffent operations, which can be
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time consuming if they run on the whole dataset. Thus, flBigeDataAnalytics solutions

need to provide approximate and incremental results to give users indications of the results of
an operation without running it on théele dataset and to support riate Analytics

Execution and storage optimizatiddaving the data distributed among cloud nodes requires
optimizing theAnalytics execution tominimize data movement. FutuiBig DataAnalytics
solutions need to predict what data will be needed by future operations and to make sure that
this data is available on the underutilized nodes for the future operations.

Fault-tolerance.Big Data Analytics can run for long periods. Having to restartnfrahe
beginning in case of failure is not acceptable. FuBige Data Analytics solutions need to
support fauktolerance while minimizing its impact on performance.

Intelligent assistanceWith the huge set of availabl&nalytics techniques, even experts
someti mes need hel p. Intelligent assistance
skill level and problem at hand. Providing intelligent assistance in fiigr®ataAnalytics
solutions is important foAnalyticsto be more accessible to orggations, to minimize the
time-to-insights and to enhance the quality?ofalytics

Multiple user interfacesFor future Big Data Analytics solutions, a combination of user
interfaces should be provided to meet the needs of users of different skillsets AlRralytics
frameworks should provide the flexibility and the ability to add user defined operations of the
scripts; the easto-use draeanddrop interface for designing complex workflows of the
Graphicals; the alioc capabilities of the SQLSs; the fdiai environment of the sheets, and the

easy interpretation of the visualizations.

Servicebased.Having multiple Analytics engines and data stores in tApalytics process

makes the solution hard to setup, maintain, and scale. RityRataAnalytics solutions can

use the Service approach to outsource all these problems to the service provider. However, data

privacy and security issues need to be addressed.
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Chapter 3

Providing B8oabymabbke

ConsumableAnalytics attempt to address the shortage oflls#ti data analysts in many
organizations by offering analytic functionality in a form more familiar thonse expertise.
Providing consumabl@nalytics for Big Datafaces three main challenges. Tirst challengeis
running the Analytics on data of dgffent formats stored on heterogeneous data sidnesecond
challengeis providing an easy interface to allowhouse expertise to run these algorithms while
minimizing the learningycle Thethird challengeis distributing the execution of the Analygi
algorithms in order to analyze Big Data in a timely manner.

In this chapter, we propose tQ@®rill solution[Khalifa et al. 2016pbthat extendg\pache Dirill
to address the aforementioned challendésst, we start by presenting th&pache Drill base
version. Following that, welescribe theQDrill Analytics extensioncomposed othe Analytics

Adaptorandthe Distributed Analytics Query Language (DAQL)

3.1 Apache Dirill

ILOZ

Apache Dril[™ is an open source implementation of the proprieBoggle Dreme]Melnik et al.

201Q (publicly available a&oogle BigQuer¥® service)Drill is designed to allow accessing and

02 Apache Drill: https://drill.apache.org/

13 BigQuey: https://cloud.google.com/bigquery
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joining data from heterogeneous na@tational data sourc€sIDFS, Hive, MongoDRB etc.)while
providing the familialSQL interface of relational datases.Drill uses the standard SQL syntax
and Java Database ConnectivifOpen Database Connectivity(JDBC/ODBQ interface to
submit queries to the nenelational data storefrill thus makes use of the existing SQL skillsets
and Bl tools within an organization.

Drill supports queries on salescribing data likdSON with the ability to flatten the nested
data. It supports ethefly schema discovery, which enables execution firbaithout knowing
the structure of the data. Based on the data description within the submitted Quikry,
automatically compiles the query during the execution phase to create the schema. Afaillesult,
can handle scherrlass data. This removesetequirementsof having an ETL process and
maintaining schemas before data can be analyzed.

Unlike other frameworks that translate queries to MapReduce [oilk,uses the Massive
Parallel Processing (MPP) paradigm. The MPP paradigm splits the procasdidgta 10 across
multiple nodes, dividing the job across them. MPP nodes use a messaging interface to coordinate
the job execution. This paradigm allows parallel search, processing and fetching of data.

Architecturewise, Drill follows Google Drememulti-level processing architectuggigure4).

Leaf processes communicate with the storage layer to optimize accessing the data in parallel. The
leaf processes pass pak results to the intermediate processes, which perform parallel operations

on the intermediate results. Intermediate processes then pass the aggregated results to the root
process, which performs further aggregation and provides the final resultzliethapplication.

Drill , however, does not implement a dedicated root process. Instedadtjlampde (akaDrillbit )

can accept queries and become the root procesDfakiag Drillbit), leading to a better load

balancing when multiple queries are sutbed.

104 JDBC: http://www.oracle.com/technetwork/java/overvidw1217.html
1050ODBC: https://msdn.microsoft.com/eus/library/ms710252(v=vs.85).aspx
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EachDrillbit has aStorage Adaptoto optimize and provide access to the various data stores.
The Storage Adaptoworks withStorage Pluginshat transform the data loaded from a data store
to a unified internal data structure so that data of different formats coming from different sources
can be joined and processed. In additidtgrage Plugingnform the execution engine of any
native caphilities to speed up the processing, such as predicate pushbalvi.4 comes with
the following Storage Plugingreinstalled®® File System €SV, JSON Parquet and Delimited
Text), HDFS, HBase Hive, MongoDB S3 RDMS MySQL, Oracle DB MS SQL Serverand
Postgre$. TheStorage Adaptocan include user defined storage plugins for the other data stores.

Query executioiwise, when aDrill SQL query is submitted bgn application, théDrill
JDBC/ODBC interface is used to forward the query Brillbit that becomes thBriving Drillbit
and coordinates the execution. Trving Drillbit parses the query tdagical planthat describes
the work required to generate the query results and defines which data sources and operations to
apply. Acostbased opthizeris then used to apply various types of rules to rearrandediual
plan operators and functions to speed up the execution. Théasstl optimizer generates a
physical plarthat describes how to execute the query.

Thephysical plans given to he Parallelizerwhich creates thexecution plarmby splitting the
physical planinto multiple execution phases (fragmentiat can be executed in parallel. The
Parallelizerfirst fragments the plan intmajor fragmentsA major fragmentepresents a phasé
one or more related operations. Eaohjor fragmentis then parallelized into as mamyinor
fragmentsas can be run at the same time on the clusterin&r fragments a logical unit of work
that runs inside a threadrill schedules theminor fragmeis on nodes with data locality.

Otherwise Drill schedules them in a roundbin fashion on the availablgrillbits .

106 Prill Storage:https://goo.gl/EFGTuo
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3.2 QDrill

ApacheDrill is powerful in terms of accessing and joining data from heterogeneous sources, which
is usually a cumbersome task when done in data mining libraries. On the othéddilamihes not
have any data mining capabilities. Developing data mining algorithni3xrifb is time consuming
and so would likely be limited to a handful of algorithms, nothing compared to those available in
the wellestablished data mining libraries. The propo&datill [Khalifa et al. 2016pwith the
Analytics Adaptor solves these issudy usingDrill to load and join data from heterogeneous
sources and using the pegisting data mining algorithms of wadktablished data mining libraries
to train and score data mining modils distributed fashion

The QDrill full system architectwr is illustrated inFigure 16, showing the unmodified
components oDrill (Ul and JDBC/ODBC connection), the modifiedmponentqDistributed

Query Planner, Query Execution Engine and the Storage Adapter) and the newlycadplederg

(Analytics Adapter).
Driver Node 1 RN Unmodified Drill
SQL analytical Query ‘
Modified Drill
UI/JDBC/ODBC
Distributed Query Planner ) ol agﬁmn )

N7 E

Worker Node 1 1 ﬂVorker Node 2 = Worker Node N
Query Execution Engine Query Execution Engine Query Execution Engine
Storage Adapter | Analytics Adapter Storage Adapter | | Analytics Adapter Storage Adapter | Analytics Adapter
o Hg].;eT N B i };,;,;,e}’ Ty i o Engme\ ;
| 1 i |
. i ) OO0
\ Data Split/  Model | R \,\eln ; Data Split 2 Model \ R O\,\Eky Data Split 4 Model ‘\ R ,"\}(i(e

Figure 16 QDrill Architecture

3.2.1Analytics Adapter

The proposedAnalytics Adaptorworks in an analogous watp Dr i | | 6 s St .olr age
optimizes and provides access to various data mining librarieAfdigtics Adaptomworks with

Analytics Pluginghat transform the data loaded byill to a data structure understandable by the
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data mining libraries. This way, algorithms from more than one library can be used tagétieer
same Analytics proceskavng it to theAnalytics Adaptoto resolve the intelibrary data format
conversion. In addition, th&nalyticspluginsinvoke the APIs of the data mining library to train
and score data mining models. All these details are hidden from users.

The AnalyticsAdapter handles the two phases of data mining. Aetel Training phase
where a predictive model is built using a Training dataset (labeled dataset). The predictive model
relates the features extracted from the Training data to a Target property.(BabehdScoring
phasewhere the predictive model predicts (scores) the Target value for new data records with an
unknown Target (unlabeled dataset).

In the Model Training phasethe Analytics Adaptoron each Drillbit processs the
heterogeneous labelddtain parallelto put it in a format acceptable by the data mining algorithm
Anintermediate sulmodelis trainedon this processed labeled dbtarunninga singlenode data
mining algorithm on eacDBrillbit . The intermediate suimodes from all Drillbits are aggregated
at theDriving Drillbit to produce thdinal model Thefinal modelis then saved by our proposed
Model Storage Plugiand distributed across @rillbits to be used later for parallel scoririghis
approach speeds up both datacessingand model training as both operations are done in parallel
on all of the availabl®rillbits .

In the Scoring phasetheModel Storage Plugion eactDrillbit loads the trained model h&
AnalyticsAdaptorfeeds the loaded model with records friraunlabeleddata split available on
thatDrillbit , one record at a tim&ur desigrbrings therainedmodelto where data exists, unlike
the traditional approach where data needs to be imported ttathemininglibrary. Our design
speeds up the scogrprocess by distributing both data fetching and scoring.

As a prototype, we extendégbache Drill 1.2as outlined above and createtPanalyticsplugin
for the WEKAdew3.7.13data mining library to access tNéEKA data mining algorithmsThe

plugin also converts the data loadeddntl onthefly to theARFFformat accepted bWEKA
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3.2.2Distributed Analytics Query Language (DAQL)

The proposedQDrill solutionmodifiesDr i | | 6s Di st r i EndQuewey ExQautom v P |

Engineand introdues the Distributed Analytics Query Language (DAQLXDrill changes the
behavior ofD r i Distrlowted Query Planner and Query Execution Engine to rudmliadytics
gueries using -phase aggregation instead of the defautthdse aggregation to speed up th
computationsin the first phaseintermediate suimodelsare trained on eaddrillbit and in the
second phase alitermediate sultmodelsare aggregated at tBeiving Drill bit to produce thé&nal
model The DAQL extends standard SQL syntax to allow invoking data mining algorithms from

within thestandard SQL statements.

SQL- 1> USE dfs.tmp;
SQL- 2> ALTER SESSION SET “store.format’='model' ;
SQL- 3> TRAIN MODEL <model name> AS
SELECT qdm_train_ weka( 6 <al gori t Wmar gs>",
columns, label_column)
FROM "<Data Source>"

WHERE <conditions>;

Figure 17 Training a WEKA M odel Using DAQL

Figurel7 illustrates using th®AQL to train awEKAmModel in a distributed fashion using the
proposedAnalyticsAdaptorand theWEKAAnNalyticsPlugin. The first SQL statement changes the
storage location to a writable location. The second SQL statement telsilttétorage Adaptor
to usethe introducedviodel Storage Plugirio save the model after training. The third SQL
statement fetchebe training data from any Driupporéddata store using tHeEROMlause. The
FROMclause can also have a join between two heterogeneous data sbhec@4-ERElause
specifies any conditions on the recordsetzh. The SQL then uses the ngdm_train_  weka
UDF to define the classifier algorithm, set its arguments, specify the data columns to use for training

and specify the label column, respectivélyyuestion mark (?) can be used for ¢ladgorithm>
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to display a list of supported algorithms and for ¢aegs> to display a list of valid arguments
for the selected algorithm. Finally, the statement uses theTR&MN MODELclause to save the
trained malel under <model name> .

Figure 18 illustrates usingddAQL to update an existing updatable model with new training
records. The first SQL statement changes the storage location to a writable location. The second
SQL statement tells therill Storage Adaptorto use theModel Storage PluginThe third SQL
statement fetches the new training dataset using§Rt@Mlause. The newPPLYING keyword
in theFROMlause tellDrill to fetch the trained model fikold model name> . TheWHERE
clause specifies any conditions on the records to fetch. The SQL then uses the new
gdm_update_ weka UDF to define the classifier algorithm, set its arguments, specify the model
to update, specify the data columns to use for training and specify thedhbehgrespectively.

Finally, it uses th@ RAIN MODELclause to save the new trained model undeodel name> .

SQL- 1> USE dfs.tmp;
SQL- 2> ALTER SESSION SET “store.format’='model' :
SQL- 3> TRAIN MODEL <model name> AS

SELECT qdm_update_ weka( 6 <al gbmbt , 6<ar gs>"',

mymodel.columns[0] , mydata.columns,
mydata.label_column)
FROM “<Data Source>" AS mydata
APPLYING <old model name> AS mymodel

WHERE <onditions>;

Figure 18 Updating an Updatable WEKA Model Using DAQL
Figurel9illustrates usindAQL to score unlabeled data using a trained model. The first SQL
statement changes the storage location to a writable location. The second SQL statement tells the

Drill Storage Adaptoito save the scored records in CSV format. The third SQL statement fetches
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the unlabeled data using tARROMlause. Th&PPLYING keyword in th&FROMlause tellDrill

to fetch the trained model fikkmodel name> . TheWHERI[Elause specifies any conditions on

the records to fetch. BhSQL then uses the neywim_score  weka UDF to gply the trained

model on the unlabelaethta. The UDF specifies the modeid the data columns to use for scoring,
respectively. This UDF outputs a label for each record in the unlabeled dataset. Finally, the SQL
statement uses tI@REATE TABLEclause to ave the records along with their label in a new table

<results>

SQL- 1> USE dfs.tmp;
SQL- 2> ALTER SESSION SET “store.format =csv';
SQL- 3> CREATE TABLE <results> AS
SELECT mydata.columns,
gdm_score _weka( mymodel.columns[0] , mydata.columns)
FROM “<Data Source>" AS mydata
APPLYING <model name> AS mymodel

WHERE <conditions>;

Figure 19 Scoring a Trained WEKA Model Using DAQL
TheDAQLextendD r is ktdndard SQL to adthalyticscapabilities by supporting calls from
within the SQL statements to any supported data mining library. By distributing the algorithms and
handling data ETL, th®AQL allows users to dénalyticsin a clear and scalable wayttviless

lines of code compared to scripting and programming languages.

3.3Summary

We proposeQDrill, an extension té\pache Drillto add Analytics capabilities. The proposed
QDrill addresses the thr&@onsumable Analyticshallenges.
QDrill uses the proposédhalytics Adaptor and Analytics Plugins to addrénefirst challenge

of running the Analytics on data of different formats stored on heterogeneous data stores. The
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Analytics Adaptortransforms the heterogeneous data loaded from heterogeneous sources to a
format understandable by the underlying data mining library with no user intervention.

QDrill addresses tteecond challengef providing an easy interfa for inhouse expertisey
introducingthe proposedistributed Analytics Query Languagk allows invoking data mining
algorithms from within the standard SQL query statements. This allelususe expertise to use
the SQL language they are familiar with while havipDrill do thedistributed deployment, data
access and execution of the Analytics jobs behind the s€hisealso allows users to connect to
QDrill from within their Business Intelligence tool and use spreadsheets and visualizations to do
the Analytics.

QDrill addresghe third challengeof providing distributed Analytics by using the proposed
Analytics Adaptoand modifyingDr i | | 6 s Qu e r y to Eanmtermeadiate suimdtielsy i n e
on eachDrillbit then aggregate them all to producéireal modelon theDriving Drillbit. This
allows using any sequential singlede data mining library (e.g. BKA) and distributingthe
execution of its algorithms without toam&éeng t

it run in parallel
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Chapter 4

DistributingbubabUrDBi st

How to adapt data mining algorithms to handle Big Datahuge volumes? A question usually
answered by rewriting the data mining algorithms to run in a distributed fashion using a parallel
framework (e.gHadoop Spark. While this approach can result in fast algorithms, it is time
consuming and can be very challenging to implement for all algoriting. proposedQDrill
solutionovercoms this challengeand providedlistributed Analytics without going through the
hideous process of rewriting the algorithms.

In this chapterwe propose anewdata mining algorithmsaxonomy based on the difficulty of
distributing themThis gives us avay to partition the problem of distributing the algorithms into
four simpler problemsvhich we then address using four different distribution algorithivis.
identify the most challenging typmdnameit the AiAUnDistributabléd . A d a a&lgorithmiisn i n g
fiUnDistributabled i f it requires | oading thedewhtraih e dat a
a model. ThdJnDistributables represent more than 50% of the data mining algorithms and they
are usually not implemented in thativelydistributed machine learning libraries (eMphou).

Second, dr each type of the data mining algorithingJuding theUnDistributables we devise

analgorithmto distribute its execution. @integrate all the distributiomlgorithms to create the
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Data Mining Distribution (DMD)algorithm[khalifa et al. 2016cto distribute the execution of any
data miningalgorithm without rewriting a single line of its code.

Finally, for distributed Analytics, th&raining dataset needs to Ipartitioned andlistributed
among all computing nod€Brillbits). Thus, we propose tHeabelAware Disjoint Partitioning
(LADP)algorithm[khalifa et al. 2016dor partitioning andlistributing theTraining dataset among
the Drillbits. TheLADP guarantees that each data pintiis a good representative thfe whole

Training dataset thus preventitigeoverfitting ofintermediate si-modeldrained on eacBrillbit .

4.1 Algorithms Taxonomy

Data Mining Algorithm

P e ——

Updatable NonUpdatable

r—/\ r—/\
Aggregatable NonAggregatable  Aggregatable NonAggregatable

Memory Requirements: record-by-record in  record-by-record in load all records in load all records in
memory memory memory memory

Sub-Models Grouping:  result equals single cannot be groupe: result equals single cannot be grouped
model model

Difficulty to Distribute: Easy Moderate Moderate UnDistributable

Figure 20 Data Mining Algorithms T axonomy

Training a data mining model requires havindla! training datase&cords go through the training
algorithm to generate the one trained mo®atributing the training operation requires training
intermediatesubmodelson subsets of the training dataset and integrating thesenediatesub
modelsogether into a singlfnal model

In our approach, eachubmodeltraining operation runs on a differendde (Drillbits) on a
subset of the training dataset that resides on that node. This approach allows traolmgatels
in parallel which scales very well by adding more nodes as the training dataset size increases.

However, not all algorithms allow faimmg and combiningubmodels |t depends on t
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Updatabilityand Aggregatabilitypropertiesas illustrated in the data mining algorithms taxonomy
in Figure20. UpdatabilityandAggregatabilityare defined afllows:

Definition 4.1 (Updatable). Updatable algorithms are incremental algorithtmst can be
trained recoreby-record They can be updatesing only the newrainingrecords withouhaving
to re-train on the entirérainingdataset

Definition 4.3 (NonUpdatable). NonUpdatablealgorithms are batch algorithniisatrequire
loading the wholdraining dataset in memory to ruithese algorithms cannot be updated when
newtrainingrecords arrive. To update them, they must beai@ed using theombinedold and
newtraining datasets.

Definition 4.3 (Aggregatable). Aggregatable algorithms are algorithms that can create a
model by combining a set aubmodelseach trained on a different data subset. An aggregated
model produced by combining teelxmodelss equivalent ta model trained on the whole training
dataset on a single node.

Definition 4.4 (NonAggregatable).NonAggregatablalgorithms are algorithms that cannot
be creatd by combining a set afubmodels NonAggregatablalgorithms do multiple passes on
the entiredataset, thus they must run on a single node wheenthretrainingdata is available.

As an exampleFigure 21 represents a Venn diagram WE K A élgorithms, divided to
Updatable-NonAggregatable (K*, KNN, HoeffdingTre® NonUpdatable-Aggregatable
(Logistic  Regressign RandomFore3t Updatable-Aggregatable (NaiveBayes and
NonUpdatable-NonAggregatable (the res) algorithms. The figureshows QDrill using the
proposedata Mining Distribution (DMD)algorithm[Khalifa et al. ®16d tosuppora | | WEKAOG s
algorithmswithout any algorithm rewriteSpark MLlibandMahoutonly support, with algorithm

rewrites, fivé®” and twd® algorithms, respectively.

107 MLlib supported algorithmshttp://spark.apache.org/mllib/
108 Mahout supported algorithmittps://mahout.apache.org/users/basics/algorithms.html
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QDrill

Linear Regression Bayes Network Multilayer Perceptron
quﬁ'(? MLIib
Logistic Regression KNN

w
Q

n n z Random Tree

JRip Aggregatable & Updatable

0 g

Decision Stump — Hoeffding Tree Decision Table
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list
J48: C4.5 decision tree

Figure 21WE K A &lgorithms.

4.1.1Updatable-AggregatableAlgorithms (Memory-Free Fully -Distributable Algorithms)

Th e al g éggiedabilityprapertyallowstraining submodelsin parallel on different nodes
on different subsets of theainingdata. Once the training of tlseibmodelsis done, theyxanbe
combined forming thdinal model Th e a | g tpdatabilityp@ertyallows loadingonly one
record at atime in the o d mdmsryto do the training. Thiseducethetrainingmemory footprint
and allovs processing datasets of any diE&emoryFree). This type of algorithmss theeasiest to
distributesince they requirasmallamount ofmemory on th&orker Nodeand dlow combining
multiple submodelgo create théinal model However, these algorithms are rardEKAonly has

one algorithm of thisype which ishe Naive Bayes

4.1.2NonUpdatable-Aggregatable (Memory-Constrained Fully -Distributable Algorithms)

Th e al g éggiedahilityPrapertyis usedto trainsubmodelsin parallel on different nodes
on different subsets of theainingdata. Oncehe training of thesubmodelsis done, theyxanbe
combined forming théinal model Since the algorithm iblonUpda&ble eachsubmodelmust

| oad the entire data subset Thisputsatohstgrainhom the 0 s
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size of the data subset that can be used for trainkodpaodel(MemoryConstrainedl. This type
is still easy to distribute Given a large enough cluster of nodes, th&ning dataset can be
partitioned to subsets thatcanfigin o d e 6 s me mao thesesubddts meedmbig enough
to train thesubmodes on all class labelsExamples of tls type arelLogistic Regressiomnd

Random Forest

4.1.3Updatable-NonAggregatable (MemoryFree SemiDistributable Algorithms)

Th e al g dpdatabiitympdoperty allows loadingonly one record at a time in teo d e 6 s
memory todo the training. Thus, iequires a lowmemory footprint and allogprocessing datasets

of any sizes(MemoryFree). However, de t o t h e NanAgpegatahilitypropesty,
submodelscannot be trained separately on different nodes then combined toJdtisetype of
algorithmcan be smidistributedby loading the data in parallel using all cluster nodes, then
sendingall data to a centralized notle train a singlenodel This allows distributed data loading

but centralizedraining Examples of this type aklNN andHoeffding Tree

4.1.4NonUpdatable-NonAggregatable (UnDistributable Algorithms)

An algorithmd SNonAggregatabilityproperty doesnot permittraining submode$ separately on
different nodes then combining them. All daiteed to be sent to a centraide to train a single
model Also, due tcana | g o r NonhUpdatalsilityproperty,the entirdrainingdataset needs to be
loaced t o t he memanyttotrain themsiogthedél This creates large memarfootprint

and limits the sizeof the datasets that can be processsidg this type of algorithmsThese

al gor i tUnbistributabled sinfieneither the data loadingpr the training processcan be
distributed UnDistributablealgorithms represent more than 50% of the data mining algorithms and
they are usually not implemented in the distributed machine learning librariesvighguy.
Examples oUnDistributablealgorithms areMulti-Layer Perceptror{Neural Networks), Decision

Trees,andSupport Vector Machine
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4.2 Data Mining Distribution (DMD) Algorithm

The Data Mining Distribution algorithm (DMD])Khalifa et al. 2016distributes the execution of
all four types of data mining algorithms. Distributing thggregatableypes is easy and straight
forward. Submodelsare trained in parallel on different nodes on different subsets tfaineng
data. Once the training df¢submodelds done submodelsarecombined forming th&nal model
The challengehowever lies in distributing theNonAggregatableypes.The main issue with
distributing thesealgorithms is thathey do not allowtraining sulbmodes$ separately on different
nodes then combining them to get fimal model The DMD algorithm distributes the execution of
these algorithms byraining submodes on subses of thetraining dataseton all nodes. Then,
overcoms t h e a | gMNonAggrdyatedlity by combining these submodels using an
aggregation algorithm likgotingor Averaging This method is usualieferred to irtheliterature

asClassifier Ensemble

4.2.1Classifier Ensembles

A Classifier Ensembles a group of two or morgrained submodels(classifier9. The Classifier

Ensembleelies on the idea that there is no alaéa miningalgorithm that outperforms all others

for all situations FernandeDelgado et al 2014 Classifiers in the Ensemble mitigate one

anothed &ults by aggegatingther individual results, thus eliminating the risk of picking a bad

classifier. Aggregating the classifiers resuttlsoprevensfallinginto a ¢l assi fi er 6s
Using Ensembleallows modelling functions that a single classifier alone camuutel For

example, a linear classifier cannot model curves, but using an ensemble of many linear classifiers

makes it possible to model functions that are closer to the optimalEmsembés are also

especially welsuited to deal witlConcept Driff Abdulsalam et al 20Jivhere the newly arriving

data has different statistical properties than that of the data used to train the Enééouhiak et

al 2014. Approaches like th&treaming Esemble Algorithm (SEAptreet and Kim 20Qkand the

Accuracy Weighted Ensemble (AWBJang et al. 2003use Classifier Ensemble® overcome
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Concept Driftby training newmodels on the new data, evaluatthg old models on the new data
and seledhg thebest performing classifiers to constitute the Ensemble in the next time epoch.

A lot of research has been conducted to exploit the local behavior of the different algorithms
to enhance the accuracy of the overall EnsembBénandedelgado et al 20914 Now, it is
established that an Ensemble d¢f)darge enougtrset of(ii) diverse(iii) unstable(iv) well-trained
classifiers ofv)more than random accuraayill have thesame or better prediction accurattyan
a single classifietrained on the entirgraining datasefHansen and Salamon 19%rogh and
Vedelsby 19950ptiz and Shavlik 1998Rokach 201D The reasons behind this are:

(i) Using alarge enouglset of classifierallowsa ¢ | as s i f ioleecodrectechy thetothhdr e s

classifiers in the Emsnble FernandeDelgado et al 2014
(i) Combining identical classifiers is useless since they misclassify the same récBigisrse

set of classifiers means that the Ensemble classifiers should make uncorrelated errors with

respect to one another. Thatesch classifier in the Ensemble misclassifies a different set of

records Chawla et al. 2003Unfortunately, the problem of how to measure classifier diversity
is still an open research topic. However, a number of appesacan be used for classifier
diversification Brown et al. 2005Rokach 2010, Wozniak et al 2014
o Different training set records€ach classifier is trained on a ssét of the training data
records. This approach is convenient in the cases of shortage or excess of learning
examplesin thecase ofashortagef data different joint random subsets can be generated
from the data. Inhe case ofanexcess amount of data that cannot fit immey, disjoint
subsets that fiin memory can be generatethe nost popular techniques aBmotstrap
Aggregating (Bagging)Breiman 199pandBoosting[Freund 199D

o Different training set attributes (columns/featurdsach classifier is trained on the entire
set oftraining data records but on a ssét ofthe columns Bryll et al. 2003;Ting et al.

2011
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o Different labelsEach classifier is designed to classify only a-sebof the problem labels.
For example, a muHilass classification problem can be decomposed into a set of binary
classification problemgJalar et al. 2011

o Different agorithm parametersEach tassifier is initialized withdifferent values for its
parameters. Thusheyhave a different local optim&\Jozniak et al 2014

o Different algorithmsEach classifier is designed using a different algorithm that is good
with handing a subset of the problem patterns. This approach takes advantage of the
different biases of each algorithiplpert 2001

(iif) Unstable classifierare classifiersvhoseaccuracy depends on the training dataShanging
the training datasetald resultin a different model of a different accuradyhese classifiers
include Multilayer Perceptron Decision Treesand Linear RegressioriOpitz and Maclin
1999.

(iv) Welktrained means that the training dataset needs to be large enough to insure the classifier
has seen all different patterns. Wiig Datg data scientis have enough data to train a
diversified eassembleof classifies [Opitz and Maclin 1999

(v) Each Ensemble Cladisir must achievemore than random accuracy50%+ correct
predictions) As stated bythe Condorcet Jury TheorerfShapley and Grofman 1984
combining a largeumber of weak classifie($0%+ accuracy) would result in &nsemble

of high prediction accurgc

Our approach to distribute the execution of the data mining algorithms usedifferi@nt
training set records a p pto toag arhensemble of homogeneous classifiers (i.e. use the same
algorithm over diverse data sets). This method presents th@estnmand easiesv-automate
approach for classifier diversification. In terms of the ensemble design, we considered a number of

approaches:
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Figure 22 Ensemble Designs

First, the Boosting approach Freund 199D illustrated in Figure 22a incrementally (i.e.

sequentially) builds the ensemble by emphasizing when training each new classifier on the records

misclassifed by the previous classifiers. Once the ensemble classifiers are all trained, the prediction

is performed by taking theveighted voteo f

accuracy onthetraining set as the weight.

the cl assi fi

er so

predict.i

The second approadlustrated inFigure22b is Bootstrap Aggregating (BaggingBreiman

1994. In Bagging classifiers are trained independently, and in parallel, on a subsettiafitiveg

set drawn randomly with replacement. Each classifier is trained on the average of 63.2% of the

training records Bauer and Kohav1999 where a training set record can be used to train zero or

more classifies. Prediction is done byotingamongthe ensemble classifiers where they all have

equal weight.

While Boostinghas been shown to yield better accuracy tagging it has been also shown

thatBoostingeffectiveness depends on the data set used for training, making it more susceptible to
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noisydata Ppitz and Maclin 1999 Boostingalso tends to ovdit the training data as it iteratively
trains the ensemble classifiers on the misclassified records of the training set. This iterative
sequential training nature d@oostingmakes it challengingo run it in parallel to create the
ensemble as required in our case. On the other Baiggiingis more robust in noisy scenarios, its
accuracy is nogreatly affected by the training set and it is naturally parallelizaBlpitz and
Maclin 1999.

The paallel nature ofBaggingalong with the other features previously discussed makes
Baggingwell-suited for creating the classifier ensemble to address the problem at hand. However,
the originalBaggingalgorithm Breiman 199§ cannot be directly implementddr our problem.

The originalBaggingalgorithm works by having each of the ensemble classifiers trained on a set
of records drawn randomly from the training set with replacemmeach that each subset hhs

same number of records as the original fulinirey set. With Big Data, training using a single
multi-gigabyte dataset is impractical as it does not fit in memory, Baggingto create datasets

of the same size as the original dataset, one for each classifier, is therefore impractical.

The Bagginglike approach Chawla et al. 20Q3addresses this challenge by training the
ensemble classifiers on partitions of the training set that can fit in memory, where these partitions,
if combined, will have the size of the original training set. This wayhalldata is used ithe
trainingwhich yields a better accuracy than if sampling is usdr[ich et al. 2002 Training the
ensemble classifiers on partitions of the original set provides a diverse set of classifiers which
improves the ensemble accuragye Bagginglike approach is less complex and faster than the
original BaggingapproachEmpirical studies have shown that an ensemble built usirBgbeging
like approach can perform at least as accurately as an ensemble created using th&agigjimg!
approach Breiman 199pand can exceed the accuracy of a single classifier built tisengntire

trainingdataset[Chawla et al. 2003
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4.2.2Distributing Updatable-Aggregatable Algorithms (Memory-Free Fully -Distributable)

For UpdatableAggregatablealgorithirs, the DMD algorithmprocesses the data recdrgtrecord,
thus achieving a very low memory footprint that allows processing datasets of anyt siges.a
2-phase aggregation approach fdistributing the UpdatableAggregatable algorithms as
illustratedin Figure23. First, eachWorker Nodérains asulbmodelon the subset dfainingdata
available locally. Second, alVorker Nodesend their trainedubmodelsto theDriving Nodeto

be aggregated amaoducethefinal model
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Queens = Queens <=
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Figure 23 QDrill T raining for Updatable-Aggregatable Algorithms.

This approach speeds up both data fetching and model training as both operations are done in

parallel on all of the available nodes. This approach is also not limited to the amount of available

memory since only one record needs to be in memory at alisngy theDMD to distribute his

type of algorithms achieves orders of magnitude better performance compared to natively

distributed solutions likd&ahoutand does not require as much memorppark MLIib[Khalifa

et al. 2016h

4.2.3Distributing NonUpdatable-Aggregatable Algorithms (Memory-Constrained Fully -
Distributable)

For NonUpdatableAggregatable algorithms, the DMD al gor i t hm uses

Aggregatability property to overcome its NonUpdatability propefiye DMD does not load the
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entire data subset into théorker Nodé s me mo r y trainssaobanbdelaehch on 100,000
recordt® on theWorker NodesThus, at any point in time, there is a maximum of 100,000 records
|l oaded i n memor y. Aggregabilitgpropehyethesedulgmmdelsttaihethdnshe
sameWorker Nodeare aggregatetbgether to create asggregatedsulbmodel The aggregated
submodelis then sent to thBriver Nodefor aggregation with the oth@ggregated sulmnodels

trained on the othaNorker Nodeso produce théinal model

Figure 24 QDrill Training for NonUpdatable-Aggregatable Algorithms.

The 2phase aggregation approach used tbhg DMD algorithm for distributing the
NonUpdatableAggregatable algorithms is illustrated in Figure 24. This approach allows
overcominghe memory constraints while producing a model that is the same as if it was trained on
a single node. This approach speeds up model training as it is done in parallel on all of the available
nodes It alsoremoves the memory constraiby only having 10,000 record$éoadedin memory
at any given timand uset h e a | ¢Aggregabilllyprépsrtyto createaggregated sumodels
on theWorker NodesHere there is a reduction he computational performan@mmpared to that

of UpdatableAggregatablealgaithms, since 100,000 records need to be loaded first in memory

109 A constant of 100,000 records was used as a simplification to make the data fit in the available memory.
A more advanced algorithm would set the number of records based on the record and memory sizes.
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