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Abstract 

Businesses look at Big Data as an opportunity to gain insights for improving their services. The derivation 

of such insights requires using different data mining techniques. Mature data mining tools like WEKA or 

R have been in development for years. They implement a large number of data mining algorithms and can 

support sophisticated Analytics. However, these mature tools are designed to run on a single machine 

making them unsuitable to handle Big Data. Using these tools requires data mining and statistics 

knowledge, and some of them, like R, are hard to learn.  

Businesses do not always have the technical skills required to carry on such Analytics. Even if they do, 

it is challenging to find a tool with the needed algorithms that supports distributed processing to handle the 

Big Data high arrival velocity and large volumes. The Businessesô analytical requirements can be addressed 

by Consumable Big Data Analytics, that is, solutions that allow businesses to do Big Data Analytics 

themselves using their in-house expertise.  

In this work, we provide a Consumable Analytics solution to meet the businessesô analytical needs. 

First, we conduct a survey of existing Analytics solutions to identify possible areas of improvement to 

provide Consumable Analytics. Second, instead of developing distributed data mining algorithms to handle 

Big Data, we develop the Data Mining Distribution (DMD) algorithm and the Label-Aware Disjoint 

Partitioning (LADP) algorithm to distribute the execution of all existing single-machine data mining 

algorithms without rewriting a single line of their code. This gives users the flexibility to use any available 

data mining library, have algorithms like Hoeffding Tree run 70% to 95% faster and achieve up to 18% 

increase in prediction accuracy. Third, we develop the free and open source QDrill solution to implement 

our DMD and LADP algorithms for distributed Analytics. QDrill implements our proposed Distributed 

Analytics Query Language (DAQL) interface that adds Analytics capabilities to the regular SQL syntax 

and allows integration with Business Intelligence (BI) tools. This allows businesses to use their in-house 

expertise to do Big Data Analytics using the spreadsheets and visualizations of their BI tools. 



iii  

 

Co-Authorship  

Chapter 1 is based on: S. Khalifa , and P. Martin. ñSmart Big Data Analytics as a Service Framework: A 

Proposal.ò 24th International Conference on Computer Science and Software Engineering proceedings, 

Markham, Ontario, pages 327-330. 2014. 

 

Chapter 2 is based on: S. Khalifa, Y. ElShater, K. Sundaravarathan, A. Bhat, P. Martin, F. Imam, D. 

Rope, M. McRoberts, and C. Statchuk.  ñThe Six Pillars for Building Big Data Analytics Ecosystems.ò 

ACM Computing Surveys. 49(2): Article 33, 1-36. 2016. 

 

Chapters 3 and 5 are based on: S. Khalifa, P. Martin, D. Rope, M. McRoberts, and C. Statchuk. ñQDrill: 

Query-Based Distributed Consumable Analytics for Big Data.ò IEEE 5th International Congress on Big 

Data proceedings, San Francisco, USA, pages 117-124. 2016. 

 

Chapters 4 and 5 are based on: S. Khalifa, P. Martin, D. Rope, and C. Statchuk. ñQDrill: Distributing 

the Un-Distributable for Big Data Analytics.ò ACM Transactions on Knowledge Discovery from Data 

(TKDD). Manuscript ID: TKDD-2016-10-0211, submitted 12-Oct-2016, 31 pages. 2016. 



iv 

 

Acknowledgements 

 

Firstly, I would like to express my sincere gratitude to my advisor Prof. Patrick Martin for his continuous 

support of my PhD study and related research, for his patience, motivation, and immense knowledge. His 

guidance helped me in all the time of research and writing of this thesis. I could not have imagined having 

a better advisor and mentor for my PhD study.  

Besides my advisor, I would like to thank Prof. Selim Akl and Prof. James Cordy and my thesis 

committee: Prof. Hossam Hassanein and Prof. Mohammad Zulkernine for their insightful comments and 

encouragement. I would also like to thank the School of Computing and Queenôs University for providing 

me the opportunity to do my PhD. Thanks to NSERC and IBM Center of Advanced Studies for funding my 

research. 

My sincere thanks also goes to the IBM Analytics team: Dan Rope, Craig Statchuk, and Rebecca Twose 

who provided me an opportunity to get a continuous feedback from their IBM customers about their 

Analytics needs which helped a lot designing the QDrill solution.  

I would like to thank the Center for Machine Learning and Intelligent Systems, Bren School of 

Information and Computer Science, University of California, Irvine, for their publicly available Machine 

Learning Repository [http://archive.ics.uci.edu/ml] from which data sets were used in this work. 

I thank my fellow lab-mates: Yahia Elshater, Khaled Elgazzar, Rizwan Mian, Farhana Zulkernine, 

Safwat Ibahim, Tarek Mamdouh and Sima Soltani for the stimulating discussions. Also, I thank my friends: 

Fahim Imam, Prashant Agrawel, Dima Liashenko, Hassan Nouri, Ahmed Youssef and Mohamed Sami for 

all the fun we have had in the last four years. 

Last but not the least, I would like to thank my family: Samir Khalifa, Sawsan ElSaid, Moataz Khalifa, 

Raôofa Mahran, Sami ElSaid, Zainab Amin, Salwa ElSaied, Seddik Asfoor, AnasElWejoud Youssef and 

my sweet Omneya for supporting me throughout the PhD journey and my life in general. 



v 

 

Statement of Originality 

I hereby certify that all of the work described within this thesis is the original work of the author.  Any 

published (or unpublished) ideas and/or techniques from the work of others are fully acknowledged in 

accordance with the standard referencing practices. 

 

Shady Khalifa 

(Mar, 2017) 



vi 

 

Table of Contents 

Abstract ......................................................................................................................................................... ii  

Co-Authorship.............................................................................................................................................. iii  

Acknowledgements ...................................................................................................................................... iv 

Statement of Originality ................................................................................................................................ v 

List of Figures .............................................................................................................................................. ix 

List of Tables ............................................................................................................................................... xi 

Chapter 1 Introduction .................................................................................................................................. 1 

1.1 Motivation ........................................................................................................................................... 2 

1.1.1 Analytics on Heterogeneous Data ................................................................................................ 2 

1.1.2 Consumable Big Data Analytics .................................................................................................. 2 

1.1.3 Distributed Data Mining Algorithms ........................................................................................... 3 

1.2 Thesis Statement ................................................................................................................................. 4 

1.3 Contributions....................................................................................................................................... 4 

1.4 Thesis Organization ............................................................................................................................ 6 

Chapter 2 The Big Data Analytics Ecosystem .............................................................................................. 7 

2.1 Big Data Analytics Ecosystem Taxonomy ......................................................................................... 8 

2.1.1 Big Data Storage .......................................................................................................................... 9 

2.1.1.1 Relational Database Management Systems (RDBMS). ........................................................ 9 

2.1.1.2 Distributed File System (DFS). ........................................................................................... 10 

2.1.1.3 Not-only Structured Query Language Systems (NoSQL). ................................................... 12 

2.1.2 Big Data Processing ................................................................................................................... 15 

2.1.2.1 Batch Processing................................................................................................................. 16 

2.1.2.2 Interactive Processing......................................................................................................... 18 

2.1.2.3 Iterative Processing. ........................................................................................................... 19 

2.1.2.4 Incremental Processing. ...................................................................................................... 21 

2.1.2.5 Approximate Processing. .................................................................................................... 23 

2.1.2.6 In-Database Processing. ..................................................................................................... 24 

2.1.3 Analytics Orchestration.............................................................................................................. 25 

2.1.3.1 Scheduling. .......................................................................................................................... 25 

2.1.3.2 Provisioning. ....................................................................................................................... 29 

2.1.4 Big Data Analytics Assistance ................................................................................................... 32 

2.1.4.1 Static Assistance. ................................................................................................................. 33 



vii  

 

2.1.4.2 Intelligent Assistance. ......................................................................................................... 34 

2.1.5 Big Data Analytics User Interfaces ............................................................................................ 39 

2.1.5.1 Scripts. ................................................................................................................................ 40 

2.1.5.2 SQL-based interfaces (SQLs) .............................................................................................. 41 

2.1.5.3 Graph-based Interfaces (Graphicals) ................................................................................. 45 

2.1.5.4 Sheets .................................................................................................................................. 47 

2.1.5.5 Visualizations ...................................................................................................................... 48 

2.1.6 Big Data Analytics Deployment Methods ................................................................................. 49 

2.1.6.1 Product ................................................................................................................................ 50 

2.1.6.2 Service ................................................................................................................................. 50 

2.1.7 Summary .................................................................................................................................... 52 

2.2 Limitations of Current Solutions ....................................................................................................... 54 

Chapter 3 Providing Consumable Analytics ............................................................................................... 56 

3.1 Apache Drill ...................................................................................................................................... 56 

3.2 QDrill ................................................................................................................................................ 59 

3.2.1 Analytics Adapter ...................................................................................................................... 59 

3.2.2 Distributed Analytics Query Language (DAQL) ....................................................................... 61 

3.3 Summary ........................................................................................................................................... 63 

Chapter 4 Distributing the UnDistributables .............................................................................................. 65 

4.1 Algorithms Taxonomy ...................................................................................................................... 66 

4.1.1 Updatable-Aggregatable Algorithms (Memory-Free Fully-Distributable Algorithms) ............. 68 

4.1.2 NonUpdatable-Aggregatable (Memory-Constrained Fully-Distributable Algorithms) ............. 68 

4.1.3 Updatable-NonAggregatable (Memory-Free Semi-Distributable Algorithms) ......................... 69 

4.1.4 NonUpdatable-NonAggregatable (UnDistributable Algorithms) .............................................. 69 

4.2 Data Mining Distribution (DMD) Algorithm ................................................................................... 70 

4.2.1 Classifier Ensembles .................................................................................................................. 70 

4.2.2 Distributing Updatable-Aggregatable Algorithms (Memory-Free Fully-Distributable) ............ 75 

4.2.3 Distributing NonUpdatable-Aggregatable Algorithms (Memory-Constrained Fully-

Distributable) ...................................................................................................................................... 75 

4.2.4 Distributing Updatable-NonAggregatable Algorithms (Memory-Free Semi-Distributable) ..... 77 

4.2.5 Distributing NonUpdatable-NonAggregatable Algorithms (UnDistributable) .......................... 78 

4.2.6 Summary .................................................................................................................................... 79 

4.3 Label-Aware Disjoint Partitioning (LADP) Algorithm .................................................................... 80 

4.4 Summary ........................................................................................................................................... 83 



viii  

 

Chapter 5 Evaluation ................................................................................................................................... 85 

5.1 Data Volume Analysis ...................................................................................................................... 86 

5.2 Data Dimensionality Analysis .......................................................................................................... 87 

5.3 Scalability Analysis .......................................................................................................................... 89 

5.4 Partitioning Analysis ......................................................................................................................... 90 

5.5 Class Label Skewness Analysis ........................................................................................................ 97 

5.6 Class Labels Number Analysis ......................................................................................................... 99 

5.7 Summary ......................................................................................................................................... 102 

Chapter 6 Conclusions and Future Work .................................................................................................. 104 

References ................................................................................................................................................. 108 

  

  



ix 

 

List of Figures 

Figure 1 The Big Data Analytics Ecosystem Taxonomy .............................................................................. 8 

Figure 2 HDFS architecture ........................................................................................................................ 11 

Figure 3 MapReduce Dataflow ................................................................................................................... 16 

Figure 4 Dremel Query Execution Flow ..................................................................................................... 18 

Figure 5 YARN Operation .......................................................................................................................... 26 

Figure 6 DMQL Query Structure ................................................................................................................ 43 

Figure 7 DEADALUS Training .................................................................................................................. 43 

Figure 8 DEADALUS Scoring ................................................................................................................... 43 

Figure 9 DMX Create Predictive Model ..................................................................................................... 44 

Figure 10 DMX Training ............................................................................................................................ 44 

Figure 11 DMX Scoring ............................................................................................................................. 44 

Figure 12 Hivemall Training ...................................................................................................................... 44 

Figure 13 Hivemall Scoring ........................................................................................................................ 44 

Figure 14 Meo et. al Mining Association Rules ......................................................................................... 45 

Figure 15 SQL-TS Time Series Query ....................................................................................................... 45 

Figure 16 QDrill Architecture ..................................................................................................................... 59 

Figure 17 Training a WEKA Model Using DAQL ..................................................................................... 61 

Figure 18 Updating an Updatable WEKA Model Using DAQL ................................................................ 62 

Figure 19 Scoring a Trained WEKA Model Using DAQL ......................................................................... 63 

Figure 20 Data Mining Algorithms Taxonomy .......................................................................................... 66 

Figure 21 WEKAôs Algorithms. ................................................................................................................. 68 

Figure 22 Ensemble Designs. ..................................................................................................................... 73 

Figure 23 QDrill Training for Updatable-Aggregatable Algorithms. ......................................................... 75 

Figure 24 QDrill Training for NonUpdatable-Aggregatable Algorithms. .................................................. 76 

Figure 25 QDrill Training for Updatable-NonAggregatable Algorithms ................................................... 77 

Figure 26 QDrill Training for NonUpdatable-NonAggregatable Algorithms. ........................................... 78 

Figure 27 Bagging-like Data Partitioning Approaches. .............................................................................. 80 

Figure 28 Invoking LADP and DMD Algorithms from DAQL. ................................................................ 82 

Figure 29 Effect of Number of Records on Training. ................................................................................. 86 

Figure 30 Effect of Number of Records on Scoring. .................................................................................. 87 

Figure 31 Effect of Number of Columns on Training. ................................................................................ 88 



x 

 

Figure 32 Effect of Number of Columns on Scoring. ................................................................................. 88 

Figure 33 QDrill Scaling. ............................................................................................................................ 89 

Figure 34 a) Unordered Training Dataset. B) Ordered Training Dataset. ................................................... 91 

Figure 35 QDrill Training Time Evaluation for HIGGS Dataset compared to a single node.  ................... 92 

Figure 36 QDrill Scoring Time Evaluation for HIGGS Dataset compared to a single node.  .................... 93 

Figure 37 Accuracy Evaluation for HIGGS Unordered Dataset. ................................................................ 94 

Figure 38 Accuracy Evaluation for HIGGS Ordered Dataset.  ................................................................... 94 

Figure 39 Accuracy Evaluation for HIGGS Ordered Skewed Datasets. .................................................... 98 

Figure 40 Accuracy Evaluation for HIGGS Ordered Datasets with Different Number of Class Labels. . 100 

 

 



xi 

 

List of Tables 

Table 1 Big Data Approaches for the Six Pillars ........................................................................................ 52 

Table 2 Data Sets Characteristics Summary for the Partitioning Analysis. ................................................ 91 

Table 3 Data Sets Characteristics Summary for the Class Label Skewness Analysis. ............................... 98 

Table 4 Data Sets Characteristics Summary for the Class Label Number Analysis. ................................ 100 

 



 

1 

 

 

 

Chapter 1 

Introduction 

 

In the Big Data era, we all, in one form or another, participate in generating data. Big Data is 

heterogeneous. It can be str uctured, which is generated by applications like Customer Relationship 

Management (CRM) and Enterprise Resource Planning (ERP) systems and typically stored in rows 

and columns with a well-defined schemas. It can be semi-structured , which is generated by 

sensors, web feeds, event monitors, stock market feeds, and network and security systems. Semi-

structured data usually have meta-data that describes their structure, however this structure does 

not always fit in rows and columns. Big Data can also be unstructured , which is typically 

generated by people in forms such as social media, text documents, videos, audio and images. 

Along with having a variety of data formats, Big Data is generated in huge volumes at a rapid 

velocity with no obvious way of telling the veracity of it. With such properties, data has outgrown 

the ability to be stored and processed by many traditional systems [Manyika et al. 2011].  

The value of data is realized through insights, taking into consideration that the utility of some 

data points declines very quickly. Increasingly, businesses success has become dependent on how 

quickly and efficiently they can turn the petabytes of data they collect into actionable information 

[Turner et al. 2012].  



 

2 

 

1.1 Motivation  

Big Data Analytics offers businesses the means to discover hidden patterns in such data and use 

these patterns to predict the likelihood of future events. Analytics can be Descriptive which is used 

to summarize what happened. It can be Predictive which utilizes a variety of statistical, modeling, 

data mining, and machine learning techniques to study recent and historical data, thereby allowing 

businesses to make predictions about the future. There is also an emerging form of Analytics called 

Prescriptive Analytics that recommends one or more courses of action and shows the likely 

outcome of each decision. 

Businesses need to overcome a number of challenges to reap the benefits of Analytics. The 

work in this thesis aims at addressing these challenges to empower businesses to do Predictive Big 

Data Analytics to make predictions about the future and use that to recommend courses of action.  

1.1.1 Analytics on Heterogeneous Data  

The first challenge is to run Analytics on heterogeneous data to support the business need of 

analyzing data from many sources like relational database, excel files, twitter, and Facebook. This 

requires joining data of different formats (structured, semi-structured and unstructured) that is 

distributed across heterogeneous data stores (Relational Databases, NoSQL Databases and 

filesystems) and putting them in a format that can be processed by the data mining algorithms. 

Most of the existing libraries use an Extract-Transform-Load (ETL) operation to extract the data 

from the different stores and transform their format to an acceptable schema. This approach is time 

consuming and requires having all data available beforehand. 

1.1.2 Consumable Big Data Analytics 

The second challenge is overcoming the business usersô lack of data mining and statistics 

knowledge needed to carry out the Analytics process. Analytics is the application of computer 

science, data storage, data mining and machine learning, statistical analysis, artificial intelligence 

and pattern recognition, visualization, operations research, Business Intelligence (BI) and business 
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and domain knowledge to real-world data sources to bring understanding and insights to data-

oriented problem domains [Turner et al. 2012]. Analytics being multidisciplinary, makes it very 

hard for businesses to find the needed technical skills to adopt Big Data Analytics.  

Consumable Analytics is one of the main trends to address this challenge and overcome the 

unavailability of Analytical skills by making Analytics easier to use. Consumable Analytics refers 

to increasing the impact of the skills already existing in an organization by producing tools that 

make Analytics easier to build, manage, and consume [IBM 2012]. Consumable Analytics can be 

in the form of using a familiar interface or programming language. It can be in the form of 

simplifying or hiding the data access and the distributed execution of the Analytics algorithms.   

1.1.3 Distributed Data Mining Algorithms  

The third challenge is distributing the execution of the existing ñarsenalò of data mining algorithms 

to handle the Big Data huge volumes. The majority of existing data mining libraries like R1, WEKA2, 

RapidMiner3only support sequential single-machine execution of the data mining algorithms. This 

makes these libraries unsuitable for dealing with the Big Data huge volumes. 

Scalable distributed data mining libraries like Apache Mahout4, Cloudera Oryx5 , Oxdata 

H2O6, MLlib7  [Sparks et al. 2013] and Deeplearning4j8 rewrite the data mining algorithms to run 

in a distributed fashion on Hadoop [White 2009] and Spark [Zaharia et al. 2010]. These libraries 

are developed by searching the algorithms for parts to be executed in parallel and rewriting them. 

This process is complex, time consuming and the quality of the modified algorithm depends entirely 

on the contributorsô expertise. This makes these libraries hard to develop, maintain and extend 

                                                      

1 R: https://www.r-project.org/ 
2 WEKA: http://www.cs.waikato.ac.nz/ml/WEKA/ 
3 RapidMiner: https://rapidminer.com/ 
4 Mahout: https://mahout.apache.org/ 
5 Oryx: https://github.com/cloudera/oryx 
6 H2O: http://0xdata.com/h2o-2/ 
7 MlLib: https://spark.apache.org/mllib/ 
8 Deeplearning4j: http://deeplearning4j.org/ 

https://www.r-project.org/
http://www.cs.waikato.ac.nz/ml/weka/
https://rapidminer.com/
https://mahout.apache.org/
https://github.com/cloudera/oryx
http://0xdata.com/h2o-2/
https://spark.apache.org/mllib/
http://deeplearning4j.org/
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[Koliopoulos et al. 2015]. They also fail to support as many algorithms as the single-node libraries 

(e.g. WEKA). 

Another approach to distribute the data mining algorithms while still using the already-existing 

solutions is to add support for MapReduce [Dean and Ghemawat 2004] to the sequential single-

machine data mining libraries to enhance their scalability. Distributed WEKA Base9, Distributed 

WEKA Hadoop10 and Distributed WEKA Spark11 [Koliopoulos et al. 2015] packages extend WEKA 

to access the Hadoop Distributed File System (HDFS) [Shvachko et al. 2010], Hadoop and Spark, 

respectively. RHadoop12   allows running R code on Hadoop and access to HDFS. These extensions, 

however, leave it to users to put the data into the right format, create the right meta-data and write 

the MapReduce jobs to distribute the data mining algorithms. 

1.2 Thesis Statement 

The lack of skilled data analysts in many organizations can be overcome in the short term by 

addressing three technical challenges. These challenges are executing Analytics on heterogeneous 

datasets, providing an easy-to-use interface for Analytics, and distributing the Analytics execution. 

1.3 Contributions 

We make five contributions in this thesis in our pursuit to meet the business need for having a 

Consumable Big Data Analytics solution. 

The first contribution is conducting a survey [khalifa et al. 2016a] where we evaluate the 

existing Analytics solutions in terms of capabilities and ease of use. Our survey covers the entire 

Analytics process, making it a corner stone for businesses to figure out the solution that best meets 

their analytical needs and their in-house technical skills. The survey also helps researchers, us 

                                                      

9 DistributedWEKABase: http://goo.gl/wcJrCa 

10 DistributedWEKAHadoop: http://goo.gl/69lVLE 

11 DistributedWEKASpark: http://goo.gl/sWngFD 

12 RHadoop: https://goo.gl/CsZad3 

http://goo.gl/wcJrCa
http://goo.gl/69lVLE
http://goo.gl/sWngFD
https://goo.gl/CsZad3
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included, in identifying future research areas to achieving a true Consumable Analytics solution 

that empowers business users to do Analytics themselves. 

The second contribution is developing the Analytics Adaptor to address the first challenge of 

running Analytics on heterogeneous data [khalifa et al 2016b]. The Analytics Adaptor transforms 

the data loaded from heterogeneous sources to a data structure that can be processed by the data 

mining algorithms. This way, algorithms from more than one data mining library can be used 

together, leaving it to the Analytics Adaptor to resolve the inter-library data format conversion.  

The third contribution is introducing the Distributed Analytics Query Language (DAQL) to 

address the second challenge of providing an easy-to-use interface for in-house expertise [khalifa 

et al 2016b]. The DAQL extends the SQL syntax by adding a number of keywords and User Defined 

Functions (UDFs) to invoke the data mining algorithms from within the SQL statements. This 

allows businesses to use spreadsheets and visualizations from their BI tools to do sophisticated 

distributed Big Data Analytics with minimum technical skills requirements. 

The fourth contribution is presenting two novel algorithms called the Data Mining Distribution 

(DMD) algorithm and the Label-Aware Disjoint Partitioning (LADP) algorithm to address the third 

challenge of providing distributed Analytics [khalifa et al 2016c]. Those algorithms distribute the 

execution of single-machine data mining algorithms without rewriting any of their code and without 

any user involvement. This allows running the algorithms on Big Data, giving users the flexibility 

to use any algorithm, and having the algorithms run faster and with better prediction accuracy. 

The fifth contribution is compiling the Analytics Adapter, the DAQL language and both the 

DMD and LADP algorithms into our QDrill 13 open-source solution. The QDrill  distributes the 

execution of single-machine data mining algorithms (currently only WEKA is supported) to work 

on Big Data stored in any data store (SQL, file system, NoSQL) using simple SQL syntax to 

integrate with any BI tool. The QDrill  is open-source, production-ready and available online for 

                                                      

13 Our QDrill open-source solution: http://cs.queensu.ca/~khalifa/qdrill 

http://cs.queensu.ca/~khalifa/qdrill
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free. So far, it has 597 visits from 29 countries and 13 downloads since released in June 2016. We 

are expecting those numbers to increase once we integrate and ship our solution with Apache Drill 

and the IBM Analytics flagship, the IBM SPSS Modeler. 

The contributions of this work can be summarized as follows: 

1. We conduct a Survey [Khalifa et al. 2016a] to help in better understanding the Big Data 

Analytics field, the available solutions and to identify future research areas. 

2. We design and develop the Analytic Adaptor [khalifa et al. 2016b] to transform the 

heterogeneous data to a data structure that can be processed by the data mining algorithms. 

3. We design and develop the Distributed Analytics Query Language (DAQL) [khalifa et 

al. 2016b] to add Analytics capabilities to standard SQL allowing using spreadsheets and 

visualizations from any BI tool to do sophisticated distributed Big Data Analytics. 

4. We design and develop the Data Mining Distribution (DMD) algorithm and the Label-

Aware Disjoint Partitioning (LADP) algorithm [khalifa et al. 2016c] to distribute the 

execution of single-machine data mining algorithms to handle Big Data huge volumes. 

5. We develop the QDrill open-source solution13 to integrate everything we developed in 

this thesis. QDrill  distributes the execution of single-machine data mining algorithms 

(currently only WEKA is supported) to work on Big Data stored in any data store (SQL, 

file system, NoSQL) using simple SQL syntax to integrate with any BI tool.  

1.4 Thesis Organization 

The rest of this thesis is organized as follows: Chapter 2 describes the Big Data Analytics 

Ecosystems providing the background and related work. Chapter 3 illustrates the architecture of 

our QDrill  solution covering our Analytics Adaptor extension and our DAQL Language. Chapter 4 

introduces the data mining algorithms taxonomy and our DMD and LADP algorithms for 

distributing the different types of algorithms. Chapter 5 has the evaluation for our QDrill  solution. 

Finally, Chapter 6 draws conclusions and lists some future work opportunities.  
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Chapter 2 

The Big Data Analytics Ecosystem 

 

A software ecosystem, in general, consists of the set of software solutions that enable, support and 

automate the activities and transactions by the actors in the associated social or business ecosystem 

and the organizations that provide these solutions [Bosch 2009]. A Big Data Analytics Ecosystem, 

in particular, is a set of software solutions to support the activities associated with transforming raw 

Big Data into meaningful insights. A Big Data Analytics Ecosystem typically includes solutions to 

support the following [Chapman et al. 2000]: 

¶ Data Exploration: analysts go through the data, using ad-hoc queries and visualizations, 

to better understand the data;  

¶ Data Preparation: analysts clean, prepare, and transform the data for modeling using 

batch processing to run computational and IO intensive operations; 

¶ Training/Modeling: Train data models, using iterative processing, on the prepared data; 

¶ Scoring: trained models are used to score the unlabeled data. 

In this thesis, we focus on Predictive Analytics. The goal of the Analytics is to build a predictive 

model using a Training dataset (labeled dataset) that has the property of interest (Target) already 

known. The predictive model relates the features extracted from the Training data to this Target 

property. The predictive model predicts (scores) the Target value for new data records with an 
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unknown Target (unlabeled dataset). Predictive algorithms are also called Supervised Algorithms 

since they need supervision to build their predictive models by learning from the labeled data. 

In this chapter, we survey solutions available for creating Big Data Analytics Ecosystems. The 

main purpose of this survey is to better understand the different ecosystem components and their 

capabilities and limitations.  

2.1 Big Data Analytics Ecosystem Taxonomy 

 

Figure 1 The Big Data Analytics Ecosystem Taxonomy 

We survey the current work in the area of Big Data Analytics Ecosystems from a practical 

perspective, namely the components necessary to deal with the challenges of volume, velocity, 

variety and veracity inherent in Big Data. To present and compare the work we organize the 

components into six capabilities or pillars of a Big Data Analytics Ecosystem which are: 

¶ Storage that handles the dataôs huge volume, fast arrival and multiple formats; 

¶ Processing that meets the Big Data Analytics processing needs; 

¶ Orchestration that manages available resources to reduce processing time and cost; 

¶ Assistance that goes beyond the interface and provides suggestions to help users with 

decisions when selecting operations and building their Analytics process;  

¶ User Interface that provides users with an environment to build and run their Analytics; 

¶ Deployment Method that provides scalability, security, and reliability.  
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We propose the taxonomy shown in Figure 1 based on the six pillars. The taxonomy is used to 

organize the different approaches used in each pillar. For each pillar we discuss the advantages and 

disadvantages of the approaches, the way in which the approaches address the Big Data challenges 

and highlight the design and implementation similarities and differences among the approaches. 

2.1.1 Big Data Storage 

Since the past decade, the amount of data organizations have to deal with has become phenomenal. 

Over time, the requirements for data storage changed to meet the exponential increase in data size, 

arrival speed, and number of data formats. In this section, we discuss Relational Database 

Management Systems (RDBMS), followed by Distributed File Systems (DFS) and ending with Not-

only Structured Query Language Systems (NoSQL). 

2.1.1.1 Relational Database Management Systems (RDBMS). 

RDBMSs are designed to ensure the ACID (Atomicity, Consistency, Isolation and Durability) 

properties for storing structured data. But, in this era of Big Data, these systems have to process 

large amounts of data with low latency while achieving high scalability. Recent RDBMSs 

developments promise enhanced performance and scalability with an advantage over NoSQL of 

providing the higher-level SQL language and ACID properties [Cattell 2011]. They also allow 

operations (e.g. joins) and transactions to span many nodes. Grolinger et al. [Grolinger et al. 2013] 

provide a comprehensive comparison between NoSQL and NewSQL stores for interested readers. 

MySQL Cluster14 uses a shared-nothing architecture to shard data over multiple database 

servers, with replication to support recovery. ScaleDB15 is similar to MySQL Cluster, except it 

implements a shared-data architecture, giving access to every disk from every server. While this 

approach limits its scalability, it allows using techniques like multi-table indexing that speeds up 

                                                      

14 MySQL Cluster: http://dev.mysql.com/downloads/cluster/ 
15 ScaleDB: http://www.scaledb.com/ 

http://dev.mysql.com/downloads/cluster/
http://www.scaledb.com/
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the processing. VoltDB16 is an open-source shared-nothing distributed RDBMS that partitions tables 

to fit in the distributed memory of multiple servers, eliminating the need to wait for the disk. 

ScaleBase17 uses unmodified single-node MySQL databases and implements a control layer to 

shard tables over them while providing partial SQL support for querying [Cattell 2011]. 

2.1.1.2 Distributed File System (DFS). 

A DFS [Silberschatz et al. 2008] is a file system, where files are stored in a distributed manner 

across several machines and are accessed using a client server architecture via a network protocol. 

This allows storing all kinds of data, structured, semi-structured and unstructured. The main goal 

of DFSs is to provide transparency by hiding the underlying mechanisms from users, which comes 

in many forms. Location Transparency, wherein, the name of a file is not related to its physical 

location. Concurrency Transparency, where each user sees the same state of the file. Failure 

Transparency, wherein, all users see the same state after a server failure. Scalability Transparency, 

where the DFS scales over heterogeneous hardware. Replication Transparency, where data is 

replicated for fault tolerance, without user intervention, in a way that minimizes the write cost and 

achieves reliability and availability.  

Google File System (GFS) [Ghemawat et al. 2003] is a proprietary scalable DFS, designed to 

meet Googleôs rapidly growing data processing needs. The GFS divides files into 64 MB replicated 

chunks distributed on a cluster of one master and several workers. The GFS periodically balances 

the data by replacing replicas to underutilized servers. The master maintains the metadata, while 

the workers store the data chunks. The single master presents a single point of failure, overcome 

by periodically taking snapshots of it. In GFS, users must lease and write on the data primary copy, 

which is then propagated to the other replicas. The GFS works well with data intensive applications, 

where data is appended and not overwritten.  

                                                      

16 VoltDB: http://voltdb.com/ 
17 ScaleBase: https://www.scalebase.com 

http://voltdb.com/
https://www.scalebase.com/
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Hadoop Distributed FileSystem (HDFS) [Shvachko et al. 2010] is an open source DFS inspired 

by GFS and designed to run Hadoopôs [White 2009] batch jobs in massive parallelism (Figure 2). 

Unlike GFS, HDFS supports variable block size (64MB, 128MB, 256MB, so on) that are replicated 

on the slaves (DataNodes). HDFS does not implement leases and users can choose which data 

replica is to be written. HDFS does data-balancing during writes and not periodically like GFS. 

Same as GFS, HDFS relies on accessing the meta-data stored on the master node (NameNode). 

Hence, the availability of the entire HDFS is inhibited by the availability of this NameNode. To 

prevent single point failure, a secondary NameNode is introduced, which periodically checkpoints 

the primary NameNode and replaces it in case of failure. 

 

Figure 2 HDFS architecture 

Cassandra File System (CFS) [Lakshman and Malik 2010] is a Hadoop compatible File 

System, designed to overcome some of the processing overheads of HDFS. Unlike GFS and HDFS, 

it uses decentralized deployment with multiple masters, avoiding a single point of failure. It also 

provides cross-data center replication for better failure recovery and availability. 

On any of these DFSs, users can have their data stored in various formats. JSON18 is a 

lightweight data-interchange format that is easy to read and write by both human and machine. 

SequenceFile19 is a flat file consisting of binary key/value pairs, which can be compressed at the 

value or the key/value level. CFile [Lin et al. 2011] is a columnar storage, where data are partitioned 

in sorted vertical groups. RCFile [He et al. 2011] partitions the data horizontally, then vertically, 

                                                      

18 JSON: http://json.org/ 
19 SequenceFile: http://wiki.apache.org/hadoop/SequenceFile 
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where columns belonging to the same row are located on the same node. CIF [Floratou et al. 2011] 

is a binary columnar storage that partitions the data into horizontal splits, then columns of each 

split are stored in individual files. CIF uses a lazy approach to read the needed columns, leading to 

it outperforming RCFile [Floratou et al. 2011]. ORCFile20 does horizontal followed by vertical 

splitting, then applies columnar compression and indexing within the row groups. Parquet21 is a 

columnar storage that supports nested structures, per-column encoding, and have a high write 

performance by storing metadata at the end of the file. 

2.1.1.3 Not-only Structured Query Language Systems (NoSQL). 

According to the CAP theorem [Brewer 2012], distributed systems cannot have all three of 

Consistency, Availability and Partitioning tolerance. There will be always a trade-off between 

them. NoSQL databases [Pokorny 2011] sacrifice the consistency, to have high availability and 

scalability. Instead of supporting the ACID model, NoSQL databases support the BASE model, 

which is Basically Available, Soft state and Eventual consistent. Along with supporting structured 

data, NoSQL databases also support semi-structured and unstructured data. NoSQL databases can 

be classified into Key/Value, Column, Document and Graph stores according to their data model.  

2.1.1.3.1 Key/Value Database  

Key/Value Database is the most popular and simplest form of storage in NoSQL databases, where 

data is stored as key/value pairs. Most key/value databases support insert, delete and update 

operations with a customizable key format. The value is opaque to these datastores, thus they only 

support querying and indexing through the keys and not the values (data). A Key/Value datastore 

is useful for storing multiple versions of data and is highly scalable owing to key distribution. 

                                                      

20 ORCFile: https://orc.apache.org/ 
21 Parquet: http://parquet.incubator.apache.org/ 

https://orc.apache.org/
http://parquet.incubator.apache.org/
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Examples of this category are, Amazon Dynamo DB [DeCandia et al. 2007], Voldemort [Sumbaly 

et al. 2012], Redis [Carlson 2013], Riak22, and MemcacheDB23.  

Voldemort and Riak use Multi Version Concurrency Control (MVCC), allowing multiple users 

to concurrently access the same data, while others use a locking mechanism. All key/value 

databases provide asynchronous updates and guarantee reading the latest version, except Amazon 

Dynamo DB which uses synchronous updates across multiple datacenters for high availability. 

Key/Value databases store data either in RAM or disk, except Redis, which stores data in RAM 

and provides disk as a backup. Riak and Redis implement MapReduce in their architecture while 

Amazon Dynamo DB supports MapReduce with the help of the Amazon EMR Service24 and 

Voldemort uses Hadoop to run MapReduce jobs. 

2.1.1.3.2 Column-Oriented Database 

Column-Oriented Database [Abadi et al. 2009] is a schema oriented database, designed to store 

data as columns rather than rows. In these data stores, each row has a primary key and is composed 

of a variable number of column families, which in turn are composed of a variable number of 

key/value pairs (columns). It is widely adopted by data warehouses, and ad hoc OLAP (Online 

Analytical processing) query systems, where data is aggregated. When compared to other NoSQL 

databases, column oriented databases have a high locality reference which minimizes disk access, 

improves the overall performance and reduces the storage requirements using compression 

techniques like LZW. Some of the popular column oriented databases are, HBase [George 2011], 

BigTable [Chang et al. 2008], Cassandra [Lakshman and Malik 2010] and Platform for Nimble 

Universal Table Storage (PNUTS) [Cooper et al. 2008]. 

                                                      

22 Riak: http://basho.com/riak/ 
23 MemcacheDB: http://memcachedb.org 
24 Amazon EMR: http://aws.amazon.com/elasticmapreduce/ 

http://basho.com/riak/
http://memcachedb.org/
http://aws.amazon.com/elasticmapreduce/
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BigTable is a proprietary data storage built on GFS, whereas HBase works on HDFS, 

Cassandra works on CFS and PNUTS works on any DFS. HBase and Cassandra can create a 

column family, which groups multiple columns together, and stores them continuously on the disk. 

BigTable represents the data using three fields (Key, value and timestamp), also known as three 

dimensional data storage. On the other hand, HBase, PNUTS and Cassandra support simple 

key/value storage of data.  

All four databases partition data across the cluster. In Google BigTable and PNUTS, records 

are partitioned using hashing into units called Tablets. Cassandra and PNUTS support automatic 

partitioning using hashing/sorting mechanisms. All four databases provide asynchronous data 

replication on updates. Other than Cassandra, they provide locking mechanism over data. 

Cassandra and PNUTS support variable column length, hence they have a more flexible data model 

than HBase and Google BigTable. Only PNUTS provides both eventual and timeline consistency 

models, the others only provide eventual consistency.  

2.1.1.3.3 Document-Oriented Database 

Document-Oriented Database is a schema less, more flexible Key/Value store, where the value can 

be a document with complex data structures like JSON. The documentsô contents are not opaque 

to the system and can be indexed and queried. MongoDB [Chodorow 2013], CouchDB [Anderson 

et al. 2010] and SimpleDB [Habeeb 2010] are some of the popular document-oriented databases.  

MongoDB and CouchDB are open source solutions under the Apache license whereas, 

SimpleDB is an Amazon proprietary cloud service. SimpleDB is a simple document store with no 

support to nested documents. CouchDB and MongoDB are high performance document oriented 

databases that support richer data models. CouchDB and MongoDB provide automatic sharding 

across the cluster, while SimpleDB needs manual intervention. CouchDB uses MVCC while 

MongoDB supports document-level atomic operations [Cattell 2011]. All these databases support 

asynchronous writing to the replicas and eventual consistency. 
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2.1.1.3.4 Graph Database 

Graph Database originated from graph theory and stores data in graph structures presenting the 

relationships between the data items. No indices are needed in graph databases since every data 

point is directly connected by an edge to the related data points. Each data point (graph node) 

contains details of the data. For associative datasets, a graph database is often faster and more 

efficient than a relational database. Like Document-oriented databases, graph databases do not 

require join operations and can scale up for large datasets. Graph databases are powerful for graph 

oriented queries like finding the shortest path between two nodes. They are highly scalable and 

provides high availability through date replication.  Neo4j [Partner 2013], OrientDB [Tesoriero 

2013] and Infinite Graph [Objectivity 2012] are some popular examples. 

These three graph databases are labeled, directed, multi-property, and provide ACID 

consistency. Both vertices and edges can have multiple key/value properties associated. Unlike 

column-oriented databases, these three databases use horizontal partitioning, where rows are held 

separately, rather than being split into columns. Each row-group partition forms a shard that is 

located on a separate machine. Infinite Graph uses ObjectivityDB, which was the first DBMS to 

store a petabyte of objects. Neo4j uses native graph storage, which is optimized and designed for 

storing and managing graph data. OrientDB can use any filesystem. Neo4j uses a master-slave 

architecture with cache sharding, where the same master serves all requests of a particular user, to 

make use of the cached data. OrientDB uses a multi-master replication and sharding, where any 

node can serve arriving requests, to have better utilization over the cluster. Infinite Graph supports 

parallel and loosely synchronized batch loader (aka eventual consistency), while OrientDB 

supports MVCC. 

2.1.2 Big Data Processing 

Big Data Analytics inherited a number of centralized data mining solutions from the pre-Big Data 

era, where data could fit in a single node memory. These centralized solutions like R1 and WEKA2 
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provide a huge set of algorithms but they do not scale to meet the Big Data requirements. To solve 

the scalability problem, Google introduced MapReduce [Dean and Ghemawat 2004] to manage and 

process large multi-structured datasets. Following that, Yahoo! developed Hadoop [White 2009], 

an open source implementation of MapReduce and later incubated by Apache25, allowing everyone 

to benefit from it. Microsoft developed similar solutions, namely Cosmos [Zhou et al. 2012] and 

Dryad [Isard et al. 2007] for their internal usage. 

As explained later in this section, not all Big Data Analytics processes can be efficiently 

executed on MapReduce. Beside the Batch processing approach that MapReduce was designed for, 

other processing approaches have surfaced to deal with the different Big Data Analytics processing 

needs. These approaches can be categorized based on their intended application type. These 

categories are: Batch processing, Interactive processing, Iterative processing, Incremental/Stream 

processing, Approximate processing, and In-Database processing. 

2.1.2.1 Batch Processing. 

Batch processing is designed to execute a series of jobs without manual intervention. This makes 

it perfect for scenarios where a program needs to have a single run on a huge dataset. MapReduce, 

and its open source implementation Hadoop, are popular batch processing frameworks because of 

their scalability, fault-tolerance, ease-to-program and flexibility. 

 

Figure 3 MapReduce Dataflow 

 

                                                      

25 Apache Hadoop: http://hadoop.apache.org/ 
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MapReduce, as presented in Figure 3, consists of Map, Shuffle, and Reduce phases, which are 

executed sequentially, utilizing all nodes in the cluster. In the Map phase, the programmer-provided 

Map function (Mapper) processes the input data and outputs intermediate data in the form of      

<key, value> tuples which get stored on disk. The Shuffle phase then groups values to the same 

key together and sends them to the reduce nodes over the network. Finally, the programmer-

provided Reduce function (Reducer) reads the intermediate data from disk, processes it and 

generates the final output. The Map/Reduce functions are executed in parallel over a set of 

distributed data files in a Single Program Multiple Data (SPMD) paradigm.  

With the growing popularity of MapReduce, centralized data mining solutions started adding 

support for MapReduce to enhance their scalability. DistributedWEKABase9, 

DistributedWEKAHadoop10  and DistributedWEKASpark11  [Koliopoulos et al. 2015] packages 

extend WEKA to access HDFS, Hadoop and Spark [Zaharia et al. 2010b], respectively. RHadoop12  

allows running R code on Hadoop and access to HDFS. This extension, however, leaves it to the 

users to write the MapReduce programs themselves which requires extra expertise.                     

Radoop [Prekopcsak et al. 2011] extends RapidMiner26 to run on Hive [Thusoo et al. 2009] and 

Mahout27. IBM Analytic Server28 extends SPSS Modeler29 to run scalable distributed Analytics on 

Hadoop. 

One of the main MapReduce issues is the high IO overhead caused by writing intermediate and 

inter-job data to disk and having to read them in again. Solutions like Hadoop Online Prototype 

(HOP) [Condie et al. 2010] and Walmart Labs Muppet [Lam et al. 2012] aim at improving 

MapReduce efficiency, while maintaining its desirable properties. The HOP runs unmodified 

Hadoop jobs and uses memory instead of disk to pipeline tasksô output. Muppet, on the other hand, 

                                                      

26 RapidMiner: https://rapidminer.com/ 
27 Apache Mahout: https://mahout.apache.org/ 
28 IBM SPSS Analytics Server: http://www-03.ibm.com/software/products/en/spss-analytic-server/ 
29 IBM SPSS Modeler: http://www-01.ibm.com/software/analytics/spss/products/modeler/ 

https://rapidminer.com/
https://mahout.apache.org/
http://www-03.ibm.com/software/products/en/spss-analytic-server/
http://www-01.ibm.com/software/analytics/spss/products/modeler/
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modifies MapReduce by replacing reducers with updaters. Updaters work in the same way as 

reducers except they use a live in-memory data structure (a slate) to summarize all data seen so far. 

A slate is defined for each key and is continuously updated as more data arrives. 

2.1.2.2 Interactive Processing. 

The frequent writing to disk and the extensive communication between nodes in the MapReduce 

shuffle phase to support fault-tolerance, hinders efficient support for interactive applications. Some 

solutions are proposed to support Interactive Analytics. 

Google Dremel [Melnik et al. 2010] (aka Google BigQuery30) leverages massive parallel 

processing, nested data modelling and columnar storage to improve retrieval efficiency for 

interactive Analytics scenarios. Dremel is a Google proprietary solution that executes its query in 

parallel without being translated to a sequence of MapReduce jobs. Dremel uses multi-level tree 

processing (Figure 4). Leaf servers only scan the needed columns in parallel. Intermediate servers 

carry out parallel aggregation on the scanned data. Finally, the root server aggregates the 

intermediate results. However, with columnar storage the number of columns accessed affects 

performance. Google has introduced PowerDrill [Hall et al. 2012] to have data in memory for faster 

computations. However, this makes it constrained by the available memory. 

 

Figure 4 Dremel Query Execution Flow 

                                                      

30 Google BigQuery: https://cloud.google.com/bigquery/ 
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Apache Drill31  and Cloudera Impala32  offer open source implementations of Google Dremel. 

Moreover, they support querying and joining data from different sources, which is not supported 

in Dremel. Architecture-wise, Drill  does not implement a dedicated root server like the others. 

Instead, any Drill  node (aka Drillbit) can accept queries and become the root server (aka driving 

Drillbit), which eliminates the issue of having a single point of failure. Drill  only has leaf servers, 

which exchange data among themselves to carry out the aggregations, reducing data movement. 

Drill  supports dynamic schema discovery, where users can define the schema (column name, data 

type, length) in the query, or let Drill  discover the schema from the metadata for self-describing 

data formats. On the downside, Drill  adopts an optimistic execution model and does not persist 

intermediate data, making it fault-intolerant. 

Apache Tez33  introduced in Hadoop 2.0 aims at generalizing the MapReduce paradigm to 

support interactive queries. Tez groups all MapReduce jobs of an Analytics query into a single Tez 

job, eliminating the overhead of launching multiple jobs. The Tez job still consists of mappers and 

reducers, however Tez merges some of the mappers and reducers together to minimize the overhead 

for materializing intermediate outputs to the DFS and to provide better data locality. 

2.1.2.3 Iterative Processing. 

Iterative computation arises naturally in Data Analytics. Machine learning operations (e.g., in 

stochastic gradient descent, K-means clustering, etc.), require several passes over the training data 

for the algorithm to converge. Designed for long running processes, MapReduce does not natively 

support iterative computation. For that, users must write a sequence of MapReduce jobs and 

coordinate their execution. Even with that, MapReduce still lacks a mechanism for reusing output 

results without rereading them from disk, which causes a big hit to performance. 

                                                      

31 Apache Drill: http://drill.apache.org/ 
32 Cloudera Impala: http://impala.io/ 
33 Apache Tez: http://tez.apache.org/ 

http://drill.apache.org/
http://impala.io/
http://tez.apache.org/
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HaLoop [Bu et al. 2010] and iMapReduce [Zhang et al. 2011a] modify MapReduce and its API 

to add iteration support. HaLoop modifies the MapReduce task scheduler to schedule the same job 

tasks on the same nodes in each iteration, thus enabling the reuse of data across iterations. 

iMapReduce creates the mappers and reducers only once at the beginning of the job, and uses them 

in subsequent iterations. This reduces the overhead of creating new MapReduce jobs for each 

iteration. iMapReduce allows asynchronous execution, where output is streamed to the next task so 

that it can start without waiting for previous tasks to finish. iMapReduce checkpoints the reducersô 

output every few iterations for fault-tolerance and only persists the final output. PrIter [Zhang et 

al. 2011b] adds prioritized iteration to iMapReduce for a faster convergence. 

The Main Memory MapReduce (M3R) [Shinnar et al. 2012] and Twister [Ekanayake et al. 

2010] work on speeding up the execution of unmodified Hadoop iterative jobs. M3R uses in-

memory pipelining between mappers and reducers to achieve the iterative job performance of 

HaLoop, without the burden of using new APIs. Twister relies on a message broker to which nodes 

can publish/subscribe to communicate and transfer their data, where inter-iteration data is cached 

in memory. Both M3R and Twister are constrained by the available memory and do not support 

fault-tolerance within an iteration, making them only useful for short jobs running on highly reliable 

clusters with large memory. 

Apache Mahout4  is a scalable distributed machine learning library, where the machine learning 

algorithms are implemented as a sequence of MapReduce jobs with an outside driver program to 

control loop execution. Mahout adds Analytics capabilities to Hadoop but still suffers from the 

MapReduce high IO overhead for rereading inter-job data from disk. Hivemall [Yui and Kojima 

2013] adds machine learning capabilities to Hive [Thusoo et al. 2009]. However, Hivemall queries 

are still translated to MapReduce jobs with inter-job data written to disk. To overcome the 

MapReduce high IO overhead, Hivemall amplifies the training data (replicates each row several 
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times) and then randomly shuffles this amplified dataset to emulate the iteration effects without 

having several MapReduce steps. 

Apache Spark34   [Zaharia et al. 2010b] is now the main rival to Hadoop. Spark does not run 

Hadoop jobs, however, they can co-exist on the same cluster using Apache Mesos [Hindman et al. 

2011]. A Spark job runs in parallel with one reducer, which can be a bottleneck. Spark uses read-

only Resilient Distributed Datasets (RDDs) to provide in-memory support for iterative jobs. RDDs 

can also reconstruct themselves in case of failure to provide fault-tolerance without disk 

checkpointing. Spark, however, is restricted to the size of available memory and has to reconstruct 

the RDDs from disk if it runs out of memory. MLBase35   [Talwalkara et al. 2012] uses the MLlib36 

[Sparks et al. 2013] library to provide distributed machine learning at scale on Spark. Cloudera 

Oryx37 forks from Apache Mahout to run on Spark. Oxdata H2O38 provides in-memory machine 

learning and predictive Analytics on Big Data using Spark. Deeplearning4j39  provides deep 

learning algorithms implementation on Hadoop and Spark. 

2.1.2.4 Incremental Processing. 

Unlike previous categories which analyze data-at-rest, incremental solutions analyze data-in-

motion. Data that is usually outdated quickly, thus fast reactions are required. Online algorithms 

are used to process real-time data streams, without having the entire input available, and before 

data is saved to disk. This makes it ideal for continuous and incremental Analytics, as with 

analyzing monitoring logs, sensor network feeds and high volume news feeds like twitter. 

Incremental processing can be in the form of stream processing or micro-batch processing. 

 

                                                      

34 Apache Spark: https://spark.apache.org/  
35 MlBase: http://www.mlbase.org/ 
36 MlLib: https://spark.apache.org/mllib/ 
37 Cloudera Oryx: https://github.com/cloudera/oryx 
38 Ocdata H2O: http://0xdata.com/h2o-2/ 
39 DeepLearning4j: http://deeplearning4j.org/  

https://spark.apache.org/
http://www.mlbase.org/
https://spark.apache.org/mllib/
https://github.com/cloudera/oryx
http://0xdata.com/h2o-2/
http://deeplearning4j.org/
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2.1.2.4.1 Stream processing 

Stream processing provides low-latency as data is analyzed as soon as it arrives. However, it is 

technically challenging as it requires devising online algorithms to analyze partial data and not to 

wait for the complete dataset. 

Apache Storm40 and Apache S441  [Neumeyer et al. 2010] are distributed streaming solutions 

that can be used with any programming language and can scale to massive numbers of messages 

per node per second. S4 asks users to develop their programs for a single key and not for the whole 

stream like Storm, which simplifies the programsô logic and makes their development easier. 

However, S4 uses a push model, which can cause data to drop if the receiverôs buffer is full. Storm, 

on the contrary, uses a pull model, where the receivers pull the data when they can process it. 

Apache Samza42, coming as part of Hadoop2.0, uses Apache Kafka43 publish/subscribe messaging 

system to guarantee that data is processed in the order it arrives, and that no data is ever lost. 

Microsoft Trill [Chandramouli et al. 2014] is an in-house stream processing solution for 

temporal data, which consists of a payload and a validity interval defining the duration this payload 

is contributing to the output. Microsoft also offers Stat!  [Barnett et al. 2013] designed for 

progressive computations using the unmodified Microsoft StreamInsight [Chandramouli et al. 

2012] temporal streaming engine. Another Microsoft solution is Naiad44 [Murray et al. 2013] that 

allows iterations in streams to handle scenarios with changing input. Google has the MillWheel 

[Akidau et al. 2013] in-house system that allows users to create stream graphs and define the 

application code for each graph node, while it handles the continuous data flow, data persistence 

and failure recovery. 

                                                      

40 Apache Storm: https://storm.incubator.apache.org/ 
41 Apache S4: http://incubator.apache.org/s4/ 
42 Apache Samza: http://samza.apache.org/ 
43 Apache Kafka: http://kafka.apache.org/ 
44 Microsoft Naiad: http://research.microsoft.com/en-us/projects/naiad/ 

https://storm.incubator.apache.org/
http://incubator.apache.org/s4/
http://samza.apache.org/
http://kafka.apache.org/
http://research.microsoft.com/en-us/projects/naiad/
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IBM InfoSphere Streams45  is a component of the IBM Analytics solution. It supports analyzing 

data continuously at high rates using real-time machine learning. Streams supports run-time 

modifications, where input streams, output streams and operations can be added or removed 

dynamically without restarting the system. It also allows embedding user defined Java and C++  

Analytics routines.  

2.1.2.4.2 Micro-batch processing 

Micro-batch processing presents a middle-ground between streams and batch processing. It has 

higher latency than streams as it buffers the input, and only process it when the buffer is full. 

However, micro-batching is less technically challenging as it allows the use of existing batch 

algorithms.  

Using this approach, Yahoo! Nova [Olston et al. 2011] allows users to create workflows of Pig 

programs to process continually arriving data. Spark Streaming46 extends Spark to allow joining 

stream data with historical data using the same Spark code written for batch processing. The 

streams library plugin [Bockermann and Blom 2012] adds online processing support to 

RapidMiner. It provides generic streaming wrappers of the RapidMiner operations to make them 

run on partially available data and feed them the rest as it arrives. 

2.1.2.5 Approximate Processing. 

Designing the Analytics process involves many trial and error attempts till the best operations are 

found. Using traditional MapReduce means analyzing the whole dataset, which is very time 

consuming and impractical.  Quick retrieval of approximate results from a small representative 

sample should be enough to draw a conclusion. 

The Early Accurate Result Library (EARL) [Laptev et al. 2012] extends Hadoop to allow early 

termination and incremental computation, along with providing an on-line indicator to estimate the 

                                                      

45 IBM Infosphere Streams: http://www-03.ibm.com/software/products/en/infosphere-streams/ 
46 Spark Streaming: https://spark.apache.org/streaming/  

http://www-03.ibm.com/software/products/en/infosphere-streams/
https://spark.apache.org/streaming/
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achieved accuracy so far. EARL provides early approximate results by iterating over data samples 

and aggregating the results until an acceptable accuracy is reached. EARL modifies Hadoop by       

(i) keeping the mappers alive even after they are done, to be used in the next iteration, (ii) pipelining 

the mappers output directly to the reducers, and (iii) allowing reducers to start before the mappers 

are finished to support incremental computation. 

BlinkDB [Agrawal et al. 2012] extends Hive to provide fast approximate results with statistical 

error guarantees. BlinkDB uses a dynamic sample selection strategy to select an appropriately sized 

sample based on the desired query accuracy or response time. BlinkDB maintains a set of pre-

computed and carefully-chosen data samples, so that when a query arrives, it can be directly 

executed on the appropriate sample. Samples in BlinkDB are chosen using an optimization formula 

that considers the data distribution, past queries, storage constraints and several other system related 

factors. 

2.1.2.6 In-Database Processing. 

MapReduce-based solutions are considered by some to be better suited for Big Data Analytics 

because of their scalability and flexibility. Others support parallel databases, which have been 

extensively studied for decades, and enhanced with a lot of optimization techniques that were 

refined over time. However, parallel databases require a well-defined schema, which is unsuitable 

for multi-structured data. They typically run on high-end servers, which makes them an expensive 

option. 

In-Database Analytics allows users to run machine learning on data without moving it out of 

the database. This solves the data movement issue and allows using database techniques like 

clustered indices to outperform Hadoop. Microsoft SQL Server Analysis Services (SSAS)47 allow 

users to run data mining operations on their data within the MS-SQL database. Users can train 

                                                      

47 MS SSAS: http://www.microsoft.com/en-us/server-cloud/solutions/business-intelligence/analysis.aspx 

http://www.microsoft.com/en-us/server-cloud/solutions/business-intelligence/analysis.aspx
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models, save and use them later for predicting unlabeled data. There is also MADLib48  [Hellerstein 

et al. 2012], an open source library for scalable distributed Analytics that runs within the database 

engine. 

Hybrid solutions attempt to have the high performance of parallel databases by harvesting all 

the benefits of database query optimization, while yielding the same fault tolerance and scalability 

of MapReduce. HadoopDB [Abouzied et al. 2010] installs a database system (e.g. PostgreSQL) on 

each Hadoop node, where Hadoop takes care of the task coordination and communication. 

HadoopDB accepts HiveQL queries as input, uses Hive to transform them to MapReduce jobs, then 

assigns as much work as possible (like joins, conditional scans, etc. ) to the local database for query 

processing on each node. Results retuned from local database instances are then aggregated and 

further processed using Hive. 

2.1.3 Analytics Orchestration 

Big Data analytic solutions require the orchestration of complex analytic jobs and workflows to 

achieve the userôs goals. This orchestration should intelligently automate and coordinate job 

scheduling and resource provisioning to satisfy user requirements.  

2.1.3.1 Scheduling. 

Scheduling is the process of allocating jobs to the available resources, while maximizing resource 

utilization and data locality. The Scheduler receives the jobôs computational requirements and 

assigns resources to it from the available resources. Resources include memory, CPU, network and 

disk, bounded to one physical node.  

2.1.3.1.1 Resource Utilization.  

Hadoop 1.0 has a number of shortcomings when it comes to resource management. One of the main 

shortcomings is having a fixed number of map and reduce slots per node. This causes the cluster to 

                                                      

48 MADLib: http://madlib.net 
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be under-utilized as it forces new map tasks to wait when all map slots are taken, even if the node 

has idle resources. The same applies for the reduce tasks and slots. A second shortcoming is the 

restriction of having a single job tracker to handle only up to 4000 nodes limiting scalability. 

Apache Hadoop YARN (aka MapReduce2 or Hadoop 2.0) [Vavilapalli et al. 2013] solves the 

above issues. YARN does not use the slot configuration paradigm. Each node's resources (e.g. CPU 

cores and memory) are allocated to the applications when requested. It separates the cluster 

resource management from the application management, which increases the efficiency and 

resource utilization. YARN also supports non-MapReduce applications. 

YARN involves three main components, shown in Figure 5: (i) Resource Manager (RM) is 

installed per cluster to manage the available resources. It has an Applications Manager (AsM) which 

accepts the submitted applications and negotiates with the Scheduler to obtain the necessary 

resources for executing an application. The RM also has the Scheduler, which is responsible for 

allocating resource containers to applications based on their resource requests. A resource container 

encapsulates computational resource elements like memory, CPU, network and disk into one entity. 

A container is bound to one node but a node can hold multiple containers. The scheduler ensures 

fairness and data locality, but not fault tolerance. (ii)There is an Application Master (AM) per job 
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that manages its lifecycle, computes its required resources, and communicates these requirements 

to the RM. (iii) A Node Manager (NM) runs on every worker machine to launch containers for 

applications once allocated by the RM. Each container is wrapped by a Container Launch Context 

(CLC), defining environment variables, dependencies, security tokens, etc.  

Another example is IReS [Doka et al. 2015], a meta-scheduler for running workflows over 

multi-engine environments. IReS automatically matches distinct workflow parts to the right 

engine(s) according to multiple criteria (like cost and performance), deploy and run them without 

manual intervention. This schedule is ideal for scenarios where no single engine/store is suitable 

for all required computations/data. 

Adoop [Hamdaqa et al. 2015], on the other hand, is a Hadoop history-based scheduler for 

volatile, non-dedicated, ad-hoc environments where underutilized computing resources in the 

existing IT infrastructure are used. Adoop uses the nodes' availability history and current utilization 

to make scheduling decisions and dynamically re-adapts task assignments according to the nodes 

availability. It also replicates tasks to provide a guaranteed minimum availability level for each 

task. 

2.1.3.1.2 Data Locality 

Data locality is a design goal of many systems [Vavilapalli et al. 2013, Deelman et al. 2005, 

Ranganathan and Foster 2002]. It refers to the degree to which data and processing are co-located 

on the same physical node. For data-intensive jobs, the network has been shown to be a potential 

bottleneck [Zaharia et al. 2010a, Dean and Ghemawat 2008]. Thus, data locality has a significant 

impact on the job performance since a higher data locality means less data transfers over the 

network. However, data locality comes with its own problems. For example, nodes storing input 

data tend to become hotspots while other nodes are under-utilized [Elshater et al. 2015]. 

Pegasus [Deelman et al. 2005] is a workflow management system. It uses a Replica Location 

Service (RLS) to achieve data locality. The Pegasus scheduling algorithms queries the RLS to 
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retrieve data replica locations for the incoming tasks. RLS stores the mappings of the files logical 

names to the physical locations of their replicas. 

Ranganathan and Foster [Ranganathan and Foster 2002] find it inefficient for scheduling 

algorithms to only target processor utilization with no regard to data retrieval cost. Targeting data 

intensive applications, they proposed decoupled scheduling that separates the job scheduling policy 

from the replication policy. The solution consists of three schedulers: an External Scheduler (ES) 

that assigns nodes to jobs, a Local Scheduler (LS) that prioritize jobs on the local node and a Dataset 

Scheduler (DS) that calculates data popularity and handles data replication.  

Zaharia et al. [Zaharia et al. 2010a] noted that fair scheduling conflicts with data locality. Fair 

scheduling compromises data locality as jobs might be scheduled away from their input data. They 

propose the delay scheduler which relaxes the fairness constraints for a better data locality 

opportunity. The delay scheduler can postpone a job allocation for a certain small duration in the 

hope that a container becomes available on the node holding the required data. The delay scheduler 

is considered the only data locality aware scheduler among the current Hadoop and YARN 

schedulers [Vavilapalli et al. 2013]. The delay scheduler goes through three phases. (i) Node 

Locality, where the scheduler tries to schedule the incoming task on a node that stores the input 

data. (ii) Rack Locality, used if node locality is not possible, where the scheduler tries to schedule 

the incoming task to a node on the same rack where the input data exists. (iii) Off-Switch Locality, 

which is the worst case, where the scheduler assigns the incoming task to an off-switch node, 

located on a different rack to avoid task starvation. 

Guo et al. [Guo et al. 2012] propose a mathematical model for the MapReduce data locality 

problem to find the optimal schedule for maximizing data locality. It shows that scheduling multiple 

MapReduce tasks together gives a better performance than the delay scheduling approach, where 

the scheduling is done on a task by task bases.  One of the reasons behind this better performance 
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is that it considers the impact of each task assignment on the other tasks, while the delay scheduler 

does not. 

Pixida [Kloudas et al. 2015] is a Spark scheduler that works on minimizing the traffic while 

processing datasets that span multiple data centers. It models the scheduling goals as a graph 

partitioning problem. It then searches for opportunities to avoid data movement between the data 

centers by allocating tasks to where data exist.  

2.1.3.2 Provisioning. 

Provisioning aims at allocating resources and data to jobs while minimizing the job execution time 

and monetary cost. The provisioner receives the userôs Service Level Objectives (SLOs) and 

budget. Then it tries to find the best set of resources and data distribution to meet the userôs SLOs 

while still being within the userôs budget. Provisioning can involve resource provisioning, to 

allocate resources to jobs, or data provisioning, to allocate data to jobs. 

2.1.3.2.1 Resource Provisioning 

Given the large set of the different resource types provided by cloud providers, it becomes 

challenging to find the best combination of resources to perform the requested job under the userôs 

SLOs and budget. Moreover, the provisioning systems need to manage the trade-offs between 

different user objectives (e.g. minimizing monetary cost verses minimizing running time), which 

is not always a straightforward task.  

The Resource Set (RS) Maximizer [Kambatla et al. 2009] is designed to provision MapReduce 

jobs to minimize the monetary cost, while achieving the best possible performance. Given that the 

default Hadoop configuration is not fit for all jobs, this algorithm works on choosing the best 

Hadoop configuration (e.g. the number of mappers and reducers) based on the job and the 

provisioning conditions. RS Maximizer stores a set of optimum configurations for the different job 

types and chooses one of them for new jobs based on the job type. Building this configurations 

database to cover a wide variety of jobs and configurations (more than 150 configuration values) 
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is not always feasible. Also, RS Maximizer assumes that there is a fixed number of cloud machines 

in the resource pool, preventing it from automatically scaling up as new machines are added. 

Conductor [Wieder et al. 2012] is a system that orchestrates execution of MapReduce jobs on 

the cloud by choosing the most suitable cloud services according to the user defined objectives (e.g. 

reducing the execution time or minimizing the costs). Conductor provides an abstraction layer to 

allow combining services (e.g. storage, computation) from different providers to meet the user 

goals in the best way possible. It supports integrating the userôs local infrastructure with public 

clouds to provide hybrid deployments. Conductor also considers the dynamic pricing of the cloud 

services (e.g. Amazon EC2 spot instances49 prices change every 10 minutes). 

Purlieus [Palanisamy et al. 2011] works on minimizing the network distance between compute 

and storage nodes. First, Purlieus defines the proper set of physical machines that should store the 

input datasets based on the job type. For example, it distributes the data blocks across the network 

to utilize all the physical machines for input-heavy jobs, where the mappers generate small 

intermediate data. Afterwards, it attempts to deploy mappers close to the nodes storing input data 

blocks and reducers close to the mappers that generate the intermediate data.  

Mian et al. [Mian et al. 2013] formulate the provisioning problem and design a framework to 

predict the cost of executing data-intensive workloads given a set of configurations. A 

configuration defines the number of cloud machines and their specifications. This approach begins 

with exploring all possible configurations based on the predicted monetary cost of each 

configuration. The search space is described as a Directed Acyclic Graph (DAG) where each node 

in this graph represents a unique configuration and each edge represents a possible movement (e.g. 

add the cheapest VM, add the same VM, upgrade and so on) from one configuration to another. 

Greedy search algorithm is then used to traverse this graph to find the optimal configuration. 

                                                      

49 AWS Spot instances: http://aws.amazon.com/ec2/purchasing-options/spot-instances/ 
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Kllapi et al. [Kllapi et al. 2011] study the trade-off between the completion time and monetary 

cost for executing workflows. They propose a greedy provisioning algorithm to find the optimum 

assignment of cloud resources for executing a workflow while satisfying the user's budget. 

Mao and Humphrey [Mao and Humphrey 2013] propose two auto-scaling algorithms to 

minimize the job turnaround time (the time elapsed from job submission to the job completion) 

within budget constraints for executing workflows using cloud resources. The scheduling-first 

algorithm assigns more budget to high priority jobs in the workflow. Then, it determines the fastest 

execution plan and accordingly acquires the required cloud resources. On the other hand, the 

scaling-first algorithm finds first the type of cloud resources needed based on the budget constraint 

and then schedules the workflow jobs to them. 

Mesos [Hindman et al. 2011] is a platform for sharing cluster nodes between multiple 

frameworks, such as Hadoop and Spark. Mesos introduces a distributed two-level scheduling 

mechanism where it decides how many resources to offer each framework and the frameworks can 

then use their own scheduling to decide which resources to accept and which computations to run 

on them. 

Li et al. [Li et al. 2015] propose a latency-aware algorithm for running high-speed real-time 

data streams on Hadoop. The algorithm searches for the minimum number of nodes that maximizes 

throughput without violating the latency requirements. 

2.1.3.2.2 Data Provisioning 

The Data Locality Scheduling techniques, discussed in the previous section, assume that the 

number of replicas per data block is fixed during execution. However, this can hurt performance 

and data locality, especially if some of the nodes in the cluster have more data than the others. The 

different data provisioning techniques below allow a variable number of replicas per data block 

and automatically replicating these blocks as the demand on them increases.   
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Scarlett [Ananthanarayanan et al. 2011] uses the Hadoop job history logs in a previous unit of 

time (e.g. days or weeks) to replicate offline the data blocks based on their observed access 

statistics. Scarlett computes the data replication factor constrained by a certain budget and uses a 

replica ageing to delete old replicas. 

Adaptive Data Replication for Efficient Cluster (DARE) [Abad et al. 2011] assigns an adaptive 

replication probability to data based on the non-local data access requests it receives, ignoring 

network cost. DARE helps achieving better data locality by replicating data blocks to remote 

machines under a disk budget. DARE is scheduler independent and can work with any Hadoop 

scheduler (e.g. Delay or FIFO scheduler) to increase data locality. DARE is still an off-line system, 

but it works with smaller time units compared to Scarlett. 

Cost-Effective Dynamic Replication Management (CDRM) [Wei et al. 2010] is a replication 

placement scheme for Hadoop that calculates the ideal number of replicas per data block to satisfy 

the availability requirements. However, CDRM does not support increasing the number of replicas 

dynamically during run-time. 

2.1.4 Big Data Analytics Assistance 

With the increasing sophistication of Analytics processes and the ever-growing number of data 

mining algorithms and techniques, organizations find it hard to hire employees with the required 

experience in Big Data Analytics. According to the Mckinsey report [Manyika et al. 2011], there 

is a widening talent gap in the workforce, wherein by 2018, the demand for skilled data scientist 

could be 50 to 60 percent more than the expected supply, and that is only in the United States. 

Consumable Analytics provides a solution for narrowing the Analytics talent gap. The idea is 

to increase the impact of the skills already existing in organizations by providing in-tool assistance 

to make Analytics easier to build, manage, and execute [IBM 2012]. Assistance can be Static, where 

it always shows the same content no matter what dataset is being analyzed. Static assistance is 

useful in aiding users with configuring operations but not with selecting them. Novice analysts are 
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typically overwhelmed with the large number of Analytics techniques making them unable to 

confidently select the right technique and often have to resort to time consuming trial and error 

[Serban et al 2013]. 

Experts have years of hands-on knowledge on selecting techniques for different contexts. But 

even they are now finding it hard to keep up with the ever-increasing number of operations and 

they usually tend to use the methods that have proven to be successful in the past [Serban et al 

2013]. To support both novice and expert analysts in selecting the best suited technique from this 

plethora of different techniques, several researchers have proposed Intelligent Assistance. 

Intelligent Assistance aids users in choosing and configuring the Analytics operations based on the 

input dataset and the analysis goals. It covers data preparation, selecting operations, Analytics 

workflow generation and fault detection and handling. 

2.1.4.1 Static Assistance.  

Static assistance provides the means for users to learn to use an Analytics solution and its 

operations. Once users become familiar with the solution, however, static assistance is no longer 

needed and may even become an obstacle that slows down expert users. The types of static 

assistance include the following: 

2.1.4.1.1 Tooltips 

A single sentence describing an operationôs functionality. Sometimes, a tooltip also includes a 

description of the inputs and outputs. Tooltips usually appear as users hoover over the operationôs 

icon. They represent the simplest way of providing assistance. Their usefulness however is limited 

to new users. As users gain more experience, tooltips can become more annoying than useful. 

2.1.4.1.2 Help Pages 

A reference manual that users can use to learn more about the operations. They are usually provided 

as web pages with text and images describing how to use the operations. Sometimes, they also 
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include the algorithms, making them very useful when there is a need to extend or modify some 

operations.  

2.1.4.1.3 Wizards 

A sequence of dialog boxes that guide users through a series of well-defined steps. Wizards are 

well suited for complex, repetitive or unfamiliar operations. For example, RapidMiner offers 

wizards for churn reduction and sentiment analysis. Wizards usually do not allow users to configure 

all of an operationôs parameters in order to keep the interface simple for novice users. In some 

wizards, an ñAdvancedò option is provided to allow access to a larger set of parameters. Some 

expert users find wizards slowing them down by forcing them to go through unnecessary steps or 

posing limitations by not giving access to all parameters they need to configure.  

2.1.4.2 Intelligent Assistance.  

Over the last several decades, the fields of Statistics and Machine Learning have contributed 

numerous algorithms for data mining. Users need to effectively utilize this available ñarsenalò of 

algorithms to produce useful and meaningful results. Most existing Analytics solutions only offer 

static assistance [Serban et al 2013; Charest 2007]. Static assistance, being context and data 

independent, cannot help users to effectively select the appropriate Analytics operations. Intelligent 

Assistance can help in this regard by providing context-aware data-aware assistance. 

2.1.4.2.1 Data Preparation 

It is one of the most important phases in the Analytics process, it affects all the steps that come 

after. It includes determining promising and irrelevant attributes, attributes that need to be split and 

those that need to be combined, along with handling any malicious data like outliers, missing 

values, etc. Data preparation is challenging as it needs to deal with different data formats, 

granularities and degree of completeness based on the method of acquiring the data. Data 
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preparation is also domain-specific which makes it tricky, especially for analysts new to a business 

domain.  

Ontologies can provide intelligent decision support mechanisms in data preparation, relieving 

some of the burden of users and resulting in a faster development of the Analytics process.  An 

ontology represents the concepts within a domain and specifies how the concepts are related using 

logical axioms [Gruber 1993].  

Ontologies are typically expressed in the Web Ontology Language (OWL) or the newer version 

OWL2 [Bechhofer et al. 2004] and edited in editors such as Protégé50. Using the explicit knowledge 

represented in an ontology, new implicit knowledge can be inferred using logical reasoners or 

inference engines [Wang et al. 2004] such as Fact++51 [Tsarkov and Horrocks 2006] and Pallet52  

[Sirin et al. 2007]. Readers interested in reasoners can check Abburu [Abburu 2012] and Dentler 

et al. [Dentler et al. 2011] for their extensive surveys on the different ontology reasoners. 

Ontologies are being used in BI solutions to facilitate data integration [Cui et al. 2007; Martin 

et al. 2011] and for the Extract-Transform-Load (ETL) operations in data warehousing [Sciarrone 

et al. 2009]. For data preparation, ontologies can be used to represent the different domain concepts. 

These concepts can be common concepts such as temporal concepts, geographic concepts, etc. or 

more domain-specific concepts for a targeted domains like a credit card ontology [Kotsiantis et al. 

2009]. 

Concepts can represent attributes describing entities such as ñidentifierò and ñcaptionò [Rais-

Ghasem et al. 2013]. Concepts can represents metrics, which are quantifiable indicators to measure 

the performance along these entities, for example ñcostò or ñrevenueò [Rais-Ghasem et al. 2013]. 

Metrics can have a default favorable trend such as down for cost or up for revenue and they can 

have common value ranges, for example setting age value ranges to [0-7], [12], [13-19] [Rais-

                                                      

50 Protégé: http://protege.stanford.edu/ 
51 Fact++: https://code.google.com/p/factplusplus/ 
52 Pellet: http://clarkparsia.com/pellet 
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Ghasem et al. 2013], which can be used to identify malicious data. New concepts like ñkidò, 

ñTeenò, ñAdultò can be then instantiated using an associated rule language like Semantic Web Rule 

Language (SWRL53) and a rule engine. 

Data labels (column names) and values are created using different naming and formatting 

conventions making ontologies by themselves insufficient for making sense of a dataset. Natural 

Language Processing (NLP) engines are thus needed to help map the different naming and 

formatting conventions to the ontology concepts [Rais-Ghasem et al. 2013]. IBM Watson Analytics 

[Rais-Ghasem et al. 2013] is one of the systems that uses both ontologies and NLP to automatically 

semantically annotate the data for a better understanding.  

The MiningMart project [Morik and Scholz 2004] uses a different approach in helping users 

with data preparation. MiningMart stores the best cases of data preparation workflows that were 

designed by experts. Users can then choose one of these cases as a starting point and adapt it to 

their problem. 

2.1.4.2.2 Selecting Operations 

Selection is implemented by having a set of preconditions for each operator and using simple 

matching with the input data to recommend an operator. However, this approach does not consider 

the quality of the results achieved using the recommended operator. Given the large set of operators 

available today, a trial and error approach of all valid operators can be very time consuming.  

Expert Systems (ES) apply a set of rules, hand crafted by experts, to recommend operators. IBM 

Watson Analytics [Rais-Ghasem et al. 2013], for example, proposes an ES that defines a set of 

preconditions for using each operator and a set of scoring rules to measure the usefulness of using 

an operator on a given dataset. The ESs present the simplest way of providing intelligent assistance. 

                                                      

53 SWRL: http://www.w3.org/2001/sw 
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However, it is cumbersome to generate rules to cover all possible cases and all available operators 

[Serban et al. 2013].  

Meta-Learning Systems (MLSs) differ from ESs in that rules are learned automatically from 

prior runs [Serban et al. 2013]. A MLS models the relationship between input data properties and 

an operatorôs performance to recommend operators for new datasets. For example, the KNN 

learning algorithm is used in the Data Mining Advisor (DMA) [Giraud-Carrier 2005] to learn the 

operatorsô performance on old data. Using KNN allows adding new operators to the learning model 

without retraining. The downside of MLSs is that to give good recommendations, they need to be 

trained on a large set of input datasets representing most of the cases that the system will see. All 

operators also need to be scored on all training datasets.  

Ontology Reasoners (OR) are similar to ESs in the sense that both are based on a set of rules. 

However with OR, some rules can be inferred, so that experts do not need to explicitly define every 

possible rule [Serban et al. 2013]. The Ontology of Core Data Mining Entities (OntoDM-core)   

[Panov et al. 2014] presents a step towards the development of a standard data mining ontology. It 

provides representations for dataset properties, data mining algorithms and constraints. The WINGS 

(Workflow INstance Generation and Specialization) system [Gil et al. 2011] implements reasoning 

to automatically fill in the gaps in an Analytics workflow with the best suited operators.  

2.1.4.2.3 Automatic workflow generation 

It is one of the most advanced forms of intelligent assistance. It combines both data preparation and 

operation selection. Based on the input data and existing problem, users receive a set of workflows 

to solve the problem.  

One approach is Case-Based Reasoning (CBR) which stores a set of cases (workflows) 

designed by experts and use them as templates for new problems. The CBR eliminates the need to 

train a recommendation model as with MLS, but it requires more human involvement to build and 
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clean the cases database. CBR is known to be good for domains that are not completely understood, 

where knowledge is insufficient at the time of implementation but evolves over time [Soltani 2013]. 

Charest [Charest 2007] proposes a data mining intelligent assistance framework based on CBR 

and ontologies to assist non-experts throughout the Analytics process. First, it allows users to select 

the problem domain and then shows them a list of cases that successfully worked with this problem. 

Users can then select any of these cases and adapt it to the new problem. The framework only 

supports simple Analytics, is not extendable and only supports the WEKA operations. That being 

said, Charestôs work presents a big step in providing automatic workflow generation to non-experts. 

Acquiring a large case base for CBR is not always applicable or easy to do. Artificial 

Intelligence (AI) planning techniques like the Hierarchical Task Network Planning (HTN) [Nau et 

al. 1998] provides a more powerful way to plan Analytics workflows for undecidable and unseen 

problems [Nau et al. 2004]. The HTN implemented in eProPlan54 [Kietz et al. 2010] uses 

hierarchical abstraction planning, which consists of starting with an abstract workflow, and then 

recursively decomposing each of the workflow abstract components until a sequence of applicable 

operations that satisfies the userôs goal is obtained. The Knowledge Discovery in Databases Virtual 

Mart (KDDVM) system [Diamantini et al. 2009a] utilizes the KDDONTO ontology [Diamantini et 

al. 2009b] to build the workflow using a bottom up approach, which adds operators till the top 

operator accepts the input dataset.  

2.1.4.2.4 Fault Detection and Handling  

With Big Data, huge amounts of data must be processed, thus having the Analytics process fail 

before completion is expensive and unacceptable. Intelligent assistance can help with minimizing 

the occurrences and impact of such failures.  It can provide validation capabilities that include 

checking input compatibility to operations, ensuring an operationôs configuration is valid and that 

                                                      

54 eProPlan: http://www.e-lico.eu/eproplan.html 
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computational and storage resources are available prior to execution. Ontologies can be used to 

represent the meta-data for each operation describing all its characteristics, requirements and 

constraints. For example, the WINGS system [Gil et al. 2011] uses ontologies and rules to validate 

the created workflows before execution. 

Even with validation, failures still can happen due to situations like unexpected hardware 

failure, a bug in an operation or a faulty value in the input dataset. For these situations, intelligent 

assistance can provide failure handling and compensation, which can be divided into operation-

level and workflow-level [Yu and Buyya 2005]. Operation-level techniques mask operation failure 

by trying to re-execute it, execute it on an alternate resource, and using checkpoints to save 

processed data. Workflow-level techniques manipulate the workflow structure to deal with 

erroneous conditions. They include executing alternate implementations of faulty operations, 

executing multiple redundant copies of the same operation, and executing user-defined exception 

handling methods. For interested readers, Russell et al. [Russell et al. 2006] present a list of 

workflow exception patterns and their handling and recovery mechanisms. 

2.1.5 Big Data Analytics User Interfaces  

Since Big Data Analytics is a multi-disciplinary science, we can find users from a variety of 

backgrounds. Analytics solutions usually assume a certain user background and design the 

solutionôs interface accordingly. This allows users to work in a familiar environment. However, the 

consequence is that the full power of an Analytics solution is limited to those users with the 

presumed background knowledge. 

In this section, the five main user interface approaches are presented. Their pros and cons are 

discussed and the intended usersô subset is defined. Scripts present the most flexible environment 

for experienced users who can use their programming and data mining skills to design the Analytics 

process. SQL-based interfaces (SQLs) allow users with a database background to do Analytics 

using the familiar SQL language. Graph-based interfaces (Graphicals) allow less experienced 
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users to drag-and-drop different analytic operations to create complex Analytics without 

programming. Sheets are for business users, where it provides a familiar Spreadsheet environment. 

Most recently, Visualizations for representing the data in an easy and interactive way.  

2.1.5.1 Scripts.  

Instead of having users implementing the algorithms from scratch, Scripts provide Analytics at the 

programming level, where users create the Analytics process by developing programs that interface 

with these analytic tools. This interface can be the Command Line Interface (CLI) or the provided 

Application Program Interfaces (APIs). Scripts present the most flexible and powerful environment 

for users. However, Scripts are low level languages that requires writing a lot of obfuscated code 

for even simple tasks. This makes most novice users prefer other interfaces. 

The most widely used solutions in this category are R55 made by and for statisticians, Matlab56  

for engineers and WEKA57 for data miners. Recently, Python58 has become one of the most widely 

used languages for Analytics, especially by application developers developing proprietary 

techniques or modifying existing techniques. A large number of Analytics libraries have been 

developed for Python, creating a single familiar environment, where users can do both, general-

purpose programming and Analytics.  

Following the same trend, Microsoft offers F#59, a cross-platform functional language. F# 

provides libraries for fetching data from different sources and allows users to use the .NET machine 

learning libraries to do Analytics with simple code.  

                                                      

55 R: http://www.r-project.org/ 
56 Matlab: http://www.mathworks.com/products/matlab/ 
57 WEKA: http://www.cs.waikato.ac.nz/ml/weka/ 
58 Python: https://www.python.org/ 
59 F#: http://fsharp.org/ 

http://www.r-project.org/
http://www.mathworks.com/products/matlab/
http://www.cs.waikato.ac.nz/ml/weka/
https://www.python.org/
http://fsharp.org/
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IBM uses Google Jaql60 in its BigInsights solution to process Big Data. Jaql is a functional 

language for analyzing large-scale semi-structured JSON data. One of the main Jaql features is 

using lazy evaluation to only fetch data when needed.  

Apache Pig61 uses the Pig Latin language [Olston et al. 2008] to abstract coding MapReduce 

Analytics jobs without using the Java MapReduce idioms. 

Most of the Scripts solutions are centralized. They provide a large set of algorithms, but can 

only run on a single node, which means that they are not scalable to meet the Big Data analytic 

processing needs. Recently, a number of libraries have been developed to provide a scalable 

distributed implementation of the machine learning algorithms over Hadoop and Spark, so that 

users do not have to write the MapReduce procedures themselves. For example, the Vowpal 

Wabbit62 , Apache Mahout63, Cloudera Oryx64, Oxdata H2O65 and MLBase66 [Kraska et al. 2013] 

solutions implement distributed machine learning techniques at scale. They are easier to use, 

require no previous MapReduce knowledge, and are optimized for parallel processing. 

2.1.5.2 SQL-based interfaces (SQLs) 

Working with data is synonymous with using SQL to database users. However with Big Data, data 

does not only reside in relational databases. SQL solutions provide a unified SQL interface over 

the different Big Data stores. They provide a familiar environment for database users to work with 

Big Data. SQL-based solutions provide Analytics at the data level where users create the Analytics 

process using Analytics queries. Using SQL and the standard JDBC/ODBC interfaces, the familiar 

BI tools that auto-generate SQL code can still be used to interact with Big Data.  

                                                      

60 Jaql: https://code.google.com/p/jaql/ 
61 Pig: http://pig.apache.org/ 
62 Vowpal Wabbit: http://hunch.net/~vw/ 
63 Apache Mahout: https://mahout.apache.org/ 
64 Cloudera Oryx: https://github.com/cloudera/oryx 
65 0xdata H2O: http://0xdata.com/h2o-2/ 
66 MlBase: http://www.mlbase.org/ 

https://code.google.com/p/jaql/
http://pig.apache.org/
http://hunch.net/~vw/
https://mahout.apache.org/
https://github.com/cloudera/oryx
http://0xdata.com/h2o-2/
http://www.mlbase.org/
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In SQLs, the standard SQL syntax can be extended to add new functionalities by writing User 

Defined Functions (UDFs). The UDFs development is not done in SQL, which means it is not an 

option for all users. Without UDFs, users are limited to what the Analytics solution provides, 

making SQLs not as extendible as Scripts. However, SQLs can reduce the learning time for users 

familiar with the SQL syntax. SQL solutions can be divided into Big Data SQL and Machine 

Learning SQL solutions.  

2.1.5.2.1 Big Data Query Languages (BDQL) 

The Big Data Query Languages only offer basic querying functionalities, like filtering, aggregation 

and selection, but have no machine learning capabilities. The most widely known BDQL solution 

is Apache Hive [Thusoo et al. 2009], which translates the userôs HiveQL queries to MapReduce 

batch jobs.  Google Dremel [Melnik et al. 2010] (publicly available as Google BigQuery67 service), 

Cloudera Impala68 and Apache Drill69 provide interactive querying on Big Data. Spark SQL70  

(previously known as Shark) [Xin et al. 2013] uses in-memory computations to further accelerate 

query processing. Microsoft SCOPE [Zhou et al. 2012] is a SQL-like language that creates 

optimized query execution plans inspired by parallel databases optimization techniques for 

Microsoftôs MapReduce solutions Cosmos and Dryad [Isard et al. 2007].  

2.1.5.2.2 Analytics Query Languages (AQL) 

The Analytics Query Languages provide the machine learning capabilities the BDQL solutions lack. 

From these solutions, the Data Mining Query Language (DMQL) [Han et al. 1996] attempts to 

establish a standard for data mining query languages (Figure 6). The DAEDLUS Framework [Ortale 

et al. 2008] introduces the MO-DMQL that can be expressed using the 3W algebraic framework 

[Johnson et al. 2000], which is similar to relational algebra (Figure 7 and Figure 8). Microsoft 

                                                      

67 Google BigQuery: https://cloud.google.com/bigquery/ 
68 Cloudera Impala: http://impala.io/ 
69 Apache Drill: http://incubator.apache.org/drill/ 
70 Spark SQL: https://spark.apache.org/sql/ 

https://cloud.google.com/bigquery/
http://impala.io/
http://incubator.apache.org/drill/
https://spark.apache.org/sql/
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introduces the Data Mining Extension (DMX) query language [Tang et al. 2005] in its SQL server 

to run in-database Analytics ( Figure 9, Figure 10 and Figure 11). Hivemall [Yui and Kojima 

2013] extends HiveQL with a scalable machine learning library, where models can be created and 

used from within HiveQL statements (Figure 12 and Figure 13). Meo et al. [Meo et al. 1996] 

propose a specialized SQL extension for only association rules mining (Figure 14). SQL-TS [Sadri 

et al. 2001] is another specialized SQL extension that is highly optimized for complex time series 

queries (Figure 15). 

USE DATABASE <database_name>  

{ USE HIERARCHY <hierarchy_name> FOR <attrp> }  

FIND [characteristic, discriminate, classification, association] RULES 

[ AS <rule_name>] [accordin g to <attributes>]  

RELATED TO <attr_or_agg_list>  

FROM <relation(s)>  

[ WHERE <condition(s)>]  

[ OREDER BY <order_list>]  

{ WITH [<kinds_of>] threshold = <value> [for <attribute(s)>]}  

[ DISPLAY IN  <chart_or_table_name>]  

Figure 6 DMQL Query Structure  

CREATE MODEL <model_name> AS MINE <mining_algorithm>  

FROM <<table>>  

WHERE <mining_algorithm>.param 1 = val 1  . . .  

<mining_algorithm>.param n = val n 

Figure 7 DEADALUS Training  

 

SELECT <Query>.<column>,<table>.< column>  

FROM <Query>, <model_name>, <<table>>  

WHERE <table>.<column> = val AND <Query>.<column> = val  

Figure 8 DEADALUS Scoring 
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CREATE MINING MODEL <model_name>  

(  <<attributes datatype>>,  <label datatype> PREDICT )  

USING [Microsoft Decision Tree]  

 Figure 9 DMX  Create Predictive Model  

 

INSERT INTO <model_name>  

( <<attributes>>,  <lab el > )  

OPENROWSET(ódb_nameô, óusernameô, ópasswordô,  

óSELECT <<attributes>>,  <lab el > 

 FROM <training_dataset_table> ô 

)  

Figure 10 DMX Training  

 

SELECT <identification_attibute> , <model_name> . <label> , 

PredictProbability( <model_name> . <label> )  

FROM <model_name>  PREDICTION JOIN <testing_dataset_table>  

ON <model_name>.<attribute 1> = <testing_dataset_table>.<attribute 1> 

AND 

<model_name>.<attribute n> = <testing_dataset_table>.<attribute n> 

Figure 11 DMX Scoring 

CREATE TABLE <model_name> AS  

SELECT  <label>,  cast(<<feature>> AS <<datatypes>>) AS feature FROM {  

 SELECT TRAIN_MODEL(<<feature>>,<label>) AS   

(<label>,<<feature>>,<<weight>>,<<covar>>)  

  FROM <training_dataset_table> ) t  

GROUP BY <label>, <<feature>>;  

Figure 12 Hivemall Training  

 

CREATE VIEW <prediction_table_name>  

AS SELECT <rowid>, <score>, <label> FROM (  

  SELECT <t.rowid>, <m.label>, <m.score>  

  FROM <testing_dataset_table> t LEFT OUTER JOIN  

    <model_name> m ON (<<t.feature>> = <<m.feature>>) );  

Figure 13 Hivemall Scoring 
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MINE RULE < Rule Name> AS  

SELECT DISTINCT l..n item AS BODY, 1..1 item AS HEAD,SUPPORT, CONFIDENCE  

WHERE HEAD.item IN (<SQL Query>)  

FROM <table>  

WHERE <table>.<column> = val é 

GROUP BY <table>.<column>  

CLUSTER BY <table>.<column>  

HAVING COUNT(*) <= <count value>  

EXTRACTING RULES WITH SUPPORT: <value>, CONFIDENCE: <value>  

Figure 14 Meo et. al Mining Association Rules 

 

SELECT B.PageNo, C.ClickTime  

FROM Sessions  

CLUSTER BY SessionNo  

SEQUENCE BY clickTime  

AS (A,B,C)  

WHERE A.pageType=ôXô AND B.pageType= ôYô AND C.pageType= ôZô; 

Figure 15 SQL-TS Time Series Query 

 

Looking at the existing AQL solutions, we find the following shortcomings. Both DMQL and 

MO-DMQL are theoretical with no implementations. They also do not discuss distributed queries 

for handling Big Data. The language from Meo et al. only supports modeling association rules and 

SQL-TS only supports complex time series queries. The closest to achieving a fully functioning 

AQL for Big Data Analytics are DMX and Hivemall. They support different data models and use 

SQL and HiveQL, respectively for data exploration and preparation. However, they rewrite the data 

mining algorithms to run in a distributed fashion, thus their supported algorithms are still limited 

compared to other sequential single-node data mining libraries. 

2.1.5.3 Graph-based Interfaces (Graphicals) 

With the increasing sophistication of Analytics performed by organizations, Big Data Analytics 

has become a very complex process that can incorporate tens or even hundreds of operations. 
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Graphicals support such sophistication without the need to write code. Their interface typically 

consists of two main areas: a panel and a canvas. The panel holds a list of supported operations, 

where each operation represents a workflow task that is always carried out in full [VanderAalst and 

VanHee 2004]. Users can drag and drop these operations into the canvas and connect them together 

to create a workflow. Some Graphicals support sub-workflows that consists of a set of tasks and 

possibly further sub-workflows to allow reusing frequently-occurring tasks. However, Graphicals 

have a number of shortcomings, namely not all of them support distributed execution, conditionals, 

loops, and extensions.   

A large number of Graphical solutions have been developed both by industry and academia. 

RapidMiner71 is the most widely used Graphical solution. It uses sub-workflows, wizards, and 

quick fixes extensively, making complex workflows easier to design and interpret. It also has 

connectors for WEKA and R. Radoop [Prekopcsak et al. 2011] extends RapidMiner using Hive and 

Mahout to support Analytics at scale on top of Hadoop, while hiding the complexity of distributed 

Data Analytics.  

IBM SPSS Modeler72  is a commercial solution providing a range of advanced algorithms and 

techniques for text Analytics, decision management, predication and optimization. Modeler 

supports conditionals, iterations, and sub-workflows using Python scripts, which requires having 

good programming skills. IBM Analytic Server73 extends Modeler to provide scalable distributed 

Analytics on Hadoop. 

WINGS (Workflow INstance Generation and Specialization) [Gil et al. 2011] is an intelligent 

Graphical solution that uses semantic reasoning to help users design complex workflows. WINGS 

uses workflow templates to automatically complete and validate workflows based on the 

operationsô and datasetsô requirements. WINGS can be extended with new operators written in any 

                                                      

71 RapidMiner: http://rapidminer.com/ 
72 IBM SPSS Modeler: http://www-01.ibm.com/software/analytics/spss/products/modeler/ 
73 IBM SPSS Analytics Server: http://www-03.ibm.com/software/products/en/spss-analytic-server/ 

http://rapidminer.com/
http://www-01.ibm.com/software/analytics/spss/products/modeler/
http://www-03.ibm.com/software/products/en/spss-analytic-server/
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language and encapsulated in its Shell script wrapper74. It supports parallel execution but does not 

explicitly support sub-workflows or control constructs, however, this can be done implicitly [Sethi 

et al. 2013]. 

Kantere and Filatov [Kantere and Filatov 2015] propose a framework for expressing complex 

workflows in an abstract manner, adaptable to the user role, interest and expertise. The framework 

also prepares the workflow tasks for execution on a range of engines based on the execution 

semantics of the individual tasks. 

2.1.5.4 Sheets 

Sheets are the closest to providing consumable Analytics as they offer the most familiar 

environment for business users but they are not designed to handle Big Data. They are more focused 

on data exploration and preparation, and require moving the prepared data to another solution for 

modeling, which is very costly with Big Data. 

Microsoft offers the Excel Analytics solution (Power Query75, Data Analysis Expressions 

(DAX) Language76 , Data Mining add-in77), where users can use the Power Query Sheet GUI to 

fetch and merge data from different sources and do data preparation and transformation. The DAX 

language keeps track of all executed steps to support undos, and the Data Mining add-in sends the 

prepared data to the SQL server for modeling. Power Query is limited to a maximum of 1,000,000 

records78 per dataset. For that, Microsoft offers Microsoft Tabular79, a server-based solution for in-

database Analytics on structured data. Microsoft Daytona [Barga et al. 2012] can be used to offload 

Excelôs operations to MapReduce on the cloud for distributed processing. 

                                                      

74 WINGS Shell Script wrapper: http://goo.gl/mhgnDH 
75 Power Query: http://social.technet.microsoft.com/wiki/contents/articles/18542.power-query.aspx 
76 DAX: http://social.technet.microsoft.com/wiki/contents/articles/677.powerpivot-data-analysis-

expressions-dax-language.aspx 
77 Data Mining Add-in: http://office.microsoft.com/en-ca/excel-help/data-mining-add-ins-

HA010342915.aspx 
78 Power Query limitations: https://goo.gl/FjM7aV 
79 MS Tabular: http://technet.microsoft.com/en-us/library/hh212940.aspx 

http://goo.gl/mhgnDH
http://social.technet.microsoft.com/wiki/contents/articles/18542.power-query.aspx
http://social.technet.microsoft.com/wiki/contents/articles/677.powerpivot-data-analysis-expressions-dax-language.aspx
http://social.technet.microsoft.com/wiki/contents/articles/677.powerpivot-data-analysis-expressions-dax-language.aspx
http://office.microsoft.com/en-ca/excel-help/data-mining-add-ins-HA010342915.aspx
http://office.microsoft.com/en-ca/excel-help/data-mining-add-ins-HA010342915.aspx
https://goo.gl/FjM7aV
http://technet.microsoft.com/en-us/library/hh212940.aspx
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Google OpenRefine80  is a browser-based, spreadsheet-style tool designed for data exploration 

and preparation but does not support data modeling. Unlike Excelôs Power Query, OpenRefine can 

handle any number of records as it only shows a data sample to users. However, OpenRefine still 

runs on a single machine and is thus limited to the machineôs memory and computational resources. 

IBM Cognos81 provides a simple GUI for manipulating data in the form of spreadsheets and 

data cubes. As with previous solutions, Cognos runs on a single machine, making it limited to small 

and medium datasets. IBM offers the BigInsights BigSheets82 which is a browser-based, 

spreadsheet-style tool in IBM InfoSphere BigInsights83 that enables business users to explore, 

manipulate and analyze Big Data using the underlying Hadoop layer for distributed processing. 

2.1.5.5 Visualizations 

With Big Data, users can drown in the excessive volumes of data. This can lead to analyzing the 

wrong or incomplete set of attributes or becoming frustrated with the whole Analytics process. 

Visualization solutions are designed for business users to allow them to have an interactive 

conversation with their data.  

IBM Watson Analytics84  [Rais-Ghasem et al. 2013] allows users to go from data to analysis in 

seconds without any setup or configuration. It allows users to use visualization and natural language 

to understand their data. It relies on IBM SPSS Analytics Server and IBM Big Insights to 

automatically build and use data models, and on the Rapidly Adaptive Visualization Engine (RAVE) 

for interactive visualizations. On the down side, Watson Analytics requires data to be pre-cleaned 

outside the Watson framework. It does not output an analytic model to use for further analysis, and 

it does not specify how the analysis outputs were achieved making it hard to trust the outputs.  

                                                      

80 Google OpenRefine: http://openrefine.org/ 
81 IBM Cognos: http://www-01.ibm.com/software/analytics/cognos/ 
82 IBM Big Sheets: http://goo.gl/d4E9PG 
83 IBM Big Insights: http://www-01.ibm.com/software/data/infosphere/biginsights/ 
84 Watson Analytics: https://www.analyticszone.com/homepage/web/displayNeoPage.action?CT=ISM0056 

http://openrefine.org/
http://www-01.ibm.com/software/analytics/cognos/
http://goo.gl/d4E9PG
http://www-01.ibm.com/software/data/infosphere/biginsights/
https://www.analyticszone.com/homepage/web/displayNeoPage.action?CT=ISM0056
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Microsoft offers Power View85  as part of its Power BI solution for Excel 2013 and SQL Server 

2012. As with Watson Analytics, Power View provides interactive data exploration and 

visualization to support intuitive ad-hoc reporting in a familiar environment. However, Power View 

does not support data modeling, and it requires loading all data first which limits the analysis to the 

size of the available memory. 

SAS Visual Analytics86  powered by the SAS Analytics framework87, is designed to empower 

business users with limited technical skills to do Analytics using Hadoop without any 

programming. In addition to data exploration, users can do sophisticated Analytics like forecasting 

using a drag-and-drop approach.  

MicroStrategy Visual Insight88  and tableau89  allow users to access data from multiple sources 

(spreadsheets, databases, or HDFS) and present them in interactive visualizations for analysis. The 

Analytics capabilities of those solutions are limited as they do not implement machine learning 

techniques. Their power comes from their availability on mobile devices and allowing users to 

share visualizations. 

2.1.6 Big Data Analytics Deployment Methods  

The ecosystem is composed of many overlaid components that need to be integrated together. 

Deploying and maintaining such ecosystem can be complex, challenging, and beyond the 

capabilities of the in-house IT team in many organizations.  

Deployment methods differ in terms of access needs, IT cost, security, data privacy, scalability, 

maintenance complexity and time-to-first-insight. First, the Product model, where users buy and 

setup the solution on their infrastructure. As solutions become more complex, there is a shift 

                                                      

85 MS Power View: http://goo.gl/OvOVh8 
86 SAS Visual Analytics: http://www.sas.com/en_us/software/business-intelligence/visual-analytics.html 
87 SAS: http://www.sas.com/ 
88 MicroStrategy: http://www.microstrategy.com/us/software/products/visual-insight 
89 Tableau: http://www.tableau.com/ 

http://goo.gl/OvOVh8
http://www.sas.com/en_us/software/business-intelligence/visual-analytics.html
http://www.sas.com/
http://www.microstrategy.com/us/software/products/visual-insight
http://www.tableau.com/
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towards a Service deployment model where the setup and maintenance of the solutions are 

outsourced.  

2.1.6.1 Product 

Organizations use the product deployment model to ensure their data security and privacy, and to 

handle large volumes of on-site data. However, this model (i) requires a large upfront cost to buy 

the solution, (ii) needs an IT team to set up and maintain the solution, and (iii) has limited scalability 

bounded by the organizationôs resources. 

Most of the Analytics ecosystem components are available for free (eg. Hadoop), however, 

integrating them is technically challenging and time consuming. A number of solutions integrate 

all needed components into a Software Bundle (SW), which organizations can buy and deploy on 

their infrastructure. Hortonworks Data Platform (HDP)90  provides an integrated solution using 

open source solutions like Hadoop, Pig, Hive, Spark, Yarn, etc. Other solutions provide a 

Software/Hardware Bundle (SW/HW), usually using powerful servers. Organizations can buy these 

solutions and build their own Big Data Analytics cloud. Oracle Exalytics91  is an example, 

providing powerful cloud nodes (servers) designed for in-memory Analytics.  

2.1.6.2 Service 

In the Service model, a service provider gives organizations on-demand access to the Big Data 

Analytics Ecosystems and organizations are charged on a pay-per-use basis. This model allows 

organizations to outsource the software and infrastructure setup and maintenance to the service 

provider, and gives them better scalability and availability using the larger and more reliable service 

providerôs infrastructure. For the previous reasons, the service model is becoming one of the main 

factors in the increased adoption of Big Data Analytics [Güemes et al. 2013]. However, 

                                                      

90 Hortonworks Data Platform: http://hortonworks.com/hdp/ 
91 Oracle Exalytics: https://www.oracle.com/engineered-systems/exalytics/index.html 

http://hortonworks.com/hdp/
https://www.oracle.com/engineered-systems/exalytics/index.html
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organizations are still challenged by the service modelôs data security and privacy, and the cost of 

moving their Big Data to the providerôs cloud.  

One proposed solution to the service modelôs challenges is Hybrid Clouds, where the 

architecture is split, with data storage and processing residing on the organizationôs infrastructure, 

while the coordination and Analytics services are provided by the public cloud [Güemes et al. 

2013]. While this solution solves the data movement and privacy problems, it eliminates a lot of 

the Services advantages, where the organization still has to setup and maintain its own Analytics 

ecosystem and infrastructure. Another solution would be streaming the data to the providerôs cloud 

and running the Analytics on the data as it arrives. The main problem facing the implementation of 

this solution is that most Analytics solutions are batch based and need all data in order to start. 

Analytics Platform as a Service (APaaS) follows the Platform as a service (PaaS) cloud 

deployment model to deliver highly customizable web-based services covering the end-to-end 

process of an Analytics solution, from acquiring data to reporting results to end-users. The APaaS 

model provides a platform for organizations to develop, run, manage and share their Analytics 

without the complexity of building and maintaining the software ecosystem or the infrastructure.  

Amazon Web Services (AWS) 92   provide an infrastructure for the different components of the 

Analytics ecosystem: EBS and S3 for scalable storage, EC2 for scalable on-demand computation, 

EMR for MapReduce as a service, RDS for storing structured data, and DynamoDB for semi- and 

unstructured data.  

Google BigQuery93 is an online on-demand APaaS solution, where users can upload their 

datasets to the Google cloud, analyze it using SQL-like queries, and get charged per terabyte 

processed and stored. IBM offers the Analytics for Hadoop94 APaaS solution, which is a cloud 

                                                      

92 Amazon Web Services: http://aws.amazon.com/ 
93 Google Big Query: https://cloud.google.com/bigquery/ 
94 IBM Analytics for Hadoop: http://www-01.ibm.com/software/data/infosphere/hadoop/trials.html 

http://aws.amazon.com/
https://cloud.google.com/bigquery/
http://www-01.ibm.com/software/data/infosphere/hadoop/trials.html
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version of their BigInsights solution deployed on their Bluemix PaaS cloud. RapidMiner Cloud95  

offers a similar service. HP offers the HAVEn OnDemand96 APaaS solution that runs on their 

version of the OpenStack97 cloud platform, codenamed HP Helion98. EMC2 offers the Greenplum 

Unified Analytics Platform (UAP) [EMC 2013], a high-end APaaS solution hosted on the EMC 

Greenplum Data Computing Appliance (DCA) cloud, which provides massive parallel processing 

power to speed up the Analytics performed using SAS and other Analytics engines. Xu et al. [Xu 

et al. 2015] propose an architecture for providing real-time APaaS. The architecture uses RESTful 

web services to wrap and integrate the different data storage and data mining services.  

IBM Watson Analytics99, Tableau Online100 and MicroStrategy Analytics Express101 use a 

Software-as-a-Service (SaaS) model where users can only analyze their data using interactive 

visualizations without being able to develop their Analytics processes. 

2.1.7 Summary 

In this section, we summarize in Table 1 the different approaches used in the six pillars. It should 

be noted that an ecosystem can implement one or more approach within the same pillar to support 

more use cases. Approaches within a pillar complement one another and are not mutually exclusive. 

Table 1 Big Data Approaches for the Six Pillars 

 Approach Advantages Disadvantages Examples 

S
to

ra
g

e 

RDBMS - High performance 

- Ensure consistency 

- Low scalability 

- Mostly only store structured 
data 

MySQL Cluster, ScaleDB, VoltDB, ScaleBase 

DFS - Highly scalable 

- Store any data format 

- No support for querying 

data 

GFS, HDFS, CFS 

NoSQL - Highly scalable 

- Store any data format 

- Support querying data 

- Mostly only support 
eventual consistency 

DynamoDB, Voldemort, Redis, Riak, 

MemcacheDB, HBase, BigTable, Cassandra, 

PNUTS, MongoDB, CouchDB, SimpleDB, 

Neo4j, OrientDB, InfiniteGraph 

                                                      

95 RapidMiner Cloud: https://rapidminer.com/documentation/cloud/ 
96 HP HAVEn OnDemand: http://www.vertica.com/hp-vertica-products/ondemand/ 
97 Openstack: https://www.openstack.org/ 
98 HP Helion: http://www.hpcloud.com/ 
99 Watson Analyticshttps://www.analyticszone.com/homepage/web/displayNeoPage.action?CT=ISM0056 
100 Tableau Online: http://www.tableau.com/products/online 
101 MicroStrategy Analytics Express: http://www.microstrategy.com/us/free/express 

https://rapidminer.com/documentation/cloud/
http://www.vertica.com/hp-vertica-products/ondemand/
https://www.openstack.org/
http://www.hpcloud.com/
https://www.analyticszone.com/homepage/web/displayNeoPage.action?CT=ISM0056
http://www.tableau.com/products/online
http://www.microstrategy.com/us/free/express
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 Approach Advantages Disadvantages Examples 

P
ro

c
e

s
s
in

g 

Batch - Execute series of jobs 
without manual intervention. 

- Fault tolerant 

- High IO overhead 

- No loops support 

- Long execution time 

MapReduce, Hadoop, Spark, HOP, Muppet, 

DistributedWEKABase, 

DistributedWEKAHadoop, RHadoop, Radoop, 

IBM Analytic Server 

Interactive - Shorter execution time  

- Support ad-hoc queries 

- Weaker fault tolerance 

- No loops support 

Dremel, BigQuery, PowerDrill, Drill, Imapala, 

Tez 

Iterative - Loop support 

- Machine learning support 

- Weaker fault tolerance 
 

HaLoop, iMapReduce, PrIter, M3R, Twister, 

Mahout, Hivemall, MLBase, Oryx, H2O, 

Deeplearning4j 

Incremental - Handle data-in-motion 
(realtime) 

- Weaker fault tolerance 
 

Storm, S4, Samza, Trill, Stat!, Naiad, 

MillWheel, InfoShpereStreams, Nova, 

SparkStreaming 

Approximate - Fast retrieval of partial 

results 

- Long execution time to get 

the complete results 

EARL,BlinkDB 

In-Database - Ensure consistency 

- in-database Analytics 

- Low scalability 

- Mostly only structured data 

SSAS, MADLib, HadoopDB 

O
rc

h
e

s
tr

a
ti
o
n 

Resource 

Scheduling 

- Increase resource utilization 
and reduce cost 

- High IO and network 
overhead 

YARN, Adoop, IReS 

Data Locality - Reduce IO and network 
overhead 

- Increase waiting time for 
resources holding data 

Pegasus, [Zaharia et al. 2010a], [Guo et al. 

2012], Pixida 

Resource 

Provisioning 

- Reduce execution time 

- Reduce execution cost 

- Increase cost to reduce 
execution time 

- Increase execution time to 
reduce cost 

RSMaximizer, Conductor, Purlieus, [Kllapi et 

al. 2011], [Mian et al. 2013], [Mao and 

Humphrey 2013], Mesos, [Li et al. 2015] 

Data 

Provisioning 

- Reduce IO and network 
overhead 

- Increased waiting time for 
data replication 

Scarlett, DARE, CDRM 

A
s
s
is

ta
n

c

e 

Static - Easy to develop - Not very helpful Tooltips, Help Pages, Wizards 

Intelligent - Provide suggestions on case 

bases to help users with 
different experience levels 

- Hard to develop Ontologies, IBM Watson Analytics, 

MiningMart, DMA, WINGS, [Charest 2007]  

In
te

rf
a
c
e 

Script 

CLI, API 

- Very flexible and powerful to 
expert users and 

programmers 

- Low level 

- Hard to learn and use 

R, Matlab, WEKA, Python, F#, Jaql, Pig, 

Vowpal Wabbit, Mahout, Oryx, H2O, MLBase 

SQL 

 

- Provide SQL interface to 
work on Big Data for 

database administrators 

- Less flexible than Scripts DMQL, DAEDLUS, QDrill, DMX, Hivemall, 

SQL-TS, [Meo et al. 1996] 

Graphical - Provide drag-and-drop 

interface for novice users 

- Allow creating sophisticated 
workflows 

- Less flexible than Scripts RapidMiner, IBM SPSS Modeler, WINGS, 

[Kantere and Filatov 2015] 

Sheet - Provide familiar interface for 
business users 

- Only supports simple 
operations 

Excel Analytics, Tabular, OpenRefine, 

Cognos, BigSheets 

Visualization 

 

- Provide interactive analysis 
for business users 

- Only supports simple 
operations 

IBM Watson Analytics, PowerView, SAS 

Visual Analytics, Microstrategy Visual Insight 

D
e

p
lo

y
m

e
n

t 

Product - Better data privacy and 

security 

- Expensive, time consuming  

- Less scalable  

HDP, Oracle Exalytics 

Service - Cheaper 

- Faster to setup 

- More scalable 

- Weaker on the data privacy 
and security 

- Difficult to work when huge 
amounts of data need to be 

uploaded 

AWS, BigQuery, IBM Analytics for Hadoop, 

HP HAVEn OnDemand, EMC2 Greenplum 

UAP, IBM Watson Analytics, Tableau Online, 

MicroStrategy Analytics Express, RapidMiner 

Cloud, [Xu et al. 2015] 
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2.2 Limitations of Current Solutions 

Each of the discussed Analytics solutions brings some features not available in the others, but also 

adds some limitations and overheads. While there has been a continuous improvement in Analytics 

solutions to address different Analytics scenarios, there are still some gaps. In this section, we 

define the specifications for future Big Data Analytics Ecosystems to provide improved and broader 

support to organizations needs for the different Analytics scenarios.  

¶ Extensibility. Solutions can become obsolete if they are designed to only support a fixed 

number of data stores and Analytics techniques. It is thus crucial for future Big Data Analytics 

solutions to have a plug-in architecture to support adding new algorithms and data stores. 

¶ Seamless data integration. With organizations having their data in multi-structured formats and 

distributed across heterogeneous data stores, future Big Data Analytics solutions need to 

provide an abstraction layer to hide these details from users. They need to allow users to join 

this data together while minimizing data movement. 

¶ Seamless engine integration. Analytics consists of multiple operations to transform raw data to 

meaningful insights. Usually in the data preparation phase, SQL or script engines are used to 

have interactive ad-hoc queries. Then in the modeling phase, machine learning engines like 

Mahout, WEKA, etc. are used. This requires future Big Data Analytics solutions to be able to 

integrate engines in a single pipeline and handle the inter-engine compatibility issues. 

¶ Distributed processing. The majority of existing machine learning engines are local engines 

like R, running on local machines and cannot scale to deal with Big Data. Distributed engines 

like Mahout and local engine extensions like RHadoop re-implement the algorithms which 

makes their development time consuming. Future Big Data Analytics solutions need to be able 

to distribute the execution of existing algorithms without rewriting them. 

¶ Approximate and incremental processing. While designing the Analytics process, users are not 

usually sure of which operation to use. This makes them try different operations, which can be 
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time consuming if they run on the whole dataset. Thus, future Big Data Analytics solutions 

need to provide approximate and incremental results to give users indications of the results of 

an operation without running it on the whole dataset and to support real-time Analytics. 

¶ Execution and storage optimization. Having the data distributed among cloud nodes requires 

optimizing the Analytics execution to minimize data movement. Future Big Data Analytics 

solutions need to predict what data will be needed by future operations and to make sure that 

this data is available on the underutilized nodes for the future operations.  

¶ Fault-tolerance. Big Data Analytics can run for long periods. Having to restart from the 

beginning in case of failure is not acceptable. Future Big Data Analytics solutions need to 

support fault-tolerance while minimizing its impact on performance. 

¶ Intelligent assistance. With the huge set of available Analytics techniques, even experts 

sometimes need help. Intelligent assistance provides customized assistance to meet the userôs 

skill level and problem at hand. Providing intelligent assistance in future Big Data Analytics 

solutions is important for Analytics to be more accessible to organizations, to minimize the 

time-to-insights and to enhance the quality of Analytics. 

¶ Multiple user interfaces. For future Big Data Analytics solutions, a combination of user 

interfaces should be provided to meet the needs of users of different skillsets. Future Analytics 

frameworks should provide the flexibility and the ability to add user defined operations of the 

scripts; the easy-to-use drag-and-drop interface for designing complex workflows of the 

Graphicals; the ad-hoc capabilities of the SQLs; the familiar environment of the sheets, and the 

easy interpretation of the visualizations. 

¶ Service-based. Having multiple Analytics engines and data stores in the Analytics process 

makes the solution hard to setup, maintain, and scale. Future Big Data Analytics solutions can 

use the Service approach to outsource all these problems to the service provider. However, data 

privacy and security issues need to be addressed.  
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Chapter 3 

Providing Consumable Analytics 

 

Consumable Analytics attempt to address the shortage of skilled data analysts in many 

organizations by offering analytic functionality in a form more familiar to in-house expertise. 

Providing consumable Analytics for Big Data faces three main challenges. The first challenge is 

running the Analytics on data of different formats stored on heterogeneous data stores. The second 

challenge is providing an easy interface to allow in-house expertise to run these algorithms while 

minimizing the learning cycle. The third challenge is distributing the execution of the Analytics 

algorithms in order to analyze Big Data in a timely manner. 

In this chapter, we propose the QDrill  solution [Khalifa et al. 2016b] that extends Apache Drill 

to address the aforementioned challenges. First, we start by presenting the Apache Drill base 

version. Following that, we describe the QDrill  Analytics extension, composed of the Analytics 

Adaptor and the Distributed Analytics Query Language (DAQL). 

3.1 Apache Drill  

Apache Drill102  is an open source implementation of the proprietary Google Dremel [Melnik et al. 

2010] (publicly available as Google BigQuery103  service). Drill  is designed to allow accessing and 

                                                      

102 Apache Drill: https://drill.apache.org/ 

 
103 BigQuery: https://cloud.google.com/bigquery 

https://drill.apache.org/
https://cloud.google.com/bigquery
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joining data from heterogeneous non-relational data sources (HDFS, Hive, MongoDB, etc.) while 

providing the familiar SQL interface of relational data stores. Drill  uses the standard SQL syntax 

and Java Database Connectivity104/Open Database Connectivity105 (JDBC/ODBC) interfaces to 

submit queries to the non-relational data stores. Drill  thus makes use of the existing SQL skillsets 

and BI tools within an organization. 

Drill  supports queries on self-describing data like JSON, with the ability to flatten the nested 

data. It supports on-the-fly schema discovery, which enables execution to begin without knowing 

the structure of the data. Based on the data description within the submitted query, Drill  

automatically compiles the query during the execution phase to create the schema. As a result, Drill  

can handle schema-less data. This removes the requirements of having an ETL process and 

maintaining schemas before data can be analyzed. 

Unlike other frameworks that translate queries to MapReduce jobs, Drill  uses the Massive 

Parallel Processing (MPP) paradigm. The MPP paradigm splits the processing and data IO across 

multiple nodes, dividing the job across them. MPP nodes use a messaging interface to coordinate 

the job execution. This paradigm allows parallel search, processing and fetching of data. 

Architecture-wise, Drill  follows Google Dremel multi-level processing architecture (Figure 4). 

Leaf processes communicate with the storage layer to optimize accessing the data in parallel. The 

leaf processes pass partial results to the intermediate processes, which perform parallel operations 

on the intermediate results. Intermediate processes then pass the aggregated results to the root 

process, which performs further aggregation and provides the final results to the client application. 

Drill , however, does not implement a dedicated root process. Instead, any Drill  node (aka Drillbit ) 

can accept queries and become the root process (aka Driving Drillbit ), leading to a better load 

balancing when multiple queries are submitted.  

                                                      

104 JDBC: http://www.oracle.com/technetwork/java/overview-141217.html 
105 ODBC: https://msdn.microsoft.com/en-us/library/ms710252(v=vs.85).aspx 

http://www.oracle.com/technetwork/java/overview-141217.html
https://msdn.microsoft.com/en-us/library/ms710252(v=vs.85).aspx
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Each Drillbit  has a Storage Adaptor to optimize and provide access to the various data stores. 

The Storage Adaptor works with Storage Plugins that transform the data loaded from a data store 

to a unified internal data structure so that data of different formats coming from different sources 

can be joined and processed.  In addition, Storage Plugins inform the execution engine of any 

native capabilities to speed up the processing, such as predicate pushdown. Drill 1.4 comes with 

the following Storage Plugins preinstalled106: File System (CSV, JSON, Parquet, and Delimited 

Text), HDFS, HBase, Hive, MongoDB, S3, RDMS (MySQL, Oracle DB, MS SQL Server, and 

Postgres). The Storage Adaptor can include user defined storage plugins for the other data stores. 

Query execution-wise, when a Drill  SQL query is submitted by an application, the Drill  

JDBC/ODBC interface is used to forward the query to a Drillbit  that becomes the Driving Drillbit  

and coordinates the execution. The Driving Drillbit parses the query to a logical plan that describes 

the work required to generate the query results and defines which data sources and operations to 

apply. A cost-based optimizer is then used to apply various types of rules to rearrange the logical 

plan operators and functions to speed up the execution.  The cost-based optimizer generates a 

physical plan that describes how to execute the query. 

The physical plan is given to the Parallelizer which creates the execution plan by splitting the 

physical plan into multiple execution phases (fragments) that can be executed in parallel. The 

Parallelizer first fragments the plan into major fragments. A major fragment represents a phase of 

one or more related operations. Each major fragment is then parallelized into as many minor 

fragments as can be run at the same time on the cluster. A minor fragment is a logical unit of work 

that runs inside a thread. Drill  schedules the minor fragments on nodes with data locality. 

Otherwise, Drill  schedules them in a round-robin fashion on the available Drillbits . 

                                                      

106 Drill Storage: https://goo.gl/EFGTuo 

https://goo.gl/EFGTuo
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3.2 QDrill  

Apache Drill  is powerful in terms of accessing and joining data from heterogeneous sources, which 

is usually a cumbersome task when done in data mining libraries. On the other hand, Drill  does not 

have any data mining capabilities. Developing data mining algorithms for Drill  is time consuming 

and so would likely be limited to a handful of algorithms, nothing compared to those available in 

the well-established data mining libraries. The proposed QDrill  [Khalifa et al. 2016b] with the 

Analytics Adaptor solves these issues by using Drill  to load and join data from heterogeneous 

sources and using the pre-existing data mining algorithms of well-established data mining libraries 

to train and score data mining models in a distributed fashion. 

The QDrill  full system architecture is illustrated in Figure 16, showing the unmodified 

components of Drill  (UI and JDBC/ODBC connection), the modified components (Distributed 

Query Planner, Query Execution Engine and the Storage Adapter) and the newly added components 

(Analytics Adapter). 

3.2.1 Analytics Adapter 

The proposed Analytics Adaptor works in an analogous way to Drillôs Storage Adaptor. It 

optimizes and provides access to various data mining libraries. The Analytics Adaptor works with 

Analytics Plugins that transform the data loaded by Drill  to a data structure understandable by the 

 

Figure 16 QDrill Architecture 
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data mining libraries. This way, algorithms from more than one library can be used together in the 

same Analytics process, leaving it to the Analytics Adaptor to resolve the inter-library data format 

conversion. In addition, the Analytics plugins invoke the APIs of the data mining library to train 

and score data mining models. All these details are hidden from users. 

The Analytics Adapter handles the two phases of data mining. First, Model Training phase 

where a predictive model is built using a Training dataset (labeled dataset). The predictive model 

relates the features extracted from the Training data to a Target property (Label). Second, Scoring 

phase where the predictive model predicts (scores) the Target value for new data records with an 

unknown Target (unlabeled dataset). 

In the Model Training phase, the Analytics Adaptor on each Drillbit  processes the 

heterogeneous labeled data in parallel to put it in a format acceptable by the data mining algorithm. 

An intermediate sub-model is trained on this processed labeled data by running a single-node data 

mining algorithm on each Drillbit . The intermediate sub-models from all Drillbits are aggregated 

at the Driving Drillbit to produce the final model. The final model is then saved by our proposed 

Model Storage Plugin and distributed across all Drillbits  to be used later for parallel scoring. This 

approach speeds up both data processing and model training as both operations are done in parallel 

on all of the available Drillbits .  

In the Scoring phase, the Model Storage Plugin on each Drillbit  loads the trained model. The 

Analytics Adaptor feeds the loaded model with records from the unlabeled data split available on 

that Drillbit , one record at a time. Our design brings the trained model to where data exists, unlike 

the traditional approach where data needs to be imported to the data mining library. Our design 

speeds up the scoring process by distributing both data fetching and scoring.  

As a prototype, we extended Apache Drill 1.2 as outlined above and created an Analytics plugin 

for the WEKA-dev-3.7.13 data mining library to access the WEKA data mining algorithms. The 

plugin also converts the data loaded by Drill  on-the-fly to the ARFF format accepted by WEKA.  
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3.2.2 Distributed Analytics Query Language (DAQL) 

The proposed QDrill  solution modifies Drillôs Distributed Query Planner and Query Execution 

Engine and introduces the Distributed Analytics Query Language (DAQL). QDrill  changes the 

behavior of Drillôs Distributed Query Planner and Query Execution Engine to run the Analytics 

queries using 2-phase aggregation instead of the default 1-phase aggregation to speed up the 

computations. In the first phase, intermediate sub-models are trained on each Drillbit  and in the 

second phase all intermediate sub-models are aggregated at the Driving Drill bit to produce the final 

model. The DAQL extends standard SQL syntax to allow invoking data mining algorithms from 

within the standard SQL statements. 

SQL- 1> USE dfs.tmp;  

SQL- 2> ALTER SESSION SET `store.format`='model' ;  

SQL- 3> TRAIN MODEL <model name>  AS  

       SELECT qdm_train_ weka(ó<algorithm>',ó<args>',   

                                   columns, label_column)  

       FROM `<Data Source>`  

       WHERE <conditions>;  

Figure 17 Training a WEKA  Model Using DAQL 

Figure 17 illustrates using the DAQL to train a WEKA model in a distributed fashion using the 

proposed Analytics Adaptor and the WEKA Analytics Plugin. The first SQL statement changes the 

storage location to a writable location. The second SQL statement tells the Drill Storage Adaptor 

to use the introduced Model Storage Plugin to save the model after training. The third SQL 

statement fetches the training data from any Drill-supported data store using the FROM clause. The 

FROM clause can also have a join between two heterogeneous data sources. The WHERE clause 

specifies any conditions on the records to fetch. The SQL then uses the new qdm_train_ weka 

UDF to define the classifier algorithm, set its arguments, specify the data columns to use for training 

and specify the label column, respectively. A question mark (?) can be used for the <algorithm>  



 

62 

 

to display a list of supported algorithms and for the <args> to display a list of valid arguments 

for the selected algorithm. Finally, the statement uses the new TRAIN MODEL clause to save the 

trained model under <model name> . 

Figure 18 illustrates using DAQL to update an existing updatable model with new training 

records. The first SQL statement changes the storage location to a writable location. The second 

SQL statement tells the Drill Storage Adaptor to use the Model Storage Plugin. The third SQL 

statement fetches the new training dataset using the FROM clause. The new APPLYING keyword 

in the FROM clause tells Drill  to fetch the trained model file <old model name> . The WHERE 

clause specifies any conditions on the records to fetch. The SQL then uses the new 

qdm_update_ weka UDF to define the classifier algorithm, set its arguments, specify the model 

to update, specify the data columns to use for training and specify the label column, respectively. 

Finally, it uses the TRAIN MODEL clause to save the new trained model under <model name> . 

 

SQL- 1> USE dfs.tmp;  

SQL- 2> ALTER SESSION SET `store.format`='model' ;  

SQL- 3> TRAIN MODEL <model name>  AS  

       SELECT qdm_update_ weka(ó<algorithm>',ó<args>',    

                    mymodel.columns[0] , mydata.columns,             

                                     mydata.label_column)  

       FROM `<Data Source>` AS mydata  

                     APPLYING <old model name>  AS mymodel  

       WHERE <conditions>;  

Figure 18 Updating an Updatable WEKA  Model Using DAQL 

Figure 19 illustrates using DAQL to score unlabeled data using a trained model. The first SQL 

statement changes the storage location to a writable location. The second SQL statement tells the 

Drill Storage Adaptor to save the scored records in CSV format. The third SQL statement fetches 
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the unlabeled data using the FROM clause. The APPLYING keyword in the FROM clause tells Drill  

to fetch the trained model file <model name> . The WHERE clause specifies any conditions on 

the records to fetch. The SQL then uses the new qdm_score_ weka UDF to apply the trained 

model on the unlabeled data. The UDF specifies the model and the data columns to use for scoring, 

respectively. This UDF outputs a label for each record in the unlabeled dataset. Finally, the SQL 

statement uses the CREATE TABLE clause to save the records along with their label in a new table 

<results> . 

SQL- 1> USE dfs.tmp;  

SQL- 2> ALTER SESSION SET `store.format`=csv';  

SQL- 3> CREATE TABLE <results> AS  

       SELECT mydata.columns,  

               qdm_score _weka( mymodel.columns[0] , mydata.columns)  

       FROM `<Data Source>` AS mydata  

                         APPLYING <model name>  AS mymodel  

       WHERE <conditions>;  

Figure 19 Scoring a Trained WEKA  Model Using DAQL 

The DAQL extends Drillôs standard SQL to add Analytics capabilities by supporting calls from 

within the SQL statements to any supported data mining library. By distributing the algorithms and 

handling data ETL, the DAQL allows users to do Analytics in a clear and scalable way with less 

lines of code compared to scripting and programming languages. 

3.3 Summary 

We propose QDrill , an extension to Apache Drill to add Analytics capabilities. The proposed 

QDrill  addresses the three Consumable Analytics challenges.  

QDrill  uses the proposed Analytics Adaptor and Analytics Plugins to address the first challenge 

of running the Analytics on data of different formats stored on heterogeneous data stores. The 



 

64 

 

Analytics Adaptor transforms the heterogeneous data loaded from heterogeneous sources to a 

format understandable by the underlying data mining library with no user intervention. 

QDrill  addresses the second challenge of providing an easy interface for in-house expertise by 

introducing the proposed Distributed Analytics Query Language. It allows invoking data mining 

algorithms from within the standard SQL query statements. This allows in-house expertise to use 

the SQL language they are familiar with while having QDrill  do the distributed deployment, data 

access and execution of the Analytics jobs behind the scene. This also allows users to connect to 

QDrill  from within their Business Intelligence tool and use spreadsheets and visualizations to do 

the Analytics. 

QDrill  address the third challenge of providing distributed Analytics by using the proposed 

Analytics Adaptor and modifying Drillôs Query Execution Engine to train intermediate sub-models 

on each Drillbit  then aggregate them all to produce a final model on the Driving Drillbit . This 

allows using any sequential single-node data mining library (e.g. WEKA) and distributing the 

execution of its algorithms without having to rewrite a single line of the algorithmsô code to make 

it run in parallel.  
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Chapter 4 

Distributing the UnDistributables 

 

How to adapt data mining algorithms to handle the Big Data huge volumes? A question usually 

answered by rewriting the data mining algorithms to run in a distributed fashion using a parallel 

framework (e.g. Hadoop, Spark). While this approach can result in fast algorithms, it is time 

consuming and can be very challenging to implement for all algorithms.  Our proposed QDrill  

solution overcomes this challenge and provides distributed Analytics without going through the 

hideous process of rewriting the algorithms.  

In this chapter, we propose a new data mining algorithms taxonomy based on the difficulty of 

distributing them. This gives us a way to partition the problem of distributing the algorithms into 

four simpler problems which we then address using four different distribution algorithms. We 

identify the most challenging type and name it the ñUnDistributableò. A data mining algorithm is 

ñUnDistributableò if it requires loading the whole dataset in the memory of a single node to train 

a model. The UnDistributables represent more than 50% of the data mining algorithms and they 

are usually not implemented in the natively distributed machine learning libraries (e.g. Mahout).  

Second, for each type of the data mining algorithms, including the UnDistributables, we devise 

an algorithm to distribute its execution. We integrate all the distribution algorithms to create the 
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Data Mining Distribution (DMD) algorithm [khalifa et al. 2016c] to distribute the execution of any 

data mining algorithm without rewriting a single line of its code. 

Finally, for distributed Analytics, the Training dataset needs to be partitioned and distributed 

among all computing nodes (Drillbits ). Thus, we propose the Label-Aware Disjoint Partitioning 

(LADP) algorithm [khalifa et al. 2016c] for partitioning and distributing the Training dataset among 

the Drillbits . The LADP guarantees that each data partition is a good representative of the whole 

Training dataset thus preventing the overfitting of intermediate sub-models trained on each Drillbit . 

4.1 Algorithms Taxonomy 

Training a data mining model requires having all the training dataset records go through the training 

algorithm to generate the one trained model. Distributing the training operation requires training 

intermediate sub-models on subsets of the training dataset and integrating these intermediate sub-

models together into a single final model.  

In our approach, each sub-model training operation runs on a different node (Drillbits ) on a 

subset of the training dataset that resides on that node. This approach allows training all sub-models 

in parallel which scales very well by adding more nodes as the training dataset size increases. 

However, not all algorithms allow having and combining sub-models. It depends on the algorithmôs 

 

Figure 20 Data Mining Algorithms T axonomy 

Data Mining Algorithm  

Updatable NonUpdatable 

Aggregatable NonAggregatable 
 

Aggregatable NonAggregatable 
  

Memory Requirements: 

 

Sub-Models Grouping:  

 

Difficulty to Distribute:  

record-by-record in 

memory 

 

result equals single 

model 

 

Easy 

record-by-record in 

memory 

 

cannot be grouped 

 

 

Moderate 

load all records in 

memory 

 

result equals single 

model 

 

Moderate 

 

load all records in 

memory 

 

cannot be grouped 

 

 

UnDistributable 

 



 

67 

 

Updatability and Aggregatability properties as illustrated in the data mining algorithms taxonomy 

in Figure 20. Updatability and Aggregatability are defined as follows: 

Definition 4.1 (Updatable). Updatable algorithms are incremental algorithms that can be 

trained record-by-record. They can be updated using only the new training records without having 

to re-train on the entire training dataset. 

Definition 4.3 (NonUpdatable). NonUpdatable algorithms are batch algorithms that require 

loading the whole training dataset in memory to run. These algorithms cannot be updated when 

new training records arrive. To update them, they must be re-trained using the combined old and 

new training datasets. 

Definition 4.3 (Aggregatable). Aggregatable algorithms are algorithms that can create a 

model by combining a set of sub-models each trained on a different data subset. An aggregated 

model produced by combining the sub-models is equivalent to a model trained on the whole training 

dataset on a single node. 

Definition 4.4 (NonAggregatable). NonAggregatable algorithms are algorithms that cannot 

be created by combining a set of sub-models. NonAggregatable algorithms do multiple passes on 

the entire dataset, thus they must run on a single node where the entire training data is available. 

As an example, Figure 21 represents a Venn diagram of WEKAôs algorithms, divided to 

Updatable-NonAggregatable (K* , KNN, HoeffdingTree), NonUpdatable-Aggregatable 

(Logistic Regression, RandomForest), Updatable-Aggregatable (NaiveBayes) and 

NonUpdatable-NonAggregatable (the rest) algorithms. The figure shows QDrill  using the 

proposed Data Mining Distribution (DMD) algorithm [Khalifa et al. 2016c] to support all WEKAôs 

algorithms without any algorithm rewrites, Spark MLlib and Mahout only support, with algorithm 

rewrites, five107 and two108 algorithms, respectively. 

                                                      

107 MLlib supported algorithms: http://spark.apache.org/mllib/ 
108 Mahout supported algorithms: https://mahout.apache.org/users/basics/algorithms.html 

http://spark.apache.org/mllib/
https://mahout.apache.org/users/basics/algorithms.html


 

68 

 

4.1.1 Updatable-Aggregatable Algorithms (Memory-Free Fully -Distributable  Algorithms) 

The algorithmôs Aggregability property allows training sub-models in parallel on different nodes 

on different subsets of the training data. Once the training of the sub-models is done, they can be 

combined forming the final model.  The algorithmôs Updatability property allows loading only one 

record at a time in the nodeôs memory to do the training. This reduces the training memory footprint 

and allows processing datasets of any size (Memory-Free). This type of algorithms is the easiest to 

distribute since they require a small amount of memory on the Worker Nodes and allow combining 

multiple sub-models to create the final model. However, these algorithms are rare. WEKA only has 

one algorithm of this type which is the Naïve Bayes. 

4.1.2 NonUpdatable-Aggregatable (Memory-Constrained Fully-Distributable  Algorithms) 

The algorithmôs Aggregability property is used to train sub-models in parallel on different nodes 

on different subsets of the training data. Once the training of the sub-models is done, they can be 

combined forming the final model.  Since the algorithm is NonUpdatable, each sub-model must 

load the entire data subset into the nodeôs memory to do the training. This puts a constraint on the 

 

Figure 21 WEKAôs Algorithms. 
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size of the data subset that can be used for training a sub-model (Memory-Constrained). This type 

is still easy to distribute. Given a large enough cluster of nodes, the training dataset can be 

partitioned to subsets that can fit in a nodeôs memory. However, these subsets need to be big enough 

to train the sub-models on all class labels. Examples of this type are Logistic Regression and 

Random Forest. 

4.1.3 Updatable-NonAggregatable (Memory-Free Semi-Distributable Algorithms) 

The algorithmôs Updatability property allows loading only one record at a time in the nodeôs 

memory to do the training. Thus, it requires a low memory footprint and allows processing datasets 

of any sizes (Memory-Free). However, due to the algorithmôs NonAggregatability property,           

sub-models cannot be trained separately on different nodes then combined together. This type of 

algorithm can be semi-distributed by loading the data in parallel using all cluster nodes, and then 

sending all data to a centralized node to train a single model. This allows distributed data loading 

but centralized training. Examples of this type are KNN and Hoeffding Tree. 

4.1.4 NonUpdatable-NonAggregatable (UnDistributable Algorithms) 

An algorithmôs NonAggregatability property does not permit training sub-models separately on 

different nodes then combining them. All data need to be sent to a central node to train a single 

model. Also, due to an algorithmôs NonUpdatability property, the entire training dataset needs to be 

loaded to the central nodeôs memory to train the single model. This creates a large memory footprint 

and limits the size of the datasets that can be processed using this type of algorithms. These 

algorithms are ñUnDistributableò since neither the data loading nor the training processes can be 

distributed. UnDistributable algorithms represent more than 50% of the data mining algorithms and 

they are usually not implemented in the distributed machine learning libraries (e.g. Mahout). 

Examples of UnDistributable algorithms are Multi-Layer Perceptron (Neural Networks), Decision 

Trees, and Support Vector Machine. 
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4.2 Data Mining Distribution  (DMD) Algorithm  

The Data Mining Distribution algorithm (DMD) [Khalifa et al. 2016c] distributes the execution of 

all four types of data mining algorithms. Distributing the Aggregatable types is easy and straight-

forward. Sub-models are trained in parallel on different nodes on different subsets of the training 

data. Once the training of the sub-models is done, sub-models are combined forming the final model.  

The challenge, however, lies in distributing the NonAggregatable types. The main issue with 

distributing these algorithms is that they do not allow training sub-models separately on different 

nodes then combining them to get the final model. The DMD algorithm distributes the execution of 

these algorithms by training sub-models on subsets of the training dataset on all nodes. Then, 

overcomes the algorithmôs NonAggregatability  by combining these sub-models using an 

aggregation algorithm like Voting or Averaging. This method is usually referred to in the literature 

as Classifier Ensemble. 

4.2.1 Classifier Ensembles 

A Classifier Ensemble is a group of two or more trained sub-models (classifiers). The Classifier 

Ensemble relies on the idea that there is no one data mining algorithm that outperforms all others 

for all situations [Fernández-Delgado et al 2014]. Classifiers in the Ensemble mitigate one 

anotherôs faults by aggregating their individual results, thus eliminating the risk of picking a bad 

classifier. Aggregating the classifiers results also prevents falling into a classifierôs local optima.  

Using Ensembles allows modelling functions that a single classifier alone cannot model. For 

example, a linear classifier cannot model curves, but using an ensemble of many linear classifiers 

makes it possible to model functions that are closer to the optimal one. Ensembles are also 

especially well-suited to deal with Concept Drift [Abdulsalam et al 2011] where the newly arriving 

data has different statistical properties than that of the data used to train the Ensemble [Wozniak et 

al 2014]. Approaches like the Streaming Ensemble Algorithm (SEA) [Street and Kim 2001] and the 

Accuracy Weighted Ensemble (AWE) [Wang et al. 2003] use Classifier Ensembles to overcome 
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Concept Drift by training new models on the new data, evaluating the old models on the new data 

and selecting the best performing classifiers to constitute the Ensemble in the next time epoch. 

A lot of research has been conducted to exploit the local behavior of the different algorithms 

to enhance the accuracy of the overall Ensemble [Fernández-Delgado et al 2014]. Now, it is 

established that an Ensemble of a (i) large enough set of (ii) diverse (iii ) unstable (iv) well-trained 

classifiers of (v)more than random accuracy will have the same or better prediction accuracy than 

a single classifier trained on the entire training dataset [Hansen and Salamon 1990; Krogh and 

Vedelsby 1995; Optiz and Shavlik 1996; Rokach 2010]. The reasons behind this are: 

(i) Using a large enough set of classifiers allows a classifierôs mistakes to be corrected by the other 

classifiers in the Ensemble [Fernández-Delgado et al 2014]. 

(ii)  Combining identical classifiers is useless since they misclassify the same records. A Diverse 

set of classifiers means that the Ensemble classifiers should make uncorrelated errors with 

respect to one another. That is, each classifier in the Ensemble misclassifies a different set of 

records [Chawla et al. 2003]. Unfortunately, the problem of how to measure classifier diversity 

is still an open research topic. However, a number of approaches can be used for classifier 

diversification [Brown et al. 2005; Rokach 2010, Wozniak et al 2014]:  

o Different training set records. Each classifier is trained on a sub-set of the training data 

records. This approach is convenient in the cases of shortage or excess of learning 

examples. In the case of a shortage of data, different joint random subsets can be generated 

from the data. In the case of an excess amount of data that cannot fit in memory, disjoint 

subsets that fit in memory can be generated. The most popular techniques are Bootstrap 

Aggregating (Bagging) [Breiman 1996] and Boosting [Freund 1990]. 

o Different training set attributes (columns/features). Each classifier is trained on the entire 

set of training data records but on a sub-set of the columns [Bryll et al. 2003; Ting et al. 

2011]. 
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o Different labels. Each classifier is designed to classify only a sub-set of the problem labels. 

For example, a multi-class classification problem can be decomposed into a set of binary 

classification problems [Galar et al. 2011]. 

o Different algorithm parameters. Each classifier is initialized with different values for its 

parameters. Thus, they have a different local optima [Wozniak et al 2014]. 

o Different algorithms. Each classifier is designed using a different algorithm that is good 

with handling a sub-set of the problem patterns. This approach takes advantage of the 

different biases of each algorithm [Wolpert 2001]. 

(iii)  Unstable classifiers are classifiers whose accuracy depends on the training dataset. Changing 

the training dataset could result in a different model of a different accuracy. These classifiers 

include Multilayer Perceptron, Decision Trees, and Linear Regression [Opitz and Maclin 

1999].  

(iv) Well-trained means that the training dataset needs to be large enough to insure the classifier 

has seen all different patterns. With Big Data, data scientists have enough data to train a 

diversified ensemble of classifiers [Opitz and Maclin 1999]. 

(v) Each Ensemble Classifier must achieve more than random accuracy (50%+ correct 

predictions).  As stated by the Condorcet Jury Theorem [Shapley and Grofman 1984], 

combining a large number of weak classifiers (50%+ accuracy) would result in an Ensemble 

of high prediction accuracy. 

 

Our approach to distribute the execution of the data mining algorithms uses the ñdifferent 

training set recordsò approach to train an ensemble of homogeneous classifiers (i.e. use the same 

algorithm over diverse data sets). This method presents the simplest and easiest-to-automate 

approach for classifier diversification. In terms of the ensemble design, we considered a number of 

approaches: 
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First, the Boosting approach [Freund 1990] illustrated in Figure 22a incrementally (i.e. 

sequentially) builds the ensemble by emphasizing when training each new classifier on the records 

misclassified by the previous classifiers. Once the ensemble classifiers are all trained, the prediction 

is performed by taking the weighted vote of the classifiersô predictions, using the classifierôs 

accuracy on the training set as the weight.  

The second approach illustrated in Figure 22b is Bootstrap Aggregating (Bagging) [Breiman 

1996]. In Bagging, classifiers are trained independently, and in parallel, on a subset of the training 

set drawn randomly with replacement. Each classifier is trained on the average of 63.2% of the 

training records [Bauer and Kohavi 1999] where a training set record can be used to train zero or 

more classifiers. Prediction is done by voting among the ensemble classifiers where they all have 

equal weight. 

While Boosting has been shown to yield better accuracy than Bagging, it has been also shown 

that Boosting effectiveness depends on the data set used for training, making it more susceptible to 

 

 

 

 

(a)  Boosting  (b)  Bagging  
 

Figure 22 Ensemble Designs. 
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noisy data [Opitz and Maclin 1999]. Boosting also tends to over-fit the training data as it iteratively 

trains the ensemble classifiers on the misclassified records of the training set. This iterative 

sequential training nature of Boosting makes it challenging to run it in parallel to create the 

ensemble as required in our case. On the other hand, Bagging is more robust in noisy scenarios, its 

accuracy is not greatly affected by the training set and it is naturally parallelizable [Opitz and 

Maclin 1999]. 

The parallel nature of Bagging along with the other features previously discussed makes 

Bagging well-suited for creating the classifier ensemble to address the problem at hand. However, 

the original Bagging algorithm [Breiman 1996] cannot be directly implemented for our problem. 

The original Bagging algorithm works by having each of the ensemble classifiers trained on a set 

of records drawn randomly from the training set with replacement such that each subset has the 

same number of records as the original full training set. With Big Data, training using a single 

multi-gigabyte dataset is impractical as it does not fit in memory, using Bagging to create datasets 

of the same size as the original dataset, one for each classifier, is therefore impractical.  

The Bagging-like approach [Chawla et al. 2003] addresses this challenge by training the 

ensemble classifiers on partitions of the training set that can fit in memory, where these partitions, 

if combined, will have the size of the original training set. This way all the data is used in the 

training which yields a better accuracy than if sampling is used [Perlich et al. 2002]. Training the 

ensemble classifiers on partitions of the original set provides a diverse set of classifiers which 

improves the ensemble accuracy. The Bagging-like approach is less complex and faster than the 

original Bagging approach. Empirical studies have shown that an ensemble built using the Bagging-

like approach can perform at least as accurately as an ensemble created using the original Bagging 

approach [Breiman 1996] and can exceed the accuracy of a single classifier built using the entire 

training dataset [Chawla et al. 2003]. 
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4.2.2 Distributing  Updatable-Aggregatable Algorithms (Memory-Free Fully -Distributable) 

For Updatable-Aggregatable algorithms, the DMD algorithm processes the data record-by-record, 

thus achieving a very low memory footprint that allows processing datasets of any sizes. It uses a 

2-phase aggregation approach for distributing the Updatable-Aggregatable algorithms as 

illustrated in Figure 23. First, each Worker Node trains a sub-model on the subset of training data 

available locally. Second, all Worker Nodes send their trained sub-models to the Driving Node to 

be aggregated and produce the final model.  

This approach speeds up both data fetching and model training as both operations are done in 

parallel on all of the available nodes. This approach is also not limited to the amount of available 

memory since only one record needs to be in memory at a time. Using the DMD to distribute this 

type of algorithms achieves orders of magnitude better performance compared to natively 

distributed solutions like Mahout and does not require as much memory as Spark MLlib [Khalifa 

et al. 2016b]. 

4.2.3 Distributing NonUpdatable-Aggregatable Algorithms (Memory-Constrained Fully-

Distributable) 

For NonUpdatable-Aggregatable algorithms, the DMD algorithm uses the algorithmôs 

Aggregatability property to overcome its NonUpdatability property. The DMD does not load the 

 

Figure 23 QDrill T raining for Updatable-Aggregatable Algorithms. 
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entire data subset into the Worker Nodeôs memory. Instead, it trains sub-models, each on 100,000 

records109 on the Worker Nodes. Thus, at any point in time, there is a maximum of 100,000 records 

loaded in memory. Using the algorithmôs Aggregability property, these sub-models trained on the 

same Worker Node are aggregated together to create an aggregated sub-model. The aggregated    

sub-model is then sent to the Driver Node for aggregation with the other aggregated sub-models 

trained on the other Worker Nodes to produce the final model.  

The 2-phase aggregation approach used by the DMD algorithm for distributing the 

NonUpdatable-Aggregatable algorithms is illustrated in Figure 24. This approach allows 

overcoming the memory constraints while producing a model that is the same as if it was trained on 

a single node. This approach speeds up model training as it is done in parallel on all of the available 

nodes.  It also removes the memory constraint by only having 100,000 records loaded in memory 

at any given time and uses the algorithmôs Aggregability property to create aggregated sub-models 

on the Worker Nodes. Here there is a reduction in the computational performance compared to that 

of Updatable-Aggregatable algorithms, since 100,000 records need to be loaded first in memory 

                                                      

109 A constant of 100,000 records was used as a simplification to make the data fit in the available memory. 

A more advanced algorithm would set the number of records based on the record and memory sizes.  

 

Figure 24 QDrill Training for NonUpdatable-Aggregatable Algorithms. 

 


















































