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Abstract

Understanding how animals control the dynamic stall vortices in their wake is crit-

ical to developing micro-aerial vehicles and autonomous underwater vehicles, not to

mention wind turbines, delta wings, and rotor craft that undergo similar dynamic

stall processes. Applying this knowledge to biomimetic engineering problems requires

progress in three areas: (i) understanding the flow physics of natural swimmers and

flyers; (ii) developing flow measurement techniques to resolve this physics; and (iii)

deriving low-cost models suitable for studying the vast parameter space observed in

nature. This body of work, which consists of five research chapters, focuses on the

leading-edge vortex (LEV) that forms on profiles undergoing rapid manoeuvres, delta

wings, and similar devices. Lagrangian particle tracking is used throughout this thesis

to track the mass and circulation transport in the LEV on manoeuvring profiles. The

growth and development of the LEV is studied in relation to: flapping and plunging

profile kinematics; spanwise flow from profile sweep and spanwise profile bending;

and varying the angle-of-attack gradient along the profile span. Finally, scaling rela-

tionships derived from the observations above are used to develop a low-cost model

for LEV growth, that is validated on a flat-plate delta wing. Together these results

contribute to each of the three topics identified above, as a step towards developing

robust, agile biomimetic swimmers and flyers.
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Chapter 1

Introduction

Flying and swimming animals have inspired engineers for as long as there have been

engineers, even well before the earliest gliding experiments of Lilienthal (1889). Mod-

ern engineered vehicles far outperform biological locomotion at the upper bounds of

velocity and altitude. However, natural flyers and swimmers still maintain significant

performance advantages at low-speeds and at small scales. For instance, Shelton et al.

(2014) observed cliff swallows in tandem flight performing manoeuvres of up to 7.8g.

Those fixed-wing aircraft that are capable of matching the high-speed accelerations of

these small birds are not capable of similar low-speed manoeuvring, as demonstrated

by recent attempts to emulate bird-like control in perching by Moore et al. (2014). In

fact, Carruthers et al. (2007) have shown that birds of prey such as Aquila nipalensis

utilize sophisticated control devices, both passive separation of specialized feathers,

and active manipulation of the alula (a small stub-wing that can be manipulated like

a thumb), specifically for such low-speed perching. Meanwhile, rotary-wing aircraft

that are capable of bird-like, low-speed performance, like the perching demonstrated

by Doyle et al. (2012), have thrust-to-weight ratios rarely exceeding three (see Stingu

and Lewis (2009)). Therefore, such rotary-wing unmanned aerial vehicles (UAVs)
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cannot match the high-speed accelerations of the cliff swallow. Natural flyers achieve

the above performance efficiently and silently, and there are ongoing efforts to not

only understand the performance of biological propulsion, but to adopt biomimetic

noise-reduction and flow-control techniques into UAV design as well, as described by

Anders (2000).

This chapter will summarize the performance of natural flyers and swimmers, in

relation to both their closest engineering equivalents and in the context of their natural

environment. Particular attention will be given to instances of evolutionary conver-

gence, as these scenarios are most likely to provide examples of robust aerodynamic

and hydrodynamic optimizations that may be borrowed by engineers. Subsequently,

the current limitations of engineered vehicles will be outlined and the contributions

of the current thesis will be set out in relation to these ongoing challenges.

1.1 The aerodynamic and hydrodynamic performance of natural flyers

and swimmers

Aerodynamic and hydrodynamic constraints dominate the body layout of flyers and

swimmers. For instance, Hartloper and Rival (2013) were inspired by the fact that

swimming animals had converged upon a lunate shape for four species of completely

separate evolutionary lineage. Maurer et al. (2004) further showed that the body-

mass of small vertebrates were split along the lines of flying versus non-flying species,

rather than the evolutionary origin of a particular organism. Whereas the body

mass of terrestrial animals scales with both their length scale and ecological niche,

Tennekes (2009) noted that winged flyers (biological or otherwise) scale with their

length scale L3, as shown in his Great Flight Diagram in Figure 1.1. The above
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examples demonstrate extreme environmental pressures. The evolutionary response

to this pressure is detailed in the following section.

1.1.1 Evolutionary convergence in flexibility, profile shape and stroke am-

plitude

Due to their reliance on buoyancy, swimmers do not exhibit the same convergence

with respect to body mass that has been observed in flyers. However, Lucas et al.

(2014) has observed similar levels of propulsor flexibility under cruising conditions,

across insects, avians, fish, and both swimming and flying mammals in Reynolds

numbers ranging from 102 ≤ Re ≤ 108. It is not surprising that the propulsive effi-

ciency of a flexible propulsor dictates an optimal bending, as this has previously been

identified by Heathcote et al. (2007). However, it is remarkable that this optimum

does not appear to change over such a broad range of Reynolds numbers, dimension-

less stiffnesses, or mass ratios. Definitions for dimensionless stiffness and mass ratio

can be found in Appendix A. The observation included both small aquatic swimmers,

for whom propulsion is dominated by added mass, as shown by Eloy (2013), as well

as high Reynolds number flyers, for whom propulsion is dominated by circulatory

effects, as shown by Sane and Dickinson (2002).

Heathcote et al. (2007) found that for the cases they investigated, efficiency only

improved for spanwise flexible profiles over a narrow range of plunging kinematics,

specifically defined by the Strouhal number:

St =
f(2h0)

U∞

, (1.1)

where f is the frequency of motion, 2h0 is the plunging amplitude or wake width,
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Figure 1.1: The Great Flight Diagram demonstrates scaling of flying machines, en-
gineered and natural, follow L3 over twelve orders of magnitude. Taken
from Tennekes (2009).
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and U∞ is the free-stream velocity. Heathcote and co-authors found that flexibility

only improved propulsive efficiencies within the range 0.2 ≤ St ≤ 0.4. This range of

Strouhal numbers happens to coincide with the cruise conditions of nearly all flapping

flyers and swimmers, identified by Taylor et al. (2003) to be approximately St ≈ 0.3.

The exact same range 0.2 ≤ St ≤ 0.4 had previously been identified by Triantafyllou

et al. (1991) to provide optimal propulsive efficiency on rigid, two-dimensional wings.

This behavioural convergence is so distinct that Nudds et al. (2004) utilized the near-

constant Strouhal number as a predictive tool for determining scaling laws in avian

flight. As the loading on a two-dimensional pitching and heaving profile is governed

primarily by the Strouhal number, as shown by Baik et al. (2012), obtaining the

same spanwise bending at the same Strouhal numbers across such a broad range of

length scales would require significant tuning of dimensionless stiffness. The stiffness

of select insect wings are compiled in Table A.1 of Appendix A.

Dabiri (2009) identified this critical Strouhal number to be equivalent to the so-

called optimal vortex formation:

T̂ =
1

St
≈ 4 , (1.2)

where the formation number T̂ is the timescale of circulation production for a particu-

lar vortex. Optimal vortex formation, the particular formation number of T̂ ≈ 4, was

previously identified by Gharib et al. (1998) as the point at which a vortex generated

by a piston-cylinder no longer accepted additional circulation from the shear-layer,

known as pinch-off. Even though the above formation number was determined for

piston-cylinders, the same formation number T̂ ≈ 4 has been found by Milano and

Gharib (2005) to maximize the lift coefficient of a flapping flat plate with kinematics
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Hand

Figure 1.2: Relative forearm length of five bird species: (a) Calliope hummingbird;
(b) Rock dove; (c) Blue grouse; (d) European starling; (e) Laysan alba-
tross. Taken from Dial (1992).

similar to a hovering insect.

The collapse upon specific profile kinematics across many diverse species, envi-

ronments and length-scales suggests that biological locomotion is highly optimized

specifically for aerodynamic and hydrodynamic performance. However, much of the

evolutionary convergence listed above is only observed in cruising conditions. For

instance, Dabiri (2009) noted that during escape manoeuvres, jellyfish swam with

formation numbers of up to T̂ ≈ 8. Therefore, it is worth also considering how the

strategies used in nature differ between cruising and manoeuvring.
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1.1.2 Variations in flow topology between manoeuvring and cruising

The convergence upon similar wing kinematics and flexibility is remarkable given the

range of environments encountered in nature. For instance, consider the diagram of

forelimb skeletons for five avian species taken from Dial (1992) shown in Figure 1.2,

normalized by the hand length. The wing hand is critical for flight control during

take-off, landing, and manoeuvring. As Videler (2005) notes, the space between the

ulna and radius is occupied by the muscles that control the hand, and thus indicates

the relative importance of manoeuvring. For the Calliope hummingbird, the hand is

60% of the total wingspan, whereas it is just 20% for the Laysan albatross. Clearly,

body layout of the hummingbird is not meant for cruising flight.

Unlike in cruising flight, drag may be desirable, such as during perching (see Car-

ruthers et al. (2007)). Alternatively, drag may be acceptable when very large force

coefficients are required. For instance, insects may intentionally enter a stalled state

by forming a leading-edge vortex (LEV) in order to achieve the forces required to

hover, as described by Sane (2003). Pitt Ford and Babinsky (2013) showed that this

LEV is the dominant contributor to circulation for stalled wings at low Reynolds

numbers. This vortex dramatically reduces surface pressure on the suction-side of a

profile, increasing lift. Significant attention has been given to the condition of LEV

stability, where the LEV remains attached indefinitely to the profile of the wing,

maintaining the lift enhancement of the LEV. As this LEV is being continually fed

both circulation and mass, Ellington et al. (1996) suggested that spanwise flow is

responsible for LEV stability following the same mechanism as delta wings. Lentink

and Dickinson (2009b) determined that this spanwise flow was driven by large rota-

tional accelerations, which are related to Coriolis forcing and scaled by the Rossby
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number. In the specific case of rotating wings, the Rossby number reduces to the

wing aspect ratio:

Ro = R/c , (1.3)

where R is the profile span and c is the profile chord. The Rossby number gives the

relative strength of inertial to Coriolis forces, with lower Rossby numbers representing

greater rotational accelerations, and Rossby numbers on the order of one providing

stable vortices.

Many authors have found stable LEVs at low Rossby numbers, such as Birch et

al. (2004), Poelma et al. (2006), and even on samara seeds in the case of Lee et al.

(2014). However, it does not appear the spanwise flow generated by rotation is alone

responsible for LEV stabilization. For instance, both Beem et al. (2012) and Wong et

al. (2013a) failed to observe any LEV stability on nominally two-dimensional plunging

profiles with sweep angles as high as 45◦. Moreover, in a waving-wing experiment

with large rotational accelerations, Jones and Babinsky (2011) did not observe LEV

stability within the range 10, 000 ≤ Re ≤ 60, 000. Harbig et al. (2013) observed

stable LEVs at Rossby numbers as high as Ro = 7. Rather, Rival et al. (2014) gave

a topological constraint on LEV stability, whereby the physical size of the LEV had

to be maintained below the chord length c. As the LEV approached this limiting

length-scale, the streamline bounding the LEV could no longer be maintained on the

profile surface, and instead formed a saddle-point in the flow, beginning the LEV

detachment process. The possible mechanisms of maintaining this steady vortex size

and strength is described in the following section.
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1.1.3 The role of the circulation budget in determining wing kinematics

and shape

A stable LEV is fed both mass and circulation continuously from a leading-edge

shear layer, as shown in Figure 1.3, despite maintaining a constant size and strength.

Therefore, as a minimum condition of LEV stability there must be a balance of

circulation and mass entering and leaving the LEV, as illustrated in Figure 1.4, similar

to the case of delta wings (see Ol and Gharib (2003)). However, axial flow along the

vortex alone cannot balance either the mass or the circulation entering through the

shear layer. Consider the z−component of the vorticity transport equation:

∂ωz

∂t
+ u

∂ωz

∂x
+ v

∂ωz

∂y
+ w

∂ωz

∂z
= ωx

∂w

∂x
+ ωy

∂w

∂y
+ ωz

∂w

∂z
, (1.4)

where terms from left-to-right represent the rate of change of vorticity due to unsteadi-

ness, advection of vorticity in the streamwise (x), chord-normal (y), and spanwise (z)

directions, vortex tilting in the streamwise and chord-normal directions, and vortex

stretching, respectively. The diffusion of vorticity is omitted from the above equation

for clarity. The spanwise convection of vorticity w ∂ωz/∂z requires not just a spanwise

flow, but also a gradient of vorticity. Without any mechanism to initiate the spanwise

gradient of vorticity, in hindsight it is no surprise that Beem et al. (2012) and Wong

et al. (2013a) were unable to generate stable LEVs on nominally two-dimensional

plunging profiles.

While rotation can set up a spanwise gradient of vorticity, rotation is not necessary.

For instance, Jain et al. (2015) demonstrated that spanwise flexible profiles dynam-

ically redistributed circulation along their length. Alternatively, by careful selection
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Figure 1.3: The LEV, shown here as the spiralling blue pattern of streamlines, is
continuously fed vorticity-containing mass from the leading-edge shear
layer. Despite this injection of both circulation and mass, many LEVs
remain at a constant strength and size on rotating wings.

of the profile shape, Hartloper and Rival (2013) were able to convect circulation out-

board and suppress the LEV from lifting off the profile surface. Vorticity convection

is not alone in balancing the vorticity entering an LEV. For instance, Wojcik and

Buchholz (2014) demonstrated that vorticity annihilation on an airfoil surface can

be the dominant circulation-balancing mechanism, especially at low Reynolds num-

bers. Critically, these recent studies have shown that it is the circulation budget, and

not inherently rotation, that dictates LEV stability. Rather, rotation produces the

appropriate conditions for vorticity convection, annihilation, and stretching.

1.2 Engineering applications of the flow physics of natural swimming and

flight

While biological locomotion is interesting in its own, the goal of this thesis is to ad-

vance the state of engineering as well. Therefore, we must consider how the physics of
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Figure 1.4: Mass is fed into an LEV through the leading-edge shear layer, carrying
with it vorticity ωz. In order for the LEV to be stationary, both the
vorticity and mass entering the LEV must be balanced either by vortic-
ity annihilation or spanwise circulation transport. The spanwise flow w
shown here facilitates that balance by convecting vorticity along the span.

natural swimming and flying will influence design and engineering practice. Perhaps

the most straightforward application of understanding small swimmers and flyers is in

the design of small swimmers and flyers. Torres and Mueller (2004) define the micro-

aerial vehicle (MAV) as a flying machine with a wingspan on the order of 15cm,

operating in the Reynolds number range 103 ≤ Re ≤ 105, which is well within the

range of avian flight. Autonomous underwater vehicles (AUVs) operate at a similar

Reynolds number range of 103 ≤ Re ≤ 106, overlapping that of fish (see MacIver

et al. (2004)). These are far from the only applications of this physics, as similar

flow structures such as LEVs form on delta wings, rotorcraft, and high-performance

aircraft. Chapter 4 will focus on comparing the LEV formed on a flapping wing to

that on a wind turbine encountering a gust, for example. However, given the clear

relationship between these engineered vehicles and machines, and natural swimming

and flying, it is worth considering a direct comparison of their respective performance.
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1.2.1 The performance of engineered vehicles at comparable Reynolds

numbers

Some flight characteristics of current engineered vehicles compare favourably to bio-

logical propulsion. For instance, free-flight measurements of the DelFly II MAV by

Karàsek et al. (2016) gave a maximum acceleration of approximately 2g. Meanwhile,

large birds such as cockatoos rarely exceed accelerations of 1.5g in free flight (see

Bowlin and Winkler (2004)), although hummingbirds are capable of 4g (see Tobalske

et al. (2004)). While these are far from the maximum accelerations observed in birds,

such as dive recoveries of nearly 10g observed by Clark (2009), this does demonstrate

that engineered vehicles at least approach the wing actuation of natural flyers. As

propulsive efficiency is dominated by kinematic parameters like the Strouhal number,

it is also possible to match the propulsive efficiency of natural swimmers and flyers

in cruise. Although this thesis will generally neglect non-aerodynamic considerations

such as battery and motor performance, Hawkes and Lentink (2016) showed that

biomimetic oscillatory machines were much more efficient than rotating machinery at

insect length-scales.

More impressive is the performance of AUVs. An octopus-like, jet-based robot

reported by Weymouth et al. (2015) achieved escape-accelerations as high as those

found in cephalopods, and at efficiencies as high or even higher. Conte et al. (2010)

also developed a robotic fish capable of fast-starts comparable to river pike. In both

of these examples, matching the natural flexibility and deformation of swimmers was

critical to achieving similar performance. Indeed, in their study of a robotic shark-

tail, Flammang et al. (2011) noted that their model would have to mimic the active

deformation of a real shark fin in order to achieve the same performance.
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Figure 1.5: A vortex street is shed from a D-cylinder upstream of an euthanized trout.
The body flexibility of this trout is able to extract sufficient energy from
this oscillating flow field to swim upstream against drag. Taken from Beal
et al. (2006).
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One area where biological locomotion is well ahead of engineered vehicles is sta-

bility in gusty environments. With respect to flight, Fisher et al. (2016) noted that

flapping wings themselves provide some inherent gust mitigation. Despite this, few

flapping wing MAVs are able to operate outdoors due to the natural turbulence found

in the atmospheric boundary layer. Riverine fish take this a step further, and instead

of merely mitigating the turbulence in their environment, are able to extract energy

from the turbulent wakes in the flow around them, as shown by Liao et al. (2003).

The tuning of body flexibility in riverine fish is so profound that Beal et al. (2006)

discovered that even a dead fish is capable of swimming upstream, as shown in Figure

1.5, as its body can efficiently and passively collect energy from its environment.

1.2.2 Limitations of current engineering applications

The previous section highlighted some ways natural swimmers and flyers exploit vor-

tex flows, often with much greater effectiveness than engineered vehicles. However,

translating this observed behaviour into engineering applications is by no means

straightforward. This section will outline the primary challenges in adopting biomimetic

strategies in MAV and UAV design, as well as in other machines.

Understanding swimming and flying strategies

The cases of evolutionary convergence discussed in Section 1.1.1 notwithstanding, the

immense parameter variation observed in nature obfuscates the relationship between

propulsion kinematics and the resulting flow. For instance, while Beal et al. (2006)

were able to show that euthanized fish could extract energy from a flow, the study
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only attempted to replicate this behaviour on a two-dimensional pitching and heav-

ing foil. This pitching/heaving motion has just two degrees of freedom: pitch and

heave. Replicating this energy extraction for a three-dimensional fish-like swimmer

involves orders of magnitude more degrees of freedom, and thus requires a much more

sophisticated understanding of the flow physics.

Similarly, while Fisher et al. (2016) were able to identify flapping wings as an

inherently stabilizing mode of flight, they were unable to match the stability of real

insects or birds. Insects in particular are sensor rich: Mohamed et al. (2014) iden-

tified visual and inertial sensing, wind-sensitive hairs, and wing-load sensors in the

wing root as just some of the information available. Mohamed et al. (2014) further

suggest that insects utilize all this information together in sensor-fusion to inform

wing kinematics. In both of the above examples, the major engineering hurdle is the

cost of studying a broad parameter space, in both resources and time, either compu-

tationally or experimentally, which is closely related to the next section on low-cost

modelling.

Challenges in vortex modelling

If an engineer wished to explore the parameter space of energy extraction in fish or

gust mitigation in insects, neither could be accomplished affordably with experiment

nor numerical simulation. For instance, with enormous experimental cost, Kang et

al. (2011) identified ten non-dimensional parameters governing the fluid-structure

interaction of flapping wings, and this without any attempt to account for gusts.

Therefore, reliable low-cost models are required to explore this immense parameter

space both as an engineering tool, and to guide subsequent investigations into flow
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physics.

Potential flow models, such as that of Hemati et al. (2014), are very attractive

due to their rapid computational time, and extremely accurate force histories in two-

dimensional flows. However, understanding the full three-dimensional flow is critical

in predicting LEV stability, for instance, as described in Section 1.1.3. Therefore,

advancing the current state of low-cost models will require the inclusion of three-

dimensional effects in an computationally-efficient way, solving a minimum number

of equations. Developing such models is limited in part by difficulty in determining

transport phenomena within an LEV, requiring advancements in the measurement

science itself.

Volumetric measurements of vortex topology and vorticity transport

The determination of vorticity transport in three-dimensional flows requires resolving

every component of the velocity-gradient tensor. This can be accomplished through a

variety of methods, such as using a minimum of two adjacent measurement planes with

stereo particle image velocimetry (Stereo-PIV). For approximately a decade, time-

resolved measurements of this type have been made possible through tomographic-

PIV (see Elsinga et al. (2006)).

Such methods are perfectly adequate for determining vorticity transport. How-

ever, Lagrangian analysis is much more effective at capturing flow topology, for

instance with Lagrangian coherent structures as demonstrated in Rockwood et al.

(2016). Lagrangian measurement techniques, such as ‘Shake-the-Box’ (STB) parti-

cle tracking velocimetry (PTV), as described by Schanz et al. (2016), are adept at

capturing the Lagrangian flow-field, but most analysis tools still convert this data
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back to the familiar Eulerian grid. Therefore, measurement techniques that retain

this Lagrangian information must be developed in order to facilitate the simultaneous

study of both vorticity transport and flow topology.

1.3 Contributions of the Current Thesis

The engineering challenges listed in Section 1.2.2 cannot be approached indepen-

dently. Advancing knowledge in flow physics and flying of swimming strategies re-

quires advances in measurement techniques and modelling in parallel. Meanwhile,

advancing low-cost models requires a sophisticated understanding of the flow physics

and advanced measurements for validation purposes. In turn, the current thesis makes

contributions to each of the above areas: determination of flight strategies, modelling

of separated flows, and advancing measurement techniques.

These three contributions are detailed in the following five chapters. These five

chapters have been published or are under review in peer-reviewed journals, with

the exception of Chapter 6, which is being prepared for submission. Therefore, the

central chapters of this thesis constitute those manuscripts, appearing exactly as

published or submitted. It should be noted that the parenthetical citation style used

in Chapter 4 is to maintain similitude with its corresponding published article. Figure

1.6 highlights the relationship between each chapter and the three contribution areas

outlined above.

Chapter 2 investigates the relative stability of LEVs on plunging and flapping

profiles of varying sweep. A simple scaling rule is derived for the time-scale of LEV

detachment on two-dimensional profiles, which is validated with planar PIV. Further-

more, it is hypothesized that spanwise flow along a profile can modulate the spanwise
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Figure 1.6: Chapters 2, 4 and 3 of this thesis contribute to understanding biological
propulsion phenomenologically. This phenomenological understanding is
used to develop low-cost models presented in Chapters 2 and 6. The high-
resolution measurement techniques used for such studies are advanced in
Chapters 5 and 6.

convection of vorticity, but cannot induce vorticity transport on its own, based on a

model for the circulation budget of an LEV. The hypotheses and proposed model are

confirmed and validated, respectively, utilizing 3D-PTV measurements of the LEV

growth. This finding contributes to understanding the ubiquity of swept profiles found

throughout flying and swimming animals, and provides two- and three-dimensional

models for scaling LEV growth and stability, respectively.

Based on the use of vorticity convection to improve LEV stability, Chapter 3

investigates the use of flexibility in swimmers and flyers as a method of circulation

control. By either bending their propulsors into or away from the direction of motion,
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it is hypothesized that these animals can modulate their spanwise flow arbitrarily in

order to control the strength of the LEV. This, in turn, can be utilized by the animal

to either increase lift at the expense of LEV stability (higher lift forces for a shorter

period of time), or increase LEV stability at the expense of lift (lower lift forces for a

longer period of time). STB PTV is used to show that this spanwise profile bending

can indeed modulate LEV circulation, providing new insight into the use of flexibility

in swimming and flight.

Together, Chapters 2 and 3 provide the bulk of new insight into animal locomotion.

Chapter 4, meanwhile, applies the knowledge from these previous two chapters to

compare the separated flow observed on a bird’s wing to that of a wind turbine

experiencing an axial gust. In both cases the spanwise flow is directed from root to tip.

However, the angle-of-attack gradient is reversed in each case. It is found that in the

bird-like case the LEV circulation is reduced, while in the turbine-like case spanwise

flow promotes LEV growth, increasing peak-to-peak loading and unsteadiness, both

major causes of fatigue in wind-turbine gearboxes.

The above three chapters form the bulk of the phenomenological contributions

of this thesis. The focus of Chapter 5, in contrast, is specifically on measurement

techniques. In particular, a method is proposed to improve the quality of spatial

gradients obtained from experimental PTV data that operates directly on unstruc-

tured Lagrangian pathlines without ensemble averaging. By doing so, the material

transport information inherent to the pathline data is retained. The method operates

by penalizing velocity-gradient estimates that do not satisfy the vorticity transport

equation. Both measurement error and noise are reduced in both experimental and a

synthetic test cases, allowing for the identification of flow structures that are otherwise
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obscured by noise.

Finally, Chapter 6 builds on the modelling work of Chapter 2 by producing a

predictive model for the spanwise transport of circulation within a vortex. Previously,

this spanwise transport was modelled semi-empirically, requiring some measurement

data as an input to produce useful results. This model is validated on the attached

LEV found above a flat-plate delta wing, utilizing data collected with STB PTV, and

corrected using the method from Chapter 5. This work presents the opportunities of

low-cost modelling for optimizing leading-edge shape and profile kinematics.
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Chapter 2

Determining the Relative Stability of

Leading-Edge Vortices on Nominally

Two-Dimensional Flapping Profiles

2.1 Abstract

It is hypothesized that the relative stability of leading-edge vortices (LEVs) on flap-

ping profiles can be improved by moderating LEV growth through spanwise vorticity

convection and vortex stretching. Moreover, it is hypothesized that the reduced

frequency k and profile sweep Λ are critical in predicting relative LEV stability as

determined by the aforementioned effects. These hypotheses are then confirmed ex-

perimentally with phase-averaged Particle Image Velocimetry and three-dimensional

Particle Tracking Velocimetry. In particular, more stable LEVs are observed at higher

reduced frequencies, which is argued to represent the ratio between the limiting vortex

size and the rate of vorticity feeding. The introduction of profile sweep increased both

relative LEV stability and spanwise vorticity transport. It is thought that spanwise

vorticity transport improved LEV stability by acting as a sink for vorticity generated
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in the leading-edge shear layer.

2.2 Introduction

In natural swimming and flying rapid maneuvering is generally achieved via undulat-

ing or flapping fins, flukes or wings, often with a swept leading edge. In particular,

the flapping wings of insects are known to exploit leading-edge vortices (LEVs) for lift

enhancement, as discussed by Ellington et al. (1996). These LEVs are the dominant

contributor to circulation on stalled profiles at low Reynolds numbers, as demon-

strated by Pitt Ford and Babinsky (2013), and have been observed on rotating and

translating profiles over a broad range of Reynolds numbers (200 ≤ Re ≤ 60, 000),

such as by Garmann et al. (2013) and Lentink and Dickinson (2009b), Strouhal num-

bers (0.1 ≤ St ≤ 0.6) and reduced frequencies (0.2 ≤ k ≤ 1), by Rival and Tropea

(2010) and Baik et al. (2012), and aspect ratios (2.9 ≤ AR ≤ 7.3), by Harbig et

al. (2013). The above parameters vary the lift and drag production of an LEV, as

observed by Garmann et al. (2013) with respect to Reynolds number, or alter the

propulsive efficiency, as observed by Taylor et al. (2003) with respect to Strouhal

number. However, the parameter of rotation is unique in that rotating cases often

exhibit vortex stability, where both the convection speed of the LEV relative to the

profile and the growth rate of the LEV are near zero, as observed by Ozen and Rock-

well (2012), Wojcik and Buchholz (2014), and Cheng et al. (2013), to name a few.

A number of mechanisms for vortex stability have been proposed. Lentink and

Dickinson (2009b) suggested that large rotational accelerations associated with low

aspect-ratio profiles stabilized LEVs. However, Harbig et al. (2013) identified stable

LEVs on profiles in the range of aspect ratios 2.9 ≤ AR ≤ 7.3. Over a similar aspect
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ratio range of 2 ≤ AR ≤ 4, Jones et al. (2012) did not observe LEV stability. It

has been suggested by Ellington et al. (1996) that spanwise flow transported vortic-

ity to the tip vortex, and therefore was responsible for LEV stability. However, by

translating profiles at sweep angles as high as Λ = 45◦ Beem et al. (2012) showed

that the spanwise flow in isolation was not responsible for vortex stability, which

corroborated previous findings by Birch and Dickinson (2001) that spanwise flow was

not responsible for LEV stability on rotating wings. However, nominally-two dimen-

sional spanwise flow, such as that investigated by Beem et al. (2012), cannot result in

three-dimensional effects such as the convection of spanwise-oriented vorticity, which

depends also on a gradient of vorticity magnitude. Neglecting viscous diffusion, the

transport of spanwise-oriented vorticity (ωz) is governed by the spanwise component

of the vorticity transport equation:

∂ωz

∂t
+ u

∂ωz

∂x
+ v

∂ωz

∂y
+ w

∂ωz

∂z
= ωx

∂w

∂x
+ ωy

∂w

∂y
+ ωz

∂w

∂z
, (2.1)

where the terms from left-to-right represent the rate of change of vorticity due to un-

steadiness, convection of vorticity in the streamwise (x), wall-normal (y), and span-

wise (z) directions, vortex tilting in the streamwise and wall-normal directions, and

vortex stretching, respectively. A hypothetical balance of vorticity is shown in Figure

2.1, where spanwise-oriented vorticity entering the LEV from the leading-edge shear

layer is balanced by a spanwise convection of vorticity.

It has been shown by Rival et al. (2014) that LEV attachment is only topologically

compatible with vortices smaller than one chord-length c in scale. The vorticity gen-

erated in the leading-edge shear layer of a rotating profile must therefore be balanced

by either the transport or annihilation of vorticity in order to limit vortex growth as a
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necessary condition to LEV stability. A recent study by Wojcik and Buchholz (2014)

conducted a vorticity balance within the LEV on a rotating profile, utilizing direct

measurements of the circulation transport through the leading-edge shear layer and

via spanwise vorticity convection. It was concluded that spanwise vorticity convection

was insufficient to balance vorticity production, and that the large residual in the vor-

ticity balance must be accounted for by vorticity annihilation. Similarly, Cheng et al.

(2013) found that spanwise vorticity convection was negligible relative to convection

in the streamwise and wall-normal directions. However, in natural swimming and

flight the full benefit of a stable LEV is realized when the LEV is maintained for at

least one half-stroke of motion, rather than an indefinite period. Thus, it is sensible

to measure the relative stability of an LEV in terms of its convection speed relative

to the profile, as opposed to a binary stable or unstable condition. This relative LEV

stability is an important characteristic of natural swimming and flight that has not

been investigated in terms of vorticity transport. By comparing profiles of varying

rotation rate and sweep angle, the current study investigates the role of both vortex

stretching and vorticity convection on relative LEV stability.

2.3 The Moderation of LEV Growth with Vorticity Transport

Based on the limiting length-scale criterion of Rival et al. (2014), low vortex growth

rates represent more stable LEVs. This can be accomplished by reducing the LEV

feeding velocity, moderating LEV growth through vorticity convection, or contracting

LEV size through vortex stretching. Figure 2.1 shows the hypothetical vorticity

balance for a flapping profile. The rotational velocity Ω results in a spanwise variation

in vorticity magnitude ∂ωz/∂z, which couples with spanwise flow w from rotational
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Figure 2.1: A flat-plate profile undergoing a flapping motion has a spanwise varia-
tion in effective velocity and spanwise flow, resulting in vortex stretching
(ωz(∂w/∂z)) and vorticity convection (w(∂ωz/∂z)). The balance between
the spanwise transport of vorticity and vorticity flux through the leading-
edge shear layer is hypothesized here as the mechanism of LEV stability.

accelerations to convect vorticity down the span of the profile. This convection of

vorticity balances the flux of vorticity into the vortex from the leading-edge shear

layer. Vortex stretching acts to modify the size of the vortex, but does not alter the

balance of circulation on any two-dimensional slice. It is hypothesized that spanwise

vorticity convection moderates LEV strength, while simultaneously vortex stretching

can act to limit LEV growth.

2.3.1 The Effect of Reduced Frequency on LEV Saturation

In order to compare the growth rate of an LEV to the limiting length scale of one

chord c, it is necessary to produce an estimate for the circulation entering that LEV.

A model for the vorticity flux into a leading-edge vortex was proposed and validated

by Wong et al. (2013a), shown in Figure 2.2 for a profile experiencing an effective

velocity ueff and effective incidence αeff . In the vorticity-flux model, the mass per unit
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span m′ entering the vortex was described as:

m′ = ρ

t0
∫

0

d
∫

0

u(ξ, t) dξdt , (2.2)

where ξ is the shear-layer coordinate as shown in Figure 2.2, ρ is the fluid density,

d is the shear-layer thickness and u is the shear-layer velocity. Assuming that the

shear-layer velocity scales with the effective velocity ueff , this results in a mass flow

into the vortex proportional to:

∂m′

∂t
∝ ρdueff . (2.3)

Mass entering the vortex has an associated circulation Γ, which can be determined

via a path integral around the shear layer. The rate of circulation growth within the

LEV is therefore approximately:

∂Γ

∂t
=

∂Γ

∂m′

∂m′

∂t
∝

(

ueff l

ρdl

)

(ρdueff) = u2
eff . (2.4)

Didden (1979) derived a similar expression for the rate of circulation growth for

a vortex ring generated by a piston-cylinder apparatus:

∂Γ

∂t
=

1

2
U2 , (2.5)

which scaled well with experimental data, where U was the piston velocity.

As vorticity-containing mass enters the LEV the vortex grows in size, and therefore

it reaches its limiting length scale c with an area on the order of c2. For a period

of motion T , comparing the resulting maximum allowable LEV growth of c2/T to
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Figure 2.2: The integration of vorticity within a shear-layer segment of length l and
thickness d. For a fluid of density ρ, this results in a rate of circulation
growth ∂Γ

∂t
= ∂Γ

∂m′

∂m′

∂t
of approximately the square of effective velocity u2

eff .

the circulation developed in one period of motion u2
effT gives a relationship analogous

with reduced frequency k = πfc/U∞:

c2/T

u2
effT

=

(

fc

ueff

)2

≈ 1

π2

(

πfc

U∞

)2

=
1

π2
k2 , (2.6)

where f = 1/T is the frequency of motion and U∞ is the free-stream velocity. Here,

larger reduced frequencies represent a larger allowable vortex area for a given expected

circulation, or in other words a more stable LEV. This is in agreement with the

findings of Baik et al. (2012) that larger reduced frequencies result in more stable

LEVs in two-dimensional plunging and pitching cases. It is therefore reasonable to

expect that the same parameter is significant to LEV stability in flapping cases as

well.
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2.3.2 The Effect of Vorticity Convection on LEV Circulation

In addition to having a larger limiting length scale for a given circulation, as estimated

by the reduced frequency k above, it is hypothesized that relative LEV stability can

be improved by moderating circulation growth with vorticity convection. As done by

Wojcik and Buchholz (2014), the rate of circulation change due to vorticity convection

can be determined from the integral of the unsteady and spanwise convection terms

of the vorticity transport equation across the vortex core area:

∫

∂ωz

∂t
dA =

∫

−w
∂ωz

∂z
dA . (2.7)

Using mean values across the vortex core area, Equation (2.7) reduces to:

∂Γ

∂t
= −w

∂ωz

∂z
A , (2.8)

where A is the cross-sectional area of the vortex core. The presence of the spanwise

flow w indicates that circulation transport, and in turn relative LEV stability, can be

improved by the presence of a sweep angle Λ, as suggested by Wong et al. (2013a).

2.3.3 The Effect of Vortex Stretching on LEV Cross-Sectional Area

Vortex stretching acts to increase the centre-line vorticity of a vortex at a constant

circulation, such that the vortex must contract in size to conserve momentum. In

this way, vortex stretching can improve LEV stability by directly modifying the vor-

tex size, avoiding the critical length scale c. Assuming mean values, vorticity and
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circulation are related through the vortex core area:

ωz =
Γ

A
, (2.9)

which can be differentiated with respect to time, while holding circulation constant:

∂ωz

∂t
= Γ

∂

∂t

1

A
= − Γ

A2

∂A

∂t
. (2.10)

This rate of change of vorticity can be substituted with the vortex stretching term of

the vorticity-transport equation:

ωz

∂w

∂z
= − Γ

A2

∂A

∂t
, (2.11)

which can be rearranged for the rate of vortex growth as:

∂A

∂t
= −ωz

∂w

∂z

A2

Γ
. (2.12)

Thus, three factors are expected to improve relative LEV stability: vortex stretch-

ing; vorticity convection modified through profile sweep Λ; and increased reduced

frequency k. The experimental procedure for investigated these effects are detailed

in the following section.

2.4 Methods

All experiments were conducted in a horizontal free-surface water tunnel at the Uni-

versity of Calgary, while model kinematics were produced with a custom six degree-

of-freedom hexapod manipulator. A detailed description of these facilities can be
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found in Wong et al. (2013a). The water-tunnel test section has a diverging rectan-

gular cross section with a mean width of 385mm. Water depth was maintained at

432mm. The hexapod manipulator was mounted above the water-tunnel test section.

The current study investigates root-flapping kinematics on aluminium flat-plate pro-

files. These flat-plate profiles were oriented vertically with zero geometric angle of

attack relative to the free-stream. In order to minimize free-end effects such as the

inboard-directed spanwise flow or vortex compression observed by Hartloper et al.

(2013), the model pierced the free surface in each test case and maintained a tip-gap

with the water-tunnel floor of less than 3mm. The axis of the root-flapping motion

was in the streamwise direction and fixed at the water-tunnel floor, maintained as a

virtual hinge by the hexapod. The reference rotation profile for all test cases is shown

in Figure 2.3, where the profile starts from rest and undergoes a sinusoidal ramp-up

over a period of time tr to the peak rotational speed Ωmax. The peak rotational speed

Ωmax is then maintained for a set period of time tc, and then finally the profile is

returned to rest with a sinusoidal ramp-down over tr.

In order to compare the rotating cases investigated here to two-dimensional cases

from the literature, it is possible to define a modified Strouhal number based on the

displacement of the mid-span of the flapping profile:

St∗ =
(Rφmax)f

U∞

, (2.13)

where φmax is the maximum angular displacement of the profile, R is the physical

profile span, and f is the frequency of motion. Rφmax is therefore the displacement

of the half-span R/2 over a range of ±φmax. In order to determine the point at

which St∗ diverges from St, a large range of modified Strouhal numbers St∗ and
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Figure 2.3: The prescribed velocity of the flat-plate profiles follow three sections: a
sinusoidal ramp-up from zero velocity to maximum velocity over a period
tr; a constant velocity section over a period tc; and a sinusoidal ramp-
down over a period tr. The duration of the constant-velocity section is
varied in order to vary Strouhal number.

reduced frequencies k were investigated using phase-averaged planar Particle Image

Velocimetry (PIV). Subsequently, vorticity transport on swept and unswept profiles at

the specific modified Strouhal number St∗ that diverged from two-dimensional cases

(St∗ = 0.54) were investigated using three-dimensional Particle Tracking Velocimetry

(3D-PTV). The exact parameter space, as well as a detailed description of the PIV

and 3D-PTV setups, are found below.

2.4.1 Parameter Space

The range of modified Strouhal numbers St∗ and reduced frequencies k that were

investigated in this study are shown in Figure 2.4. The parameter space of Baik
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et al. (2012) is superimposed, as it is used as a reference in Section 2.5 in order

to determine the effect of the modified Strouhal number St∗ in comparison to the

Strouhal number St. In order to vary the flapping frequency without changing the

effective angle of attack αeff the velocity profile was modified from the reference profile

shown in Figure 2.3 by varying the duration of constant rotational speed tc while

maintaining the ramp-up and ramp-down duration tr. By simultaneously varying the

profile chord length and peak speed duration tc, both reduced frequency and modified

Strouhal number could be varied independently over the range St = 0.33, 0.45, and

0.54 and k = 0.45, 0.89, and 1.33. The varying chord length resulted in varying

Reynolds numbers; however, the effect of Reynolds number on LEV convection speed

is secondary within the range 200 ≤ Re ≤ 60000, as shown by Garmann et al. (2013).

Nevertheless, the variation in Reynolds number was kept as small as possible by

varying the water-tunnel temperature between 20◦C and 40◦C, resulting in a range

of 1875 ≤ Re ≤ 7500 for all cases. Following the identification of the modified

Strouhal numbers St∗ and reduced frequencies k with large three-dimensional effects,

a sweep angle Λ was included as an additional parameter to vary spanwise vorticity

convection. Two sweep angles were considered: Λ = 0◦ and 45◦.

2.4.2 PIV Setup

A 1W continuous-wave laser (λ = 532nm) was used to illuminate a spanwise-oriented

plane at the half-span of each test case. The flow was seeded with silver-coated hollow

glass spheres of 100µm diameter, with a Stokes number of 2.4× 10−3. Images of the

flow were captured with a Photron SA4 high-speed camera at a frame rate of 250Hz

and a pixel resolution of 1024× 1024. The images were subsequently processed with
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Figure 2.4: The k−St∗ parameter space for the current study. The k−St parameter
space of the two-dimensional study by Baik et al. (2012) is superimposed
for comparison. The first stage of this study is to determine when three-
dimensional effects begin to dominate vortex growth.

LaVision DaVis 8.1.3. Profile motions were repeated and captured ten times per test-

case, and the results were then ensemble-averaged in order to produce the final vector

fields. Vortex core identification followed the γ1 criterion detailed by Graftieaux et al.

(2001):

γ1(P ) =
1

N

∑

S

sin θM , (2.14)

where θM is the angle formed between the velocity ~u(M) at point M and the vector

−−→
PM to the point M from the point of interest P , while N is the number of points M

inside the region S.
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2.4.3 3D-PTV Setup

The features of the 3D-PTV setup are illustrated in Figure 2.5. A high-intensity dis-

charge lamp was used as a light source to illuminate a streamwise-oriented cylindrical

control volume centred at the mid-span of each test profile, after being collimated

with a 300mm primary and 40mm secondary lens. The measurement volume had a

diameter of 80mm and a length of approximately 200mm. The light column entered

the water tunnel vertically and was reflected into the streamwise direction with a mir-

ror approximately 15 chords downstream of the test profiles. The effect of the mirror

on the flow within the control volume was tested by measuring the flow in an other-

wise empty channel and checking that the pathline curvature was in fact negligible,

and that the flow velocity was undisturbed. The same seeding particles were used as

in the PIV experiments, but at a substantially lower seeding density. Images of the

flow were captured with four pco.Edge sCMOS cameras at a frame rate of 165Hz and

a pixel resolution of 2560 × 1280. The Lagrangian velocities and accelerations were

determined by differentiation of the particle tracks. The mean inter-particle distance

was approximately 3mm during the experiments. For each test case ten Lagrangian

datasets were superimposed and interpolated onto an Eulerian grid with 4mm grid

spacing. Vortex core identification followed a normalized helicity criterion detailed

by Levy et al. (1990):

Hn =
~u · ~ω
|~u||~ω| , (2.15)

where in the limiting case of Hn = ±1, the local vorticity and velocity vectors are

parallel.
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Figure 2.5: Swept and unswept flat-plate profiles (A) manoeuvre through the cylin-
drical PTV control volume of length l = 200mm and diameter d = 80mm.
The volume is illuminated with the aid of a mirror (B) reflecting light up-
stream from a HID lightsource collimated with 40mm and 300mm lenses
(C). Also shown are the four pco.Edge sCMOS cameras (D) and the hexa-
pod manipulator (E). The mirror (B) was moved upstream relative to the
real experimental setup for the purposes of this photo.

2.5 Results

In the following we will test the hypotheses proposed in Section 2.3 with direct mea-

surements of vorticity transport. However, the modified Strouhal numbers and re-

duced frequencies that produce strong spanwise vorticity transport will first be de-

termined via planar PIV at the midspan position.

2.5.1 The Effect of the Modified Strouhal Number and Reduced Fre-

quency on Vortex Development

Vortices were tracked over the range of modified Strouhal numbers St∗ = 0.33, 0.45

and 0.54, and reduced frequencies k = 0.45, 0.89 and 1.33 utilizing the γ1 criterion,

as shown in Figure 2.6 for t/T = 0.5. Vortex-core convection speed decreases with
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increasing reduced frequency, similar to two-dimensional plunging cases. The depen-

dence on reduced frequency is seen much more clearly in Figure 2.7, which shows the

displacement of the γ1 peak over the range of phases 0.1 ≤ t/T ≤ 0.5. Here it is

shown that vortex-core displacement varies only with respect to reduced frequency,

while the modified Strouhal number plays no role. The dependence on reduced fre-

quency suggests that the ratio between the maximum allowable growth rate of the

LEV and the feeding of circulation into the LEV (from the leading-edge shear layer)

determines LEV stability, as suggested by Equation (2.6).

Baik et al. (2012) observed that LEV circulation decreased with increasing re-

duced frequency for two-dimensional plunging cases, which is also observed for the

flapping cases in the current study, again seen in Figure 2.7. However, while two-

dimensional plunging cases showed that circulation had only a low dependence on

Strouhal number, the St∗ = 0.54 cases exhibit a drastically increased circulation

to that of the other modified Strouhal numbers. The large variation in circulation

with respect to St∗ suggests that the investigated flapping cases cannot be approx-

imated as bulk two-dimensional at these increasingly faster motions. Therefore, as

the St∗ = 0.54 cases bare the least resemblance to two-dimensional plunging, these

cases will be investigated with 3D-PTV below in order to determine how spanwise

vorticity transport affects LEV stability.

2.5.2 The Effect of Vorticity Transport on Vortex Development

Despite the divergence between St and St∗ for St∗ ≥ 0.54, LEV stability is deter-

mined by the reduced frequency k alone, similar to two-dimensional plunging cases.
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Figure 2.6: Vortex-core locations were determined with the |γ1| criterion and tracked
through time, shown here for all modified Strouhal numbers St∗ and re-
duced frequencies k tested, at the phase t/T = 0.5. The modified Strouhal
number does not effect vortex convection speed.
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Figure 2.7: Vortex locations are tracked, relative to t/T = 0.1, showing a collapse
of LEV displacement as a function of reduced frequency k (left). Vortex
circulation is affected by both modified Strouhal number St∗ and reduced
frequency k: larger k results in a lower circulation Γ; sensitivity to St∗ is
low until St∗ = 0.54, at which point dramatic increases in circulation are
observed (right).

Therefore, at first glance the influence of vorticity transport on LEV stability ap-

pears to be secondary. In order to reconcile this observation with the hypotheses in

Section 2.3, a profile sweep Λ can be introduced in order to vary vorticity convection

by varying the spanwise flow, thus acting as a vorticity sink. Figure 2.8 shows iso-

surfaces of vorticity magnitude and vorticity convection for two sweep angles Λ = 0◦

and 45◦ and two reduced frequencies k = 0.89 and 1.33, as measured with 3D-PTV.

Vorticity convection magnitude is found to increase both with increasing reduced

frequency and increasing profile sweep, which can also be seen in Figure 2.9. The

spanwise flow, circulation, vorticity transport and vortex convection shown in Figure

2.9 were measured at the mid-span of each profile, and values for vorticity convection,

vortex stretching and spanwise flow were determined from the average value within

an isolevel of vorticity ωzc/U∞ = 5. The vortices are tracked using the maximum
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Figure 2.8: Isosurfaces of vorticity magnitude (ωc/U∞ = 5, 10, and 20) are shown for
phase t/T = 0.5 in the left column, and isosurfaces of vorticity convection
(w ∂ωz

∂z
c2

U2
∞

= 20, 50, and 100) are shown in the right column. From top to
bottom the four cases shown are: k = 0.89, Λ = 0◦; k = 1.33, Λ = 0◦;
k = 0.89, Λ = 45◦; and k = 1.33, Λ = 45◦.

normalized helicity criterion over the range 0.2 ≤ t/T ≤ 0.4, as a strong peak of

normalized helicity was observed across this interval.

The ability of profile sweep to modulate spanwise vorticity transport agrees with
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Figure 2.9: Spanwise flow, vortex circulation, vorticity transport and vortex location
are plotted for four test cases. Streamwise vortex position shows a large
dependence on both sweep angle and reduced frequency. This sensitivity
to reduced frequency can be explained in terms of the limiting length
scale of the profile chord for stable LEV growth.
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the findings of Wong et al. (2013a). Increased spanwise vorticity transport corre-

sponds to a reduced LEV convection speed, and both higher sweep angles and higher

reduced frequencies result in a slower streamwise vortex convection. However, the

effect of vortex stretching and vorticity convection on streamwise vortex convection

is not linear. For instance, the Λ = 45◦, k = 0.89 case and the Λ = 0◦, k = 1.33 case

have nearly identical vortex convection paths despite having very different levels of

vorticity convection and vortex stretching. In other words, relative LEV stability is

increased by two mechanisms: (1) the addition of vorticity sinks, such as from profile

sweep; or (2) the reduction of vorticity feeding for a given limiting length scale c. This

latter mechanism of increasing LEV stability is governed by the reduced frequency,

as shown in Section 2.3.

2.6 Discussion

In Section 2.3 it was predicted that both larger reduced frequencies and larger sweep

angles would result in more stable LEVs on flapping profiles. Even in the rotating

cases investigated here, the reduced frequency was found to govern the ratio between

the limiting growth rate of the LEV (c2/T ) and the feeding of circulation into the

LEV from the leading-edge shear layer (u2
effT ). Meanwhile, larger sweep angles result

in larger spanwise vorticity transport, acting as a vorticity sink.

For rotating cases, the vorticity feeding rate is a function of the profile span.

Therefore, while aspect ratio sensitivity was not investigated explicitly in this study,

the reduced frequency is analogous to the aspect ratio AR for rotating profiles:

k ≈ πfc

ueff
≈ πfc

ΩR
≈ πf

ΩAR
, (2.16)
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where R is the profile span. Larger reduced frequencies k represent larger allowable

LEV growth rates relative to shear-layer feeding, and thus more stable LEVs. In

turn, the most stable LEVs also correspond to the smallest aspect ratios, similar to

the findings of Lentink and Dickinson (2009b). This analogy between the aspect ratio

AR and the reduced frequency k of course neglects effects such as vorticity convection

and vortex stretching, which have been shown here to also improve relative LEV

stability.

In addition to vorticity transport, Wojcik and Buchholz (2014) found that vorticity

annihilation was a significant mechanism for regulating LEV growth and was generally

much larger in magnitude than vorticity convection. However, as an extension to

these findings, it has been shown here that relative LEV stability can be improved

by moderating LEV growth through vorticity convection and vortex stretching.

Finally, with respect to the findings of Beem et al. (2012) that profile sweep does

not affect LEV stability for plunging cases, it was found that profile sweep did, in fact,

affect LEV stability for flapping cases in contrast with plunging cases. The addition

of spanwise flow from profile sweep increased the vorticity transport that was already

present for the rotating, unswept cases, in agreement with the findings of Wong et

al. (2013a). Beem et al. (2012) had ignored rotating cases in their study on purely

plunging profiles. The current result demonstrating the effect of profile sweep alludes

to the evolutionary convergence of swept profiles found in nature ranging from large

marine animals down to small flapping birds, and provides us with a step forward

towards designing more efficient autonomous vehicles and energy extraction devices.
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2.7 Conclusions

In this study relative LEV stability on impulsively-started flapping profiles was pro-

posed and tested using phase-averaged planar PIV and volumetric 3D-PTV mea-

surements. The circulation flux into an LEV from the leading-edge shear layer was

moderated by the spanwise convection of vorticity. Moreover, vortex stretching was

observed to limit LEV growth and further enhance relative LEV stability.

This study resulted in the following primary conclusions:

(1) The ratio between the limiting length scale of an LEV (the profile chord) and

the shear-layer feeding rate can be approximated by the reduced frequency k, with

larger reduced frequencies increasing LEV stability. In the specific case of rotating

profiles, the shear-layer feeding rate is a function of the profile span. It is therefore

speculated that the ratio between the limiting length scale of an LEV and the shear-

layer feeding rate depends on the aspect ratio AR, with smaller aspect ratios increasing

LEV stability in agreement with Lentink and Dickinson (2009b);

(2) In addition to the above ratio, LEV stability can be improved by draining vorticity

through spanwise vorticity transport. Spanwise vorticity transport, and therefore

LEV stability, can be increased by introducing profile sweep. This effect may explain

the ubiquity of profile sweep in natural swimming and flying, throughout length scales

ranging from the wings of small birds to the flukes of whales.
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Chapter 3

Rapid manoeuvring with spanwise-flexible wings

3.1 Abstract

In this study, it is hypothesized that spanwise-profile bending contributes towards

limiting leading-edge vortex (LEV) growth and increasing LEV stability in natural

swimming and flight, due to the spanwise flow produced by profile bending. Specif-

ically, as a propulsor undulates and subsequently bends, the profile tip can have a

phase lag relative to the root, producing both a spanwise flow and an angle-of-attack

gradient, transporting vorticity and thus circulation along its span. This relative

phase of the profile tip versus the root is investigated experimentally using a com-

bined pitching-and-flapping motion on a nominally two-dimensional NACA0012 pro-

file, utilizing direct measurements of vorticity transport to estimate the circulation

budget. In order to measure vorticity transport the entire velocity gradient tensor

must be resolved, and therefore 4D-PTV, a high-density, time-resolved volumetric

technique, was used to measure the flow around the profile. Tip-leading kinemat-

ics were found to increase LEV size and strength due to an unbalanced circulation

budget: vorticity was not transported along the span, but instead accumulated to
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increase circulation. Meanwhile for tip-lagging kinematics, that mimics the bending

found in nature, both reduced LEV size and circulation were observed, as vorticity

transport acted to balance the circulation budget instead.

3.2 Introduction

Previously, spanwise flexibility has been studied in terms of cruising efficiency. For

instance, Heathcote et al. (2007) observed increased propulsive efficiencies for oscil-

lating spanwise-flexible profiles, while Cleaver et al. (2016) observed increased lift

coefficients and reduced power coefficients for flexible profiles across a broad range of

kinematics. In such cruise conditions, Lucas et al. (2014) found broad evolutionary

convergence among flexible appendages, with similar levels and locations of profile

bending across a range of Reynolds numbers and species. Similar efficiencies have been

observed for flexibility about other axes such as chordwise and twisting deformations,

as demonstrated by Young et al. (2009) and Cleaver et al. (2014), respectfully. Tak-

ing inspiration from these advantages found for cruising conditions, the current study

investigates the role of spanwise flexibility during rapid maneuvers.

Ellington et al. (1996) identified spanwise flow as critical in controlling the growth

of the ubiquitous leading-edge vortex (LEV). This LEV is especially important for

rapidly maneuvering flyers as the bound vortex is of negligible strength on thin, stalled

airfoils, as discussed by Pitt Ford and Babinsky (2013). Thus, maintaining the prox-

imity of this vortex to the profile of a swimmer or flyer is critical in maintaining high

instantaneous loads, which is useful for rapid maneuvering and lift augmentation.

The proximity of the vortex to the profile is determined by the relative streamwise

velocity of the vortex. Wong and Rival (2015) showed that this streamwise convection
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speed can be reduced by draining circulation from the LEV through spanwise vortic-

ity convection, as the vortex-detachment process is determined by the vortex size. In

particular, Rival et al. (2014) showed that for a critical vortex size on the order of

one chord length, the detachment process is forced to begin by the streamline topol-

ogy. For rotating kinematics, rotational accelerations can provide the spanwise flow

required to maintain a constant vortex size in steady state, as discussed by Lentink

and Dickinson (2009b). In particular, Lentink and Dickinson (2009b) described ro-

tational accelerations with the Rossby number, with smaller values of the Rossby

number corresponding to stronger rotational accelerations, and Rossby numbers on

the order of Ro ≈ O(1) were associated with stable LEVs. Stable LEVs have been

observed in this Rossby number range by Ozen and Rockwell (2012), Cheng et al.

(2013), and others. At such low aspect ratios, Cheng et al. (2013) observed that con-

vection of the LEV in the remaining two directions, streamwise and chord-normal,

as well as vortex tilting, may also be critical in maintaining LEV stability. However,

flapping flyers with lower rotational accelerations, or higher Rossby numbers, must

pursue alternative strategies. For instance, a flapping profile initially perpendicu-

lar to the oncoming flow will passively bend along its profile span due to the lift it

generates, resulting in a component of oncoming flow parallel with the span. As all

natural propulsors are flexible, it follows that this spanwise flow may be exploited

to manipulate LEV growth. However, merely producing any spanwise flow is not

sufficient to limit the circulation of the LEV. Beem et al. (2012) showed that a nom-

inally two-dimensional spanwise flow from uniform profile sweep does not limit LEV

growth or improve LEV stability. Rather, to produce a stable vortex the circulation

produced in the leading-edge shear-layer must be somehow balanced by a vorticity
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sink. For spanwise flow to act as a vorticity sink, it must couple with a gradient of

vorticity magnitude in order to convect vorticity along the profile span. Wong and

Rival (2015) has shown that this vorticity convection is able to partially balance the

circulation produced in the leading-edge shear-layer of a profile. At low Reynolds

numbers, Wojcik and Buchholz (2014) further identified vorticity annihilation as a

major vorticity sink, although spanwise convection becomes increasingly important

at higher Reynolds numbers. Wong and Rival (2015) gives the spanwise circulation

transport as:

∂Γ

∂t
= −w

∂ωz

∂z
A , (3.1)

where the mean spanwise-vorticity convection is taken over the vortex area A. In the

case of spanwise profile bending, the spanwise flow w can be estimated geometrically

from the component of the local flapping velocity that is tangential to the span of the

deformed profile. However, estimating the spanwise vorticity gradient ∂ωz

∂z
requires

the assumption that spanwise distribution of vorticity magnitude will scale with the

distribution of circulation, given an approximately constant LEV area A.

Given this scaling relationship between vorticity magnitude and circulation, we

speculate that spanwise profile bending controls LEV stability through the following

mechanisms. First, a higher vorticity magnitude is anticipated in spanwise locations

with a larger effective velocity or effective angle of attack. In order to accomplish

this, a higher profile displacement and a higher effective velocity will be prescribed

towards the tip of the profile in the experimental setup to follow. Second, a spanwise

flow must be produced, through profile bending, rotation or sweep, to couple with

this vorticity gradient and convect vorticity along the span of the profile. A flying

animal can exploit this convection to control LEV circulation, either increasing it
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Figure 3.1: A two-dimensional plunging wing provides a reference with which to com-
pare tip-leading and tip-lagging kinematics (grey). It is hypothesized that
a tip-leading motion directs vorticity convection towards the wing root,
reducing LEV stability (red). Meanwhile, a tip-lagging case is expected
to direct vorticity convection away from the wing root, improving LEV
stability by balancing the circulation generated at the leading-edge (blue).
Here, U∞ is the free-stream velocity, while v is a vertical velocity from
plunging of flapping motions at points along the span 1 and 2.

to produce higher instantaneous force coefficients, or reducing it in order to prolong

LEV attachment.

While a passively bending profile is expected to deform away from the direction

of motion, it is interesting to consider the consequences of a flyer bending their wing

actively into the direction of flapping. This active bending would reverse the direction

of spanwise flow, for instance to alter the circulation budget of the LEV to increase

vortex strength at the cost of LEV stability. Thus, we can consider three general

bending cases: ‘passive’ bending away from the direction of motion, ‘active’ bending

into the direction of motion, and rigid profiles that do not bend. Herein, these cases

will be referred to by the phase of the profile tip relative to the root, where bending

away from the direction of flapping produces a tip-lagging phase, bending into flapping

produces a tip-leading phase, and a rigid case has no phase change, respectively.

The augmentation of circulation through profile bending is illustrated for each of
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the two-dimensional, tip-leading, and tip-lagging cases in Figure 3.1. First, in the

two-dimensional case no spanwise gradients or spanwise flow is present, and a two-

dimensional vortex is expected to form. Second, in the tip-leading case it is expected

that vorticity magnitude grows towards the profile tip while spanwise flow is directed

towards the root, resulting in a negative vorticity transport, increasing circulation

and reducing LEV stability. Lastly, in the tip-lagging case, vorticity magnitude is ex-

pected to grow towards the profile tip while spanwise flow remains directed outboard,

reducing circulation and increasing LEV stability. Therefore, it is hypothesized that

tip-lagging kinematics directs circulation along the profile span towards the profile

tip, mediating LEV growth, and thus stabilizing the vortex structure and extending

force augmentation. Meanwhile, tip-leading kinematics directs circulation inboard,

increasing LEV growth, and therefore increasing force generation at the cost of reduc-

ing LEV stability. In order to produce tip-leading and tip-lagging profile kinematics

to test the above hypothesis, a combined pitching-flapping system was developed in

order to manipulate a nominally two-dimensional profile, outlined in the following

section.

3.3 Methods

Isolating the effects of tip-leading versus tip-lagging kinematics poses a number of

experimental challenges. For instance, if passively-flexible structures are used, the

possibility of animals actively deforming their propulsors can be obscured. In par-

ticular, selecting particular materials and root kinematics that produce tip-leading

and tip-lagging motions constitute additional constraints, which can obfuscate the

relationship between profile bending and vortex growth. As such, in this study a
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first-approximation to the kinematics of spanwise-flexible profiles was produced using

a combined pitching and flapping motion of a rigid profile instead. Note that in this

case, we are assuming negligible effects from the free ends. Previously, Bansmer and

Radespiel (2012) have similarly sought to investigate combined pitching and flapping

while avoiding free-end effects, using rubber segments to bridge their apparatus with

wind tunnel walls. Such a method was not possible given the physical limitations

of a towing tank, so here the tip gaps were merely kept as small as practicable, de-

tailed below. This methodology is demonstrated in Figure 3.2, where the history of

effective angle-of-attack of a hypothetical spanwise-flexible profile is extracted at the

profile root and tip, and then is subsequently applied to a rigid profile undergoing a

combined pitching and flapping motion:

αeff = αgeo + tan (ΩR/U∞) , (3.2)

where αgeo is the pitching angle, and ΩR is the flapping velocity at the mid-span.

Herein, the kinematics of the hypothetical profile will be referred to as the modeled

motion, while the pitching-flapping analogue will be referred to as the physical motion.

The specific modelled motion, along with the corresponding physical motion required

to generate the same angle-of-attack history, is shown in Figure 3.3. This pitching-

flapping analog captures the angle-of-attack history of a spanwise-flexible profile at

the root and tip, and approximates the angle-of-attack gradient linearly between these

two points. No twisting or deformation of the physical wing is required. Meanwhile,

as spanwise flow can only be directed towards the profile tip in this arrangement,

when the angle-of-attack gradient is reversed the physical profile tip will represent

the modeled profile root and vice versa. The approximation of plunging with pitching
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Figure 3.2: The angle of attack experienced at the tip of a flexible profile has a phase-
lead or lag relative to the root, as well as a change in magnitude (left).
The effective incidence at the root and the tip, shown in blue and red,
respectively, can be recorded (centre). By carefully combining pitching
and plunging motions, the same angle-of-attack history can be prescribed
onto the root and tip of a rigid wing through combined pitching and
flapping (right).

in this way is imperfect. However, as the purpose of this study is to investigate

the applications of various combinations of spanwise angle-of-attack gradient and

spanwise flow on LEV formation, as opposed to a true model of a flexible wing, these

approximations are not expected to affect the conclusions of this study. Thus, the

physical pitching and flapping motion is intended to mimic the vorticity transport

properties of the modeled spanwise-flexible profile, and the system allows the modeled

root kinematics and profile flexibility to be adjusted independently of one another.

Given this approach, a single set of profile kinematics within the bounds of nat-

ural flight can be defined for the modelled motion, while the tip can be modelled

with a phase lead or lag relative to the root independently. Prescribing a harmonic

plunging motion, the model root kinematics are defined entirely by two dimensionless

parameters: the Strouhal number St = f(2h0)
U∞

, where f is the frequency of motion and

h0 is the plunging amplitude; the reduced frequency k = πfc

U∞

, where c is the profile
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chord; and the Reynolds number Re. In this study, the Strouhal number was selected

to match the evolutionary convergence of propulsion found in nature by Taylor et al.

(2003) of St = 0.25. This Strouhal number range is also low enough to avoid the lift-

reducing formation of an LEV dipole, reported by Cleaver et al. (2016) for Strouhal

numbers of St > 1. Meanwhile, the Reynolds number has been shown by Garmann

et al. (2013) to have only a secondary effect on LEV size and convection within the

range 102 ≤ Re ≤ 105, and therefore a Reynolds number of Re = 105 was selected

with enforced turbulent boundary layers. The range of reduced frequencies found

in nature vary substantially even within a single species, for instance Tobalske and

Dial (1996) observed that magpies fly with an approximately constant wing beat fre-

quency across their entire flight envelope, resulting in a range of reduced frequencies

0.1 ≤ k ≤ 0.5. Furthermore, Baik et al. (2012) found that only reduced frequen-

cies lower than approximately k ≤ 0.5 resulted in LEV detachment before the airfoil

reached the bottom of the motion, due to the timescale of LEV development relative

to profile motion. Therefore, as we are interested specifically in the timescales of LEV

detachment, a reduced frequency of k = 0.4 was selected in order to produce a highly

unsteady motion where LEV detachment was nevertheless expected.

As the modelled tip kinematics can be imposed arbitrarily, it was decided to match

the flexion observed by Lucas et al. (2014), equivalent to a flexion angle of ±25◦ at the

60% span location. Lastly, a ‘rigid’ two-dimensional case with no physical flapping

motion was included as a reference. The modelled effective incidence for each of these

three cases is shown in Figure 3.3, along with the corresponding physical pitching and

flapping programs of each case. The average effective angle-of-attack is the same for

the tip-leading and tip-lagging cases. Both here and in the results section, the time
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Figure 3.3: (left) The modelled motion consisted of a common effective incidence
αeff at the root for all three cases (black). Meanwhile, the modelled
deformation resulted in a different effective incidence history at the profile
tip for the tip-leading case (red) and tip lagging case (blue). (right)
This effective incidence history resulted in a common pitching angle αgeo

(black) for all three cases, and flapping angles θ for the tip-leading (red)
and tip lagging (blue) cases as shown.

coordinate is indicated in chords travelled s/c from the onset of pitching motion.

All experiments were performed in the optical towing-tank facility at Queen’s

University, which has a 15m-long test section, and a 1m×1m cross-section with three-

sided optical access, as shown in Figure 3.4. The towing tank is enclosed by a roof

along its length to minimize free-surface effects, with a 50mm opening through which

test articles can be mounted and towed. The test article chosen was a NACA0012

airfoil with 0.3m chord and 1m span, which spanned from the roof to the floor in

order to minimize tip effects. The effectiveness of turbulators has been shown by

Lissaman (1983) to diminish towards Reynolds numbers of 105, suggesting that the

occurrence of laminar separation is rare after this point. However, as the efficiency of

the airfoil is not critical in this study a z-type turbulator was nevertheless included
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Figure 3.4: (a) A pitching-flapping mechanism (I) was use to actuate the NACA0012
profile (II) as it was towed along the 15m-long optical towing tank (b).
Pitching and flapping axes are labeled φ and θ, respectively. The flow-field
around the profile was illuminated from the side-wall with a high-speed
laser, and was subsequently captured with a four-camera 4D-PTV setup
(III), which was located below the glass floor.

at the 20% chord position in order to fully ensure attached boundary layers prior

to the pitching-flapping manoeuvre. Wall gaps at both the root and tip were kept

as small as possible in order to minimize free-end effects while accommodating the

profile motion. In the two-dimensional case, the tip gap was approximately 2% of

chord, increasing with flapping angle to a maximum of 6% at a flap angle of 15◦.

The NACA0012 profile was mounted to a robotic pitching-flapping system (labelled

I in Figure 3.4) through the roof opening in order to prescribe the motions described

above. This pitching-flapping system was integrated into a rack-and-pinion traverse

that provided a convective velocity of U∞ = 0.3m/s.

A 527nm Photonics Industries 40mJ-per pulse Nd:YLF laser was used to illumi-

nate the flow-field at the mid-span of the NACA0012 profile during a pitching-flapping
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cycle, after approximately 20-chords of steady-state travel. The flow was seeded with

100µm hollow glass micro-spheres, which were tracked using four-dimensional Par-

ticle Tracking Velocimetry (4D-PTV), a state-of-the-art Lagrangian measurement

technique described by Schanz et al. (2016). The use of 4D-PTV allows the recon-

struction of the entire velocity gradient tensor and therefore every component of the

vorticity transport equation, thus enabling the direct testing of the hypothesis laid

out in Section 3.2. The 4D-PTV system was comprised of four Photron SA-4 cameras

operating at 1000Hz with a resolution of 1024 × 1024px2, capturing particle tracks

over a 130 × 130 × 10mm3 measurement volume, with the short-axis of the domain

parallel to the profile span to capture the LEV cross-section. Utilizing two adjacent

fields of view, just under one convective time of data was obtained, and measure-

ments were repeated for ten individual runs per test case. At the mid-point of the

measurement, each of the three cases had an identical angle-of-attack (α = 32◦). Raw

pre-processed images were also used to verify the repeatability of the motion, which

had a maximum variation of 5 pixels (0.2 % of chord) at the half-span location where

measurements were conducted. These pre-processed images were also used to deter-

mine the geometric angle of attack and flapping velocity in order to estimate the error

in the motion reproduction. The RMS error observed in geometric angle of attack

across all cases and all runs was ∆α = 0.2◦. Meanwhile, the deviation in the flapping

velocity resulted in an RMS error in effective incidence of ∆αeff = 0.4◦. Processing of

the 4D-PTV data was accomplished with LaVision Davis 8.3.0 software.
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Figure 3.5: Three snapshots centred about s/c = 1.5 of highly-rotational tracked
particles are highlighted here with the gamma criterion for the tip-leading
case (red, left), two-dimensional reference case (grey, centre), and tip-
lagging case (blue, right), respectively. All low-vorticity particles are
removed for clarity. The tip-lagging case, similar to kinematics found in
nature, exhibits a compact LEV closer to the profile surface than either
of the other cases. As a faster-growing LEV is likely to reach the limiting
1c length-scale earlier, this indicates that it will not remain attached for
as long into the motion.

3.4 Results

Figure 3.5 shows the evolution of the flow-field captured for an individual run of

each of the three test-cases considered, with the final snapshot corresponding to the

maximum geometric angle of attack. Tracked particles of high rotation have been

coloured by gamma criterion to highlight the LEVs formed, as defined by Graftieaux

et al. (2001), and low-rotation particles have been removed for clarity. At this point

in the motion, streamwise position of the vortex does not vary significantly between
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the three cases as the vortex detachment process has not yet started. However, at

this point it can already be observed that the tip-lagging case (blue), which replicates

the passive bending kinematics found in nature, has a much more compact and less

coherent vortex structure, closer to the surface of the profile than the tip-leading case

(red) or the two-dimensional case (grey). In turn, the LEV in the tip-leading case

has a larger cross-sectional area than the two-dimensional case. These observations

are already intuitively in agreement with the hypothesis laid out in Section 3.2 that

the tip-leading case would exhibit a stronger, larger vortex while the tip-lagging case

would have a weaker, more compact vortex. These hypothesis are further supported

in the time-resolved, quantitative measurements. Circulation histories are shown in

Figure 3.6, where the circulation value presented is the ensemble average of ten runs

per case. Along with its smaller vortex size shown previously, the tip-lagging case

(blue) has a smaller circulation, and a lower rate of circulation growth relative to the

tip-leading (red) and two-dimensional (grey) cases. The tip-leading case has a larger

circulation and a higher circulation growth rate than the two-dimensional case, but

does not deviate as far from the two-dimensional case as that of the tip-lagging case.

Spanwise vorticity convection is shown in Figure 3.7(a), next to spanwise vortex

stretching in Figure 3.7(b). Vorticity transport in the two-dimensional case will not

be discussed here, as it is nearly zero for the entire measurement duration. How-

ever, values are nevertheless presented in Figure 3.7 as an indicator of the run-to-run

variation present in the current experiments. For each of these two parameters, the

spatial average was taken across the vortex area as defined by a gamma criterion

of γ2 ≥ 0.64, and once again the ensemble average from ten runs is presented here.

Based on Equation (3.1), the large negative vorticity convection seen in the tip-leading
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Figure 3.6: Vortex circulation is highest for the tip-leading case, and lowest for the
tip-lagging case, similar to the results seen for the cross-sectional vortex
area.
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Figure 3.7: Vorticity convection is large and negative for tip-leading kinematics.
Meanwhile, vortex stretching has the same sign for both tip-leading and
tip-lagging kinematics. Therefore, as the flexible cases differ from the two-
dimensional case in opposite ways, the two cases cannot be differentiated
through vortex stretching.
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case should serve to increase the circulation at this spanwise location, explaining its

higher circulation relative to the two-dimensional case. Meanwhile, the tip-lagging

case exhibits a positive vorticity convection, matching its correspondingly reduced

circulation relative to the two-dimensional case. Vortex stretching meanwhile is non-

negligible and positive in both cases. The spanwise flow set up due to rotation is

similar in magnitude for both ‘flexible’ cases, however the tip-lagging case has a lower

centre line vorticity. Nevertheless, it does not appear that vortex stretching can be

used to differentiate the tip-leading and tip-lagging cases, as it is the same sign for

both flexible cases.

3.5 Discussion

In Section 3.2 it was hypothesized that spanwise profile flexibility could be used to

control LEV circulation, and thereby also LEV stability. For both flexible cases stud-

ied here, the spanwise flow produced by spanwise profile bending was able to convect

circulation along the span and thus manipulate LEV circulation. This circulation

control would allow the tip-leading case to increase instantaneous lift production,

as needed for manoeuvres. However, this increase in circulation is likely to reduce

LEV stability such that a manoeuvring animal would only be able to exploit this lift

over a shorter period of time. This reduced vortex stability is directly related to the

relative growth rate of the vortex; based on the topological detachment criteria laid

out by Rival et al. (2014), a faster-growing LEV would detach earlier in its growth

as it would quickly reach a limiting length-scale on the order of one chord-length.

Moreover, Wong and Rival (2015) found that this specific mechanism of LEV detach-

ment resulted in a correlation between spanwise vorticity convection and relative LEV
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stability. This argumentation is of course in line with the observation of increased

vortex size in the tip-leading case, and decreased vortex size in the tip-lagging case,

respectively.

Due to the use of spanwise profile bending as a method of flow control, it is unlikely

that an evolutionary convergence similar to that observed by Lucas et al. (2014) in

cruising flight would also be observed in manoeuvring flight, as rapid force generation

may be valued higher than efficiency. By analogy, in jet-like propulsion, Dabiri (2009)

noted that squid maximized impulse instead of efficiency during escape manoeuvres

since survival was prioritized above all else, and therefore the squid deviated from

the more universal behaviour seen in cruise. Additionally, Cleaver et al. (2016) only

observed large differences in force histories between rigid and flexible profiles for

much larger Strouhal numbers than those investigated here. Indeed, Cleaver et al.

(2016) observed much less profile deflection at the Strouhal numbers we investigate,

implying the above results may only be achieved by an animal actively bending its

wing. However, the current study nevertheless echoes the general conclusion of Lucas

et al. (2014) that spanwise bending is not determined by wing material or physical

structure, but rather by constraints on aerodynamic performance.

3.6 Conclusions

The first conclusion of this study is that spanwise profile bending can indeed be used

to control LEV growth and stability. This conclusion comes from the observation that

tip-lagging kinematics, like the passive bending found in the natural world, produced a

more compact LEV with reduced circulation relative to the two-dimensional reference

case. Meanwhile, tip-leading kinematics produced a much stronger LEV relative to
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the two-dimensional case.

The second conclusion is that the differences in vortex strength could not be

attributed to vortex stretching, as both the tip-leading and tip-lagging cases had

positive vortex stretching, while the resulting circulation and vortex sizes differed

from two-dimensional case each in an opposite sense. Rather, we conclude instead

that flexibility modulates the circulation transport along the span of a profile following

Equation (3.1). These conclusions together explain one role that spanwise profile

bending plays in natural swimming and flying.
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Chapter 4

Flow separation on flapping and rotating profiles

with spanwise gradients

4.1 Abstract

The growth of leading-edge vortices (LEV) on analogous flapping and rotating profiles

has been investigated experimentally. Three time-varying cases were considered: a

two-dimensional reference case with a spanwise-uniform angle-of-attack variation α;

a case with increasing α towards the profile tip (similar to flapping flyers); and a case

with increasing α towards the profile root (similar to rotor blades experiencing an

axial gust). It has been shown that the time-varying spanwise angle-of-attack gradient

produces a vorticity gradient, which, in combination with spanwise flow, results in a

redistribution of circulation along the profile. Specifically, when replicating the angle-

of-attack gradient characteristic of a rotor experiencing an axial gust, the spanwise-

vorticity gradient is aligned such that circulation increases within the measurement

domain. This in turn increases the local LEV growth rate, which is suggestive of force

augmentation on the blade. Reversing the relative alignment of the spanwise-vorticity

gradient and spanwise flow, thereby replicating that arrangement found in a flapping
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flyer, was found to reduce local circulation. From this, we can conclude that spanwise

flow can be arranged to vary LEV growth to prolong lift augmentation and reduce

the unsteadiness of cyclic loads.

4.2 Introduction

As a first-order approximation, a flapping wing will experience rapid time-dependent

variations in angle-of-attack α as a function of position along the span. Often, the

angle-of-attack and pitch rate are sufficient for flow to separate, resulting in the

formation of a leading-edge vortex (LEV) (Lentink and Dickinson 2009b). Significant

attention has been given to understanding the role of the LEV in lift generation

and maneuvering of small animals (Ellington et al. 1996; Usherwood and Ellington

2002). In particular, understanding the roles of spanwise flow and spanwise angle-of-

attack gradient on the maintenance of LEV position along the profile is thought to be

critical in understanding low-Reynolds number flight (Beem et al. 2012; Wojcik and

Buchholz 2014; Wong and Rival 2015). Large rotational accelerations, corresponding

to low Rossby numbers Ro, have been found to be responsible for stabilizing the LEV

by draining vorticity into a trailing vortex system (Lentink and Dickinson 2009a).

In contrast, most rotors are designed for steady operation, and would not experi-

ence flow separation unless impacted by a gust, which for this study will be assumed

in the axial direction. Gusts are of course common in the atmosphere and therefore

understanding their interaction with rotor systems is critical in many engineering ap-

plications such as in wind turbines (Wächter et al. 2011). Similar to flapping flyers,

rotors will experience strong spanwise flow from rotational accelerations, particularly

at inboard portions of the blade. This can be problematic, since the performance of
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Figure 4.1: The angle of attack change is shown here for a flapping wing case (left)
and a rotor case experiencing a gust (right). The angle of attack change
on a flapping wing grows towards the tip of the profile, whereas the angle
of attack change for a rotor with gust is greatest towards the root.

rotating wings and blades is typically calculated using blade-element models or strip

theory (Glauert 1935; Videler 2005). These models often assume little to no interac-

tion between the blade elements, such that each element is treated as an independent

two-dimensional airfoil section (Burton et al. 2001). Indeed, in order to obtain ac-

curate results in low-order models, the effect of spanwise flow on rotors is adjusted

with an empirically-determined correction factor (Ronsten 1992; Du and Selig 1998).

In reality, assuming a set of two-dimensional solutions along the spanwise direction

is often insufficient to describe the flow (Bansmer and Radespiel 2012).

While the importance of this spanwise flow has been noted for the cases of both

natural flight and rotor operation, the unsteadiness experienced by these two analo-

gous cases is very different; the angle-of-attack gradient is inverted between the two,

as shown in Figure 4.1. For instance, consider the angle-of-attack distribution on a

flapping bird during the downstroke. The variation in angle of attack at an instant

in time due to flapping, ∆α, is described by the following equation:

∆α(r) = arctan

(

Ωr

U∞

)

− α0 , (4.1)
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where α0 is the initial angle-of-attack, Ω is the rate of rotation, U∞ is the forward

speed of flight, and r is the spanwise coordinate. In this case, the change in angle-of-

attack is negligible at the wing root and grows towards the wing tip. Contrast this

with the instantaneous angle-of-attack distribution of a rotor blade experiencing an

axial gust:

∆α(r) = arctan

(

U∞ +∆U

Ωr

)

− α0 , (4.2)

where ∆U is the gust magnitude. The respective velocity triangles of each of these

cases is shown in the left side of Figure 4.2. As the rotational component of velocity

Ωr moves from numerator to denominator, the peak angle-of-attack change moves

closer to the profile root, as illustrated on the right of Figure 4.2. If the kinematics

of flapping wings are responsible for their resilience against gusts, then the question

arises if rotor-like kinematics can produce the same benefits.

While these two examples may operate around different optimums, both must

be resilient against unsteadiness in their respective environments. Thus, there is an

opportunity to transfer insight between these communities. Many previous stud-

ies have already focused on determining how two-dimensional parameters can affect

LEV development and stability (Baik et al. 2012; Wong and Rival 2015; Widmann

and Tropea 2015). Therefore, in the current study we will consider the relationship

between opposing gradients in angle-of-attack in the presence of spanwise flow, as was

exemplified by the above examples, on LEV development and relative stability. The

following section will formulate the mechanics of LEV growth rigorously in order to

develop an expectation for the role of this spanwise angle-of-attack gradient.
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Figure 4.2: The angle-of-attack (α) change is shown for both the rotor case and the
flapping case (left). A change in the axial velocity (gust) ∆U has an
opposite effect on the angle-of-attack distribution for a rotor compared
to the distribution formed from a flapping motion. An example of the
spanwise distribution of angle-of-attack is shown for the rotor and flapping
cases in red and green, respectively (right).

4.3 Background

In this study, we are primarily interested in the formation of the LEV in unsteady

environments for flapping and rotating profiles. Due to the spanwise angle-of-attack

gradients outlined above, LEV evolution is a function of the spanwise position (and

gradient) along the profile. Spanwise locations whose effective angle-of-attack changes

greatly experience LEV formation earlier (Shipley et al. 1995). During LEV forma-

tion, higher effective angles of attack correspond to higher rates of circulation genera-

tion, which in turn correspond to higher rates of circulation growth within the vortex,

as evidenced by the higher circulation and lift generation of airfoils in deep-dynamic

stall as opposed to shallow-dynamic stall (Ol et al. 2009; Baik and Bernal 2012). As

a result, the LEV would be expected to reach a topological limit in strength (and

size) earliest at positions with the highest angle-of-attack change, for two-dimensional

cases where the vortex strength is not limited by spanwise flow.

This topological limit in LEV size has been identified to have a length scale on
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the order of the chord, indicating the onset of vortex detachment (Rival et al. 2014).

However, a persistent dynamic stall vortex is often generated on rotating and flapping

profiles that lasts for much larger time-scales when compared to their respective two-

dimensional case (Lentink and Dickinson 2009b; Ellington et al. 1996; Birch and

Dickinson 2001; Bomphrey et al. 2005; Harbig et al. 2013). It has been proposed

that rotational accelerations act to stabilize the vortex, with three critical rotational

accelerations affecting vortex attachment (Lentink and Dickinson 2009a): the angular

acceleration (aang), centripetal acceleration (acen), and Coriolis acceleration (aCor):

aang =
ˆ̇Ω× r̂, (4.3)

acen = Ω̂× (Ω̂× r̂), (4.4)

aCor = 2Ω̂× ûeff , (4.5)

where ueff is the local velocity in the rotating frame. Note that in steady rotation cases

the angular acceleration, Ω̇, goes to zero. The centripetal acceleration acen induces a

pressure gradient that drives spanwise flow. The local velocity ueff is the sum of both

the free-stream velocity and that velocity induced by the flapping motion of the wing.

In steady rotor operation or for flapping wings, the free-stream velocity is parallel to

the axis of rotation, and therefore does not contribute to the Coriolis acceleration,

which becomes exclusively a function of the flow induced by the blade rotation:

aCor = 2Ω× ueff = 2Ω× (Ω× r). (4.6)
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In a linear momentum balance described by the Navier-Stokes equation, the Cori-

olis effect acts to stabilize the dynamic stall vortex (Lentink et al. 2009). Moreover,

even if the vortex is stabilized by other means, it has been found that the Coriolis

effect acts to increase force generation(Jardin and David 2014). Rotational effects

are still significant in the current study, but utilizes an angular momentum balance,

described by the vorticity transport equation, to examine vortex stabilization without

directly invoking the concept of Coriolis forcing. Within this framework, the Coriolis

effect is manifested as an induced spanwise flow (Maxworthy 2007). Spanwise flow

on the order of the flapping velocity can be expected, as this has been observed for

dynamic-stall vortices such as in a flapping motion (Ellington et al. 1996). This span-

wise flow contributes to the redistribution of vorticity along the span of the profile

following the vorticity transport equation:

dω

dt
+ (~u · ∇)ω = (ω · ∇)~u+ ν∇2~ω, (4.7)

where the terms on the left-hand side describe the change in vorticity of the fluid

due to unsteadiness and convection. The terms on the right-hand side represent

vortex stretching and tilting, and the viscous diffusion of vorticity, respectively. For

a gust event acting on a rotating blade, viscous diffusion can be neglected under the

assumption that the timescales of diffusion are much larger than the timescales of

vortex growth itself. Therefore, the spanwise component of the vorticity transport

equation in the rotating frame takes the form:

∂ωr

∂t
+ ur

∂ωr

∂r
+

uθ

r

∂ωr

∂θ
+ uz

∂ωr

∂z
= ωr

∂ur
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+

ωθ

r

∂ur

∂θ
+ ωz

∂ur

∂z
+ 2Ω

∂ur

∂z
, (4.8)
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where the terms from left to right are the constituent terms of Equation 4.7 above

representing the rate of change of vorticity due to unsteadiness, the convection of

vorticity in the r−, θ−, and z− directions, vortex stretching and vortex tilting, and

Coriolis effects, respectively. A schematic of the hypothesized vorticity balance is

shown in Figure 4.3 for the rotor case, where circulation generated in the shear layer

is balanced by spanwise-vorticity convection. It can be assumed that the vortex is

aligned approximately parallel with the span of the blade, and that therefore ωr is

the dominant component of vorticity present in the flow (Wong and Rival 2015).

The rate of spanwise circulation redistribution can be computed by integrating the

vorticity-transport equation across the vortex-core area (Wojcik and Buchholz 2014;

Wong and Rival 2015):

∂Γ

∂t
= −

∫

ur

∂ωr

∂r
dA, (4.9)

where the vortex tilting term vanishes as the vortex is aligned along the span of the

profile as shown in Figure 4.3, which is a reasonable approximation far from the profile

tip, before the LEV begins to tilt into the tip vortex. The stretching term vanishes,

as stretching acts to increase centre line vorticity but does not transport vorticity

along the blade span. Additionally, for a vortex tube attached near the leading edge

of the blade profile, gradients in the spanwise direction will be much larger than the

gradients in the streamwise direction, resulting in the Coriolis term having a negligible

impact on spanwise-vorticity transport. Note that the vorticity convection shown in

Equation 4.9 only describes the redistribution of circulation generated at the leading

edge, as opposed to the production of that circulation itself.

As shown in Equations 4.1 and 4.2, in transient flow conditions rotating profiles
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Figure 4.3: A section of a rotating profile experiencing a spanwise variation in angle-
of-attack in the presence of radial flow, resulting in vorticity convection
(ur∂ωr/∂r) towards the profile tip.

develop a gradient in angle-of-attack along the blade span, from which a spanwise-

vorticity gradient is formed. It is postulated that, in combination with the spanwise

flow induced by rotational accelerations, this spanwise-vorticity gradient acts to re-

distribute circulation along the span of the profile. However, as the gradient in

angle-of-attack is opposite in sign for the flapping wings versus rotors in gusts, it

is expected that the flapping case exhibits a reduction in circulation while the rotor

case will exhibit an increase in circulation. The following section outlines the methods

used to test the hypothesis experimentally.

4.4 Methods

In order to test the hypothesis at conditions relevant to large wind turbines, the angle-

of-attack magnitude and spanwise gradient in angle-of-attack was determined for a

reference 5MW NREL turbine operating at a free-stream velocity of U∞ = 11m/s

experiencing a gust of ∆U = U∞ at a reduced frequency of k = πfc/U∞ = 0.35.
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Figure 4.4: In order to test the hypothesis for conditions relevant to large wind tur-
bines, change of angle of attack ∆α and angle of attack gradient ∂

∂r
∆α

were chosen based on an axial gust impinging on the NREL 5MW tur-
bine. Specifically, the parametric values selected were equivalent to those
at the r/R = 0.3 spanwise position, where large gradients are observed.
The spanwise variation in ∆α and angle of attack gradient ∂

∂r
∆α are

shown on the left for a gust of ∆U = U∞, and is shown on the right
resolved in time.

This gust magnitude and frequency was chosen to be an extreme gust event, which

is beyond what could be accommodated by pitch control. Moreover, this free-stream

velocity and reduced frequency also fall well within the range of flying birds. For

instance, the wingbeat frequency of pigeons has been observed to vary between ap-

proximately 0.1 ≤ k ≤ 0.35 across a range of flight speeds 6m/s ≤ U∞ ≤ 20m/s

(Tobalske and Dial 1996). The change in angle-of-attack was determined for a sinu-

soidal variation in free-stream velocity at the 30% span position, as illustrated on the

left-hand side of Figure 4.4. As a result, three test cases were developed. The first test

case, hereafter referred to as the turbine case, was designed to exactly mimic the tem-

poral angle-of-attack change, change in the spanwise gradient of angle-of-attack, and

spanwise-flow direction experienced at the 30% span of the reference 5MW turbine.

This case was developed in order to quantify the effect of spanwise redistribution of

circulation on a representative rotating blade experiencing a gust.
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Figure 4.5: The pitching program for the two-dimensional reference case follows the
angle-of-attack program exactly, and has a flapping angle of exactly zero.
Meanwhile, the turbine and flapping cases each have an equal and oppo-
site flapping angle in order to produce the appropriate spanwise gradients.
In turn, their pitching programs are adjusted in order to maintain angle-
of-attack programs identical to the reference case.

The second test case, hereafter referred to as the flapping case, was designed

such that the temporal angle-of-attack change, and thus the change in the spanwise

gradient of angle-of-attack, was equal in magnitude but opposite in orientation relative

to the turbine case. The spanwise-flow direction is identical in each case. Thus, in the

flapping case the angle of attack grows towards the tip, and spanwise flow is directed

towards the tip, as is the case in flapping flight. The flapping case was developed in

order to contrast the turbine case, and is used to discuss the global behaviour of the

spanwise circulation profile. The third test case, hereafter referred to as the reference

case, was set up to be a quasi two-dimensional pure-pitching case with no spanwise

gradient in angle-of-attack, while having a magnitude change in angle-of-attack equal

to the other test cases. The angle-of-attack program for the turbine case is shown

in Figure 4.6, and the physical pitching and flapping programs for all three cases are

shown in Figure 4.5.
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Figure 4.6: All test cases were conducted in a 15m-long towing tank with a 1m × 1m
cross section with a semi-enclosed ceiling to minimize free-surface effects.
The model (II) was actuated using a robotic pitching-flapping mechanism
(I), which was towed from right to left along the upper traverse. A four-
camera setup (III) was used to capture the motion of the seeding particles.

All tests were conducted in a 15m-long optical towing tank with a 1m × 1m cross

section, shown in Figure 4.6. The tunnel ceiling was semi-enclosed, with only a 5cm

opening to pass through the test article, in order to minimize free-surface effects. The

tank is 15m long and uses water as the working fluid. The side and bottom walls of the

tank are glass to allow for optical access. A traverse system, running the length of the

towing tank, on which a 30cm chord, 1m span NACA-0012 test article was mounted,

is fixed above the tank and was operated at a free-stream velocity of U∞ = 0.33m/s,

resulting in a Reynolds number of Rec = 105. A z-type turbulator was placed at the

20% chord in order to ensure that all three cases experienced an identical turbulent

boundary layer at the onset of motion. This onset of the pitching and flapping
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actuation occurred after approximately 20 chords of steady-state motion at the free-

stream velocity a constant angle-of-attack of 6◦ with zero flapping motion. Enforcing

an identical initial condition, neglecting the initial rotation of the turbine case, was

chosen in order to maximize possible comparison between the two cases. A pitch

and flap actuator mechanism was mounted to this traverse system in order to control

the blade motion, as shown in Figure 4.7. The mechanism consisted of two linear

actuators, which controlled the pitching and flapping axes independently, attached to

moment arms rotating around z and θ axes. In this way, the superposition of pitching

and flapping motions could be used to dictate an angle-of-attack and a gradient

in angle-of-attack independently. The actuator system was designed to accept a

timeseries of blade pitch and flap angles, within the maximum actuator velocity and

displacement range. As the blade underwent its programmed motion, the flow field

around the profile was captured at the half-span location using a four-dimensional

U∞

View 1

View 2

Figure 4.7: The profile is mounted to a mechanism capable of actuating the profile
in both flapping and pitching (left). The blade motion intersects two
adjacent measurement fields of view taken over separate runs, located at
the half-span position. An exemplary volumetric vector field is shown,
with the profile indicated for scale (right).



4.5. RESULTS 75

Particle Tracking Velocimetry (4D-PTV) system in order to capture all components

of the velocity-gradient tensor, which are necessary to compute the individual terms

of the vorticity transport equation (Schanz et al. 2016). Spatial velocity gradients

were computed from the scattered velocity data by tri-linear interpolation.

The system consisted of four Photron SA-4 cameras (1024×1024px2 resolution)

operating at 1000Hz to capture particle images illuminated with a Photonics Indus-

tries DM-40 laser. This illuminated volume was held in-place as the profile conducted

its motion, and therefore the two adjacent measurement volumes illustrated in Fig-

ure 4.7 were used to maximize the measurement duration, as opposed to maximizing

the field of view. For the turbine and flapping cases, an initial static flapping angle

was applied to the profile such that the measurement volume was approximately or-

thogonal to the wing surface for each measurement. The quality of the volumetric

reconstruction produced by 4D-PTV has been evaluated previously using synthetic

images with artificial noise. 4D-PTV has been shown to triangulate detected particles

with approximately half the error of tomographic PIV, with mean errors of 0.1 pixels

being typical for such synthetic data sets(Schanz et al. 2016). Raw pre-processed

images were also used to verify the repeatability and accuracy of the motion, which

had a maximum variation of 5 pixels (0.2% of chord) from the motion program, at

the half-span location where measurements were conducted.

4.5 Results

The resulting flow fields in the turbine and flapping cases are shown for a snapshot

of time (t∗ = 0.8) from a single run in Figure 4.8. Highly rotational regions have

been isolated using the γ2 criterion, which defines a vortex core as a location where
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Strong LEV Supression of  LEV

Figure 4.8: Regions of high rotation are visualized here for the turbine case (left) and
the flapping case (right), with the γ2-criterion for t∗ = 0.8. This time
step is near the end of the measurement period representing the highest
observed angle of attack α ≈ 18◦, and thus the largest extent of vortex
growth in either test case. The vortex core, defined as |γ2| > 2/π, is clear
for the turbine case, whereas the flapping case exhibits an extended shear
layer with no clear roll-up.

|γ2| > 2/π (Graftieaux et al. 2001). Here, we see a large LEV forming in the turbine

case (left) with a clear vortex core. Meanwhile, the flapping case (right) exhibits an

elongated shear layer without any γ2 values reaching the threshold for core detection.

In the remainder of this section, this qualitative difference will be explained in terms

of spanwise flow and vorticity transport.

The spanwise flow ur observed in the turbine case increases for the entire measure-

ment period, as shown in Figure 4.9. This single value is determined by taking the

spatial-average across a 0.2c×0.2c region above and directly behind the leading-edge

of the profile, corresponding approximately to the maximum extent of the LEV in

the turbine case. The use of a single spatial domain for averaging each case means

that the relative magnitude of spanwise flow between cases is not affected by small
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changes in the domain size, and in fact is proportional to the relative volumetric flow

rate between each case along the span. The effective velocity Ueff =
√

U2
∞
+ Ω2r2 was

chosen as the normalization velocity in order to account for the additional flapping

velocity. Spanwise flow was normalized by the instantaneous effective velocity in order

to account for the rotational contribution to the effective velocity experienced in the

turbine case. The spanwise velocity increased throughout the measurement period as

a result of the rotational velocity increasing during the motion. This spanwise flow

was on the order of the local rotational velocity Ωr at the measured spanwise position,

which is consistent with results found in the literature (Wächter et al. 2011; Max-

worthy 2007). The spanwise flow is in the direction of decreasing angle-of-attack for

the turbine case, which mirrors that of a wind turbine experiencing a gust event. In

comparison, the reference case exhibited negligible spanwise flow, indicating a nearly

two-dimensional flow.

Similar to the turbine case, the flapping case exhibited increasing spanwise flow

ur within the dynamic stall vortex over the the entire measurement period. The

spanwise flow was in the same direction as the turbine case, moving towards the

tip, due to the pressure gradient induced by rotational accelerations. The spanwise

velocity for both the flapping and turbine cases were within one standard deviation of

one another. Rather, spanwise flow appears to be coupled to the rotational velocity

Ω of the profile instead.

The spanwise-vorticity gradient within the dynamic stall vortex is shown in Figure

4.9. For the turbine case, the gradient is negative (decreasing towards the tip), and

becomes increasingly negative as a function of the convective time. This negative

vorticity gradient is likely due to the negative angle-of-attack gradient along the span
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Figure 4.9: Both the spatially-averaged spanwise flow and vorticity gradient within
the dynamic stall vortex was found to be similar between the turbine and
flapping cases. Please note that the magnitude of the vorticity gradient
is plotted here for comparison purposes, and that the vorticity gradient
is negative in the turbine case. In both rotational cases the spanwise flow
and vorticity gradient both increase as a function of convective time. For
spanwise flow this was on the order of the rotational velocity (Ωr), in
close agreement with literature (Maxworthy 2007). The reference case
exhibited negligible spanwise flow and vorticity gradient. The run-to-run
variation was estimated by the standard deviation of the 10 runs, and is
plotted every 20 frames.

of the blade. Similar to the spanwise flow, the spanwise-vorticity gradient in the

two-dimensional case has a small positive bias over the measurement period.

Due to the opposite sign of angle-of-attack gradient between the turbine and

flapping cases, the spanwise-vorticity gradient was also opposite in sign, being positive

for the flapping case (increasing towards the tip). The magnitude of the spanwise-

vorticity gradient fell within one standard deviation between the two rotational cases.

For both cases the spanwise gradient in vorticity and angle-of-attack were the same

sign.

Finally, the circulation integrated across the entire measurement domain in the

turbine case was greater than that observed for the reference case over the entire
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Figure 4.10: The growth rate of circulation in the turbine case was found to be greater
than that of the reference case. In contrast, the growth rate of circulation
in the flapping case was lower than that of the reference case. The
difference in circulation growth is a result of the relative alignment of
spanwise flow and the spanwise-vorticity gradient between the cases. The
error bars denote the standard deviation of the 10 runs plotted every 20
frames.

measurement period, as shown in Figure 4.10. This indicates that vorticity transport

due to the combination of spanwise flow and a spanwise-vorticity gradient acts to

increase circulation for a rotating blade motion with a gust. The relative orientation

of the spanwise flow and spanwise-vorticity gradient dictates the direction of this

transport. The higher levels of circulation growth indicate that locally, the dynamic-

stall vortex is less stable in the turbine case, and will reach the critical size sooner

than the reference case (Rival et al. 2014).

In contrast to the turbine case, the observed circulation of the flapping case was

lower than the two-dimensional reference case over the entire measurement period.

The decrease in circulation is a function of the relative alignment between the spanwise

flow and spanwise-vorticity gradient generated on the profile. The vorticity gradient

in the flapping case was parallel with the spanwise flow, which, based on Equation
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(4.9), resulted in circulation being transported from areas of low generation to areas

of high generation.

Based on these above results from the turbine and flapping cases, it can be ob-

served that rotors exposed to axial gusts, with increasing angle of attack towards the

root, experience increased circulation. This is in contrast to cases with increasing

angle of attack towards the tip, as in the flapping case, which experiences a decrease

in circulation.

4.6 Conclusions

In this study, the effect of a spanwise angle-of-attack gradient on the growth and

stability of the dynamic stall vortex for rotating systems has been investigated. Three

cases were considered:

1. The turbine case was actuated such that the angle-of-attack magnitude and

spanwise angle-of-attack gradient generated on the test model was equivalent

to that found at the 30% span of a wind-turbine blade experiencing an axial

gust event;

2. The flapping case was actuated such that the spanwise angle-of-attack gradient

was equal in magnitude, and opposite in direction, relative to the spanwise flow

of the turbine case;

3. The two-dimensional reference case was actuated in pure pitch such that it had

an identical angle-of-attack history to the rotational cases over the observed

convective time but with no spanwise gradients or spanwise flow.



4.6. CONCLUSIONS 81

Two major conclusions have been drawn. First, that inducing an angle-of-attack

gradient along the span of a profile results in a corresponding spanwise-vorticity

gradient. Second, that spanwise flow induced from rotational accelerations coupled

with the spanwise-vorticity gradient results in a redistribution of circulation along

the span of the profile, which in turn has an impact on the growth of the LEV.

In the turbine case, the spanwise-vorticity gradient is anti-parallel to the span-

wise flow, resulting in transport of vorticity into the measurement domain, thereby

increasing the circulation observed. Based on the vortex stability criteria found in the

literature, the increase in vortex-growth rate corresponds to a less stable vortex (Ri-

val et al. 2014). Conversely, the flapping case showed transport of vorticity from out

of the measurement domain, reducing circulation. This effect decreased circulation,

indicating increased stability. The decreased vortex stability and increased vortex

circulation in the turbine case describes a situation where transient loads increase in

frequency and magnitude. Therefore, highly transient loads can be mitigated through

modifications in either spanwise flow or spanwise-vorticity gradient, such as through

wing fences or blade twist, respectively, in order to maintain consistent power gener-

ation or thrust production, or even reduce cyclic loading.

Under rotation, spanwise flow is induced within the dynamic stall vortex due the

spanwise pressure gradient generated from rotational accelerations. The redistribu-

tion of circulation through vorticity transport was driven by a combination of this

spanwise flow and the spanwise-vorticity gradient described above. The behaviour of

this circulation transport is described by the spanwise convection term ur
∂ωr

∂r
of the

vorticity transport equation.
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Finally, the Coriolis term of the vorticity transport equation does not affect the

transport of angular momentum directly. Rather, the Coriolis effect is manifested by

inducing a spanwise flow (Lentink et al. 2009). Therefore, we present an equivalent

description of this phenomenon as found in the literature, where the circulation-

transporting effect of spanwise flow is described through the convection of angular

momentum.
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Chapter 5

Coupling Temporal and Spatial Gradient

Information in High-Density Unstructured

Lagrangian Measurements

5.1 Abstract

Particle tracking velocimetry (PTV) produces high-quality temporal information that

is often neglected when computing spatial gradients. A method is presented here to

utilize this temporal information in order to improve the estimation of spatial gradi-

ents for spatially unstructured Lagrangian data sets. Starting with an initial guess,

this method penalizes any gradient estimate where the substantial derivative of vor-

ticity along a pathline is not equal to the local vortex stretching/tilting. Furthermore,

given an initial guess, this method can proceed on an individual pathline without any

further reference to neighbouring pathlines. The equivalence of the substantial deriva-

tive and vortex stretching/tilting is based on the vorticity transport equation, where

viscous diffusion is neglected. By minimizing the residual of the vorticity-transport
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equation, the proposed method is first tested to reduce error and noise on a syn-

thetic Taylor-Green vortex field dissipating in time. Furthermore, when the proposed

method is applied to high-density experimental data collected with ‘Shake-the-Box’

PTV, the spatial coherence of the resulting vorticity field is improved. In the par-

ticular test case investigated here of an accelerating circular plate captured during

a single run, the method acts to delineate the shear layer and vortex core, as well

as resolve the Kelvin-Helmholtz instabilities, which were previously unidentifiable.

The proposed method shows promise for improving PTV measurements that require

robust spatial gradients while retaining the unstructured Lagrangian perspective.

5.2 Introduction

The development of aerodynamic or hydrodynamic systems requires a detailed under-

standing of the relationship between structural features on immersed bodies, such as

profile shape or flexibility, and the resulting vortical flow field. Often these design fea-

tures are used to manipulate highly-separated three-dimensional vortical flows, such

as the unsteady vortex rings investigated by Shadden et al. (2006), similar to those

found in jellyfish propulsion. In particular, it was found that Lagrangian analysis was

much more effective at capturing the flow topology, especially at greater degrees of

unsteadiness. Fully characterizing such flows not only requires determining velocity

gradients familiar to Eulerian analysis, but also the transport of vorticity-containing

mass over time, as shown in Figure 5.1. Particle-tracking velocimetry (PTV) tech-

niques, especially modern high-density methods such as Shake-the-Box (STB, a.k.a.

4D-PTV) described by Schanz et al. (2016), are ideally suited to capturing both the
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required velocity field, as well as the desired Lagrangian flow history. Several tech-

niques exist to determine the velocity gradient, vorticity or pressure at a very high

resolution from dense velocimetry data. These methods include FlowFit (see Gese-

mann et al. (2016)) or VIC+ (see Schneiders and Scarano (2016)). In both VIC+

and FlowFit, physical constraints on the system are used to improve the accuracy

of velocity interpolation, such as through penalizing non-zero divergence in FlowFit.

VIC+ in particular makes use of the vorticity transport equation as a physical con-

straint, and utilizes the high-quality substantial derivative available from PTV. This

follows previous developments for particle image velocimetry (PIV) where physical

constraints were able to leverage high spatial resolution to improve temporal res-

olution. This work is exemplified by Scarano and Moore (2012), where the spatial

resolution of tomographic-PIV was used to estimate advection between velocity snap-

shots to super-sample data beyond the traditional Nyquist criterion. Alternatively,

Jeon et al. (2014) demonstrated the use of high temporal resolution in time-resolved

PIV to improve spatial resolution.

The aerodynamic and hydrodynamic forces of highly-separated vortical flows are

often analyzed with respect to the topology of the flow, for instance with Lagrangian

coherent structures as demonstrated in Rockwood et al. (2016). PTV inherently pro-

vides this Lagrangian perspective on the development of the flow, as was illustrated

above in Figure 5.1. For instance, fluid that passes over a vorticity source like the

leading-edge shear layer in Figure 5.1 can be tracked forward along a pathline to

study the evolution of that mass, in this case into a vortex. Meanwhile, the mass

in this vortex can be tracked backwards in time to identify the source of this vor-

ticity. Additionally, the high-quality substantial derivative determined from PTV
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Control mass gaining 
vorticity at t=t



Control mass 
advected into the 
vortex at t=t



(a) Eulerian frame (b) Lagrangian frame

Figure 5.1: (a) A vortex-pair forming on a flat plate is illustrated in the familiar
Eulerian frame. (b) The same vortex-pair can be studied in a Lagrangian
frame: at t = t1 two control masses gain vorticity through the leading
and trailing-edge shear layers, respectively, and are tracked forward in
time into the vortex core at t = t2. In this way the Lagrangian data can
be used to determine the origin of vorticity-containing mass (by tracking
structures backwards in time), or to study the evolution of mass gaining
vorticity through time (by tracking mass through a shear layer).

dramatically improves the quality of pressure fields derived from the velocity field, as

described by Neeteson and Rival (2015) and Neeteson et al. (2016). Wolf et al. (2013)

also noted that conducting a Lagrangian-frame analysis alongside familiar Eulerian

techniques yielded unique insight into vortex entrainment. However, most available

high-resolution techniques for determining spatial gradients do so on the familiar Eu-

lerian grid, while averaging techniques for Lagrangian data smooth away small-scale

flow structures. Therefore, with the motivation of maintaining the intrinsic transport

information of a pathline, the current study proposes a high-resolution method for

determining derived properties natively on unstructured Lagrangian data, without

resorting to averaging multiple runs.

In order to evaluate the robustness of the proposed methodology, it is applied
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to two test cases: First, a synthetic data set, for which true values of the velocity

gradient tensor are known a priori, is used to verify that the method reduces gradient

estimation error in the process of reducing noise. Second, an experimental 4D-PTV

data set is used to evaluate the increase in fidelity and reduction in noise when the

method is applied to real experimental data. The details of the vorticity-correction

technique are presented next.

5.3 Gradient Optimization Methodology

By directly tracking individual particles, PTV does not experience the loss of fidelity

that occurs when taking the average displacement across an interrogation window, as

described by Kähler et al. (2012). Furthermore, by collecting data along a pathline,

high-quality temporal information is obtained, especially in the form of substantial

derivatives. However, if one wishes to maintain the unstructured Lagrangian descrip-

tion of the flow, there are limited methods for computing spatial gradients. Among

them there are regression-based methods that, for example, minimize the residual of

an overdetermined set of directional derivatives, as discussed by Meyer et al. (2001).

Alternatively, there are weighted-averaging techniques that calculate the gradient as

a weighted-sum of local derivatives, as discussed by Correa et al. (2011).

In either of the above methods, individual outliers or poor spatial resolution can

have a substantial effect on the value of gradients computed at any given point.

The effect of individual outliers is mitigated from the Lagrangian nature of PTV

measurements. Mitigating these effects of poor gradient estimations more generally

can be accomplished by limiting how quickly such gradients can change (Lipschitz

continuity), or by forcing the gradient to exist only within a certain bound (see
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Bunin et al. (2013)). However, applying these constraints aggressively can reduce

the fidelity of the computed gradient, especially if there is little a priori information

about appropriate gradient magnitudes. Therefore, inspired by the use of physical

constraints in the higher-order interpolation of Eulerian velocimetry data, we propose

a method for filtering an initial gradient estimate on unstructured data by enforcing

physical equations of motion. We propose the use of the vorticity-transport equation

as a physical constraint, as it utilizes the high-quality temporal information along

a pathline (the substantial derivative of vorticity). The transport equation is also a

function of every component of the velocity gradient tensor, allowing the optimization

of every component of the tensor simultaneously. The vorticity-transport equation

takes the following form:

D~ω

Dt
= (~ω · ∇)~U + ν∇2~ω , (5.1)

where the terms from left to right are the substantial derivative of vorticity ω, vortex

stretching/tilting, and the viscous diffusion of vorticity, respectively. In this study

we will be neglecting viscous diffusion, under the assumption that the timescales of

viscous diffusion are much greater than that of the measurement given a moderate

Reynolds number. In order to cast Equation (5.1) onto a set of unstructured La-

grangian data, we will introduce nomenclature described in Figure 5.2. Here, N

pathlines are enumerated by the counter p, while each pathline is tabulated in the

vector ~L, such that the number of frames in which a particle is observed is denoted

~L(p). At each timestep along a pathline, the position ~X , velocity ~U and acceleration

~a of each particle are known for i timesteps. We will denote the components of these

vectors with j.

The vorticity-transport equation must have no residual at any point or time, and
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Figure 5.2: A schematic of one of N pathlines acquired within a PTV data set. The
number of timesteps within each pathline are contained within the 1×N
vector array ~L, while the pathlines themselves are enumerated by counter
p. As such, the number of timesteps in which the current pathline is
observed is given by ~L(p). The timesteps along pathline p are enumerated
by the counter i, and at each timestep the three-dimensional position
~X(p, i), velocity ~U(p, i) and acceleration ~a(p, i) have been measured. With

this data set, the velocity-gradient tensor ∇~U(p, i) is to be calculated.

therefore we can estimate the quality of our gradient estimations by looking at the

residual of the equation at any point:

R(p, i) =

3
∑

j=1

(

Dωj(p, i)

Dt
− (~ω(p, i) · ∇)uj(p, i)

)2

. (5.2)

Rather than attempting to minimize this residual at each point individually, the

maximum amount of temporal information can be transferred to the spatial gradient

by minimizing this residual across an entire pathline simultaneously:

O(p) =

~L(p)
∑

i=1

R(p, i) =

~L(p)
∑

i=1

[

3
∑

j=1

(

Dωj(p, i)

Dt
− (~ω(p, i) · ∇)uj(p, i)

)2
]

. (5.3)

As an added practical benefit, this formulation operates pathline by pathline, resulting

in a straightforward implementation. Recently, Schneiders et al. (2016) demonstrated

a novel velocity interpolation technique that utilized full-particle trajectories in order
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to improve the fidelity of velocity field reconstructions at a single snapshot. In par-

ticular, increased information gleaned from long paths showed a clear improvement

in velocity reconstruction fidelity. The current study also benefits from the use of

long track information, as the optimization at any given point relies in part on the

optimization both upstream and downstream of that point along a given pathline.

In this way, a point with a poor initial velocity gradient estimate can benefit from

better initial estimates at neighbouring points along the pathline. At this point we

wish to find the velocity gradient ∇~U(p, i) along the entire pathline the minimizes

O, given our initial guess. There are many ways to perform this optimization, but as

a proof of concept we will use a simple gradient descent method. ∇O is determined

with respect to all elements of ∇~U(p). O is then minimized by iteratively adjusting

each individual element of ∇~U(p) along the direction ∇O by a step α:

∇~U(p)k+1 = ∇~U(p)k − α∇O . (5.4)

The individual components of velocity determined from particle tracking are un-

changed. The above optimization scheme requires an initial estimate of the velocity

gradient tensor to operate on. There are many methods to produce such an initial es-

timate. Here, we follow the method of Meyer et al. (2001), by minimizing the residual

of an overdetermined set of directional derivatives.

The procedural order to implement this gradient optimization method varies

slightly from the conceptual order described above. Given particle tracking data,

implementing the above-described method would take the following order:

1. An initial estimate of the velocity gradient tensor is produced, across the en-

tire set of particles at each timestep, using an established method, such as
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from an overdetermined set of directional derivatives (see: Meyer et al. (2001)),

weighted-averaging technique (see: Correa et al. (2011)), or interpolation.

2. The data set is separated into pathlines, such that each pathline has 9 × ~L(p)

velocity gradient components to be adjusted.

3. These 9× ~L(p) velocity gradient components are evaluated based on the objec-

tive function in Equation (5.3).

4. The gradient of this objective function is determined by making small adjust-

ments to the 9× ~L(p) velocity gradient components.

5. New values of the velocity gradient components are determined using a steep-

est descent optimization following Equation (5.4) until a local optimum of the

objective function is found.

It is worth noting that, given an initial estimate is available, this optimization can be

performed on any track individually without any reference to other particle tracks.

In the following section, the above methodology will be evaluated on a synthetic

set of pathlines in order to have access to “true” reference values, and evaluate error

reduction. Following this evaluation, the methodology will be implemented on ex-

perimental data to both evaluate noise reduction on real data, and to demonstrate

Lagrangian analysis.

5.4 Numerical Test Case: Dissipating Taylor-Green Vortex

Since a physical measurement would not provide any insight into error reduction for

the proposed methodology, the initial evaluation presented here utilizes a synthetic
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data set. A dissipating Taylor-Green vortex field in three dimensions is used for our

test case (see Taylor and Green (1937)). The data set for the Eulerian field was

generated using a pseudo-spectral code whose formulation and validation is briefly

described below. Simulated particles that perfectly follow the flow were advected

through this domain, and synthetic noise was added to the particle positions to simu-

late measurement error. Using the mean frame-to-frame displacement as a reference

value, uniform random displacements of between 0% and 3% were applied to each

particle. This is comparable to the reconstruction quality of experimental techniques

such as SMART (0.2px error over 6px frame-to-frame displacement; see Schanz et

al. (2016)). The error was subsequently evaluated both before and after applying

the proposed methodology. The results for this synthetic test case described below,

following a brief description of the computational method.

5.4.1 Computational Methodology

For the dissipating Taylor-Green vortex, the following incompressible form of conti-

nuity and momentum equations are solved:

∂ui

∂xi

= 0 (5.5)

∂ui

∂t
+

∂(uiuj)

∂xj

= − ∂p

∂xi

+
1

Rec

∂2ui

∂xj∂xj

(5.6)

where u1, u2, u3 are the velocity components in the x1, x2, x3 directions, respectively.

Note that the equations have become non-dimensionalized by a characteristic length-

scale Lc and velocity-scale Uc. Thus, the Reynolds number that appears in the viscous

term is defined as Rec = UcLc/ν, where ν is the kinematic viscosity of the fluid.
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Equations (5.5) and (5.6) are solved in spectral (Fourier) space using a pseudo-

spectral method (see Orszag (1969) and Orszag (1972)). To remove the aliasing error,

the 3/2 rule proposed by Orszag (1971) was adopted. Periodic boundary conditions

are applied in all three directions with a domain size of 2π× 2π× 2π. The governing

equations are integrated in time using fractional step method (see Kim and Moin

(1985)) with a second-order, three-step Runge-Kutta time-advancement scheme.

The three-dimensional dissipating Taylor-Green vortex is initialized following Canuto

et al. (2007). The simulation was carried out at Rec = 100 for which reference data

was available from Brachet et al. (1983) and Canuto et al. (2007). The equations

were integrated from t = 0 to t = 16 with grid resolution of 32 × 32 × 32. This

resolution was found to be appropriate for such a low Reynolds number flow based on

a grid-convergence study and the above works in literature. Our data set is compared

qualitatively and quantitatively against literature in Figures 5.3 and 5.4. Iso-surfaces

of u−component of velocity are shown in Figure 5.3 for the current simulation and

those of Brachet et al. (1983). Figure 5.3 (left) is the initial condition. Figure 5.3

(middle) is the current simulation at t = 5.0, which is the same as the results of

Brachet et al. (1983), presented in Figure 5.3 (right). In addition to this qualitative

comparison, the dissipation rate, ε = ν
〈

∂ui

∂xj

∂ui

∂xj

〉

(where 〈...〉 indicates volume aver-

aging), is also compared with literature and is shown in Figure 5.4. The result of the

current simulation is in very good agreement with that of Brachet et al. (1983).
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Figure 5.3: Iso-surfaces of u−component of velocity with levels 0.25 (yellow) and -
0.25 (blue) at Rec = 100. Left: initial flow field at t = 0. Middle: current
simulation at t = 5.0. Right: Brachet et al. (1983) at t = 5.0.
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Figure 5.4: Dissipation rate for Taylor-Green vortex at Rec = 100. Current study
(solid); Brachet et al. (1983) (dashed).

5.4.2 Results: Proposed Method Operating on the Dissipating Taylor-

Green Vortex

Figure 5.5 shows snapshots of particles coloured by the root-mean-square (RMS)

error of velocity-gradient components both before and after the vorticity-correction

method was applied for high and low seeding densities. Here, the RMS error is

computed across the individual elements of the velocity gradient tensor, instead of an

ensemble of measurements:

Error =

√

√

√

√

1

9

3
∑

i=1

3
∑

j=1

∂iu
2
j . (5.7)
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The before image is of the initial velocity gradient estimate produced utilizing the

method of Meyer et al. (2001). The snapshots are taken at t = 5, or approximately

1.5 convective times through the simulation. The RMS error of the velocity gradients

range up to approximately 3% before correction, as expected given the magnitude

of noise applied to the advected particles. Error is dramatically reduced by the

vorticity-correction method throughout the domain for both seeding densities shown.

These observations can be seen more clearly in the supplementary videos “Supplemen-

tary Video 5-1.mp4” and “Supplementary Video 5-2.mp4” This reduction in error

was achieved at relatively low computational cost, with MATLAB-based implemen-

tation on a desktop-class computer optimizing approximately 25-100 pathlines per

second, depending on seeding density.

In addition to the error shown in Figure 5.5, the vorticity field can also illus-

trate how the vorticity correction method is applied. Figure 5.6 shows the vorticity-

magnitude sampled on a plane one half-wavelength from the centre of the compu-

tational domain (z = π/2). The time-step of this sample was chosen to be early in

the simulation such that there were still large structures to identify, and the high-

est seeding density was used here. This vorticity field is shown interpolated onto

an Eulerian grid as a contour plot. While the vorticity correction method does not

recover the true gradients exactly, the alternating pattern of vorticity magnitude into

nearly-circular structures is much more evident after correction than before.

Four seeding densities were evaluated following the same methodology. The av-

erage error was determined at each seeding density through the arithmetic average

of RMS errors across the entire spatial and temporal domain, shown in Figure 5.7.

The initial cases, indicated with crosses, are the initial gradient estimates used as an
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Figure 5.5: Particles were advected through the dissipating Taylor-Green vortex field
with some artificial noise, and the resulting tracks were processed as if
they were PTV data. The resulting RMS error in velocity-gradient com-
ponents is shown for t = 5. The upper row shows a high particle-density
case before (left) and after (right) the vorticity correction scheme was ap-
plied. The scatter plots on the second row shows a intermediate particle-
density case. In both cases, the vorticity correction scheme shows a dra-
matic reduction in RMS error. For each seeding density, the side-by-side
comparison before and after correction can be viewed as a time sequence
in the supplementary videos “Supplementary Video 5-1.mp4” and “Sup-
plementary Video 5-2.mp4”
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Figure 5.6: Vorticity magnitude is shown here for the plane z = π/2 for the high
particle-density case. While the recovery if the vorticity pattern is not
perfect, the alternating circular pattern is much more evident after the
correction scheme is applied.

input for the gradient optimization. While higher seeding densities presented lower

error both before and after correction, the vorticity-correction methodology reduced

mean error across all cases, with a maximum reduction in error of approximately 40%.

It is speculated that the variation in converged error values with respect to seeding

density is due to the simple gradient descent method uses here, which is only capable

of determining local optima. As such, in its current implementation this gradient

optimization technique is dependent on initial conditions. However, the larger error

reduction (as a fraction of the initial error) observed at a particle count of 6000 is not

expected to be an artefact of the random initialization as the particle positions were

all confirmed to be uniform at their initialization. Moreover, this case still represents

approximately 107 individual gradient estimations, reducing the likelihood of random

error. Figure 5.7 also shows the reduction in the objective function O as expressed

in Equation (5.3), as a function of iteration. The function quickly converges upon its

final value within five to ten iterations, with an overall reduction of approximately
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Figure 5.7: The per-particle RMS error averaged across the whole computational do-
main for four different seeding densities. The vorticity-correction method
reduced error across all seeding densities (left). The highest and second-
lowest seeding densities in this Figure are those shown in Figure 5.5 as
high-density and intermediate-density, respectively. The reduction in the
objective function is also shown here, as a function of iteration (right).

60% versus the initial value of the function.

5.5 Experimental Test Case: Starting Vortex on an Accelerating Circular

Plate

Given the reduction of error produced by the vorticity-correction method on synthetic

data, as demonstrated in Figure 5.5, we will now apply the method to experimental

data derived from a single image sequence. The test case consists of the vortex wake

behind a circular flat plate towed at a constant acceleration. The experimental setup

is explained below.

5.5.1 Experimental Apparatus and Image-Processing Methodology

To test the gradient-evaluation method presented in Section 5.3, 4D-PTV (also known

as Shake-the-Box ) data was collected along the leeward side of a linearly accelerating
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Figure 5.8: Schematic of the experimental apparatus: (a) A D = 30cm circular plate
was accelerated at at a non-dimensional rate of a∗ = aD3/ν2 = 1.1×1010

through a 15m-long, 1m × 1m square cross-section optical towing tank;
(b) Particles were illuminated with a 40mJ per-pulse laser and captured
using four Photron SA-4 cameras.

circular plate. A schematic of the experimental apparatus is shown in Figure 5.8. The

experiments was performed in the 15m-long, 1m × 1m cross-section optical towing

tank at Queen’s University. Three-sided optical access is provided from the two side-

walls and the bottom of the towing tank. An impulsively started circular plate of

diameter D = 30cm was accelerated normal to its path at a dimensionless acceleration

of a∗ = aD3/ν2 = 1.07 × 1010, where a and ν represent dimensional acceleration

and kinematic viscosity, respectively. The motion was achieved by a rack-and-pinion

traverse above the towing tank. The sting holding the circular plate was 2D long,

with a circular profile and a diameter of 0.1D, attaching to the plate on its suction

side. The blockage ratio of the experiment is 7%. The sting assembly and optical

setup are shown in Figure 5.8(b). Further documentation on this experiment can be

found in Fernando and Rival (2016).

55µm polymer spheres were seeded in the flow to serve as tracer particles. The
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Stokes number of the particles was approximately 3 × 10−3, which ensured tracer-

accuracy errors of < 1% (see Raffel et al. (2007)). The tracers were illuminated

by a 527nm, 40mJ-per-pulse laser expanded into a 10 × 10 × 0.3cm3 volume. Four

Photron SA4 high-speed cameras captured images of the tracers within this volume

at a frame rate of 900Hz. To minimize image distortions, water-filled prisms were

fixed onto the glass pane of the tank such that all cameras were orthogonal to a

prism face. The acquired images were then processed in DaVis 8.3.0 and using a

4D-PTV tracking algorithm; see Schanz et al. (2016) for details. Measurements were

performed over a diameters-traveled domain of 0.1 ≤ s/D ≤ 0.28, which corresponds

to circulation-based Reynolds numbers between 9×103 ≤ ReΓ ≤ 43×103. Finally, the

4D-PTV pathlines were then extended forwards and backwards beyond their original

lifespan via a pathline-extension method inspired by flow-map compilation techniques

described in Brunton and Rowley (2010) and Raben et al. (2014).

5.5.2 High-Fidelity Measurements of the Starting Vortex Growth

As direct estimates for gradient errors are no longer accessible, an instantaneous snap-

shot of the vorticity field is instead presented in Figure 5.9 to demonstrate the increase

in fidelity offered by the proposed vorticity-correction method. As in the numerical

test case, the before image is of the initial velocity gradient estimate produced utiliz-

ing the method of Meyer et al. (2001). The noise of the starting vortex is dramatically

reduced, allowing for the identification of structures not previously obvious, such as

individual Kelvin-Helmholtz instabilities in the shear layer. These structures would

also be obscured by ensemble-averaging, such that the ability to correct individual

runs is critical. This noise reduction is more clearly shown in the supplementary video
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Figure 5.9: An instantaneous snapshot of the vorticity field captured from a single im-
age sequence is shown here (a) before and (b) after vorticity-correction on
flow-compiled PTV data. The correction scheme allows for the identifica-
tion of individual instabilities in the shear layer, and the clear identifica-
tion of the vortex core. This side-by-side comparison is available as a time
sequence in the supplementary video “Supplementary Video 5-3.mp4”

“Supplementary Video 5-3.mp4”. The concentric circular vorticity levels also clearly

identify the vortex core in the corrected vorticity field. Although the vorticity scale

is saturated in Figure 8(a), it is worth noting that the small-scale structures remain

obscured at all scaling levels. Furthermore, it should be noted that the vorticity cor-

rection method will often increase velocity gradient magnitudes, and does not simply

smooth the gradient values. The computational cost of the proposed methodology

did not significantly increase for the experimental data relative to the synthetic data,

correcting pathlines on the order of 10 per second on a desktop-class computer.

In order to give a rough estimate of both the computational cost and the reduction

in the objective function, the objective function O as expressed in Equation (5.3) is

shown in Figure 5.10. Despite the simple optimization method used in this study,

the residual of most pathlines converged on its final value after five to ten iterations.
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Figure 5.10: The magnitude of the objective function along an individual pathline is
shown here as a function of iteration to visualize both the noise reduc-
tion observed and the computational speed. The 40% reduction in the
objective is similar to the 40% reduction in error observed in synthetic
data.

However, it is worth noting that in the absence of an objective true value with which

to compare to, no quantitative treatment of error reduction can be given here. The

convergence on a local minimum, as opposed to zero, was seen as acceptable in order

to avoid gradient estimations tending towards zero.

We can demonstrate the utility of this high-fidelity result in Figure 5.11. Here, we

are now able to accurately identify key features in the flow due to the smooth, well-

resolved vorticity field. Having identified a flow feature, the mass in that structure

can then be tracked backwards in time along pathlines back to its source, as shown

on the right in Figure 5.11. Pathlines are coloured by time overlayed on a snapshot

of vorticity from the later-most timestep of the dataset. In this way, we are able to

identify where vorticity-containing mass originated. Alternatively, the left of Figure

5.11 shows pathlines tracked forwards in time from a vorticity source. This forward

and backward tracking together define the relationship between the resulting flow

topology and vorticity source.
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Figure 5.11: Utilizing the pathline information can elucidate material transport
within a flow. For instance, on the left (a) particles are tracked forward
in time from the shear layer to a later time-step, shown here overlayed
on the vorticity field at that later time-step. This shows the advec-
tion of material from a vorticity source. Alternatively, particles can be
tracked from the vortex core backwards in time, shown in the right (b),
to identify the origin of that vorticity-containing mass.

5.6 Conclusions

The purpose of this study was to improve the estimation of spatial gradients on un-

structured Lagrangian data without discarding any pathline information. Such robust

gradient estimation can improve the understanding of vorticity transport through a

flow for the purposes of aerodynamic or hydrodynamic optimization or flow control.

Therefore, we proposed a gradient correction scheme based on the knowledge that

the substantial derivative of vorticity through a flow must equal the vortex stretch-

ing/tilting through that flow. This constraint was realized by minimizing the residual

of the vorticity-transport equation across all points of an individual pathline simul-

taneously.

The proposed method has been implemented on both synthetic and experimental

data consisting of a decaying Taylor-Green vortex field and an accelerating circular
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plate, respectively. In the synthetic case, mean errors were shown to be consistently

reduced by the proposed vorticity-correction method across all seeding densities, by

up to 40%. However, as the method shown here is locally optimizing, the error reduc-

tion achieved is dependent on the spatial resolution of the initial gradient estimate.

Meanwhile, the application of the proposed method to experimental data reduced the

vorticity-transport residual by approximately 40%. The proposed method also pro-

vided access to small-scale flow structures such as the Kelvin-Helmholtz instabilities

that were otherwise obscured. This retention of Lagrangian data was demonstrated

with the direct investigation of material transport within a starting vortex. Small-

scale flow structures could be identified in the post-processed data that were other-

wise unavailable to the raw gradient outputs. By identifying those flow structures one

could then track the vorticity-containing mass back to its origin. This experimental

case demonstrates the value of retaining Lagrangian data for aerodynamic or hydro-

dynamic optimization, which could eventually lead to new insights when studying

complex, vortical flows.
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Chapter 6

Modelling Circulation Redistribution in

Leading-Edge Vortices with Spanwise Flow

6.1 Abstract

A model for the spanwise transport of circulation within a leading-edge vortex (LEV)

is proposed and validated, based on one-dimensional species advection. The model is

composed of two parts: first, a shear layer model predicts the circulation feeding rate

into the LEV; and second, a spanwise transport model initializes vorticity-containing

mass with a finite circulation, allowing mass to advect along the span with the span-

wise flow. No empirical data is necessary to inform the results of the model. Both

components of the proposed model are validated separately, using a flat-plate delta

wing as a test case. Utilizing high-speed particle image velocimetry (PIV) to measure

the shear-layer velocity, the proposed shear layer model is found to predict circulation

flux into the LEV. Four-dimensional particle tracking velocimetry (4D-PTV) is used

to validate the spanwise transport of circulation. By allowing vorticity-containing

mass to advect along the span with the spanwise flow, it is found that the model

automatically satisfies the vorticity transport equation, when vortex tilting and the
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viscous diffusion of vorticity are neglected. The magnitude of the neglected vorticity

transport terms is approximately 10% that of spanwise circulation advection, such

that these terms do not significantly affect the outcome of the model. Thus, the pro-

posed model represents a computationally inexpensive tool for predicting circulation

redistribution in an unsteady, three-dimensional LEV.

6.2 Introduction

The rapid flapping motion of an insect wing produces a strong and compact leading-

edge vortex (LEV), as identified by Ellington et al. (1996). Such structures are also

found in fish and bird locomotion (see Videler et al. (2004), Borazjani and Daghooghi

(2013)), and either their engineering analogues of autonomous underwater vehicles

(AUVs) and micro-aerial vehicles (MAVs), respectively. While the investigation of

the LEV in relation to biological locomotion has received significant attention only

since the mid-1990s following Ellington et al. (1996), similar LEVs have been of

engineering interest on delta wings for decades, as exemplified by Polhamus (1966).

In each of these aforementioned cases, the LEV develops in the pattern illustrated by

Figure 6.1: vorticity formed in a leading-edge shear layer is fed into the vortex, and

if spanwise flow exists, that vorticity may be advected along the leading-edge in the

outboard direction.

An LEV that forms on a nominally two-dimensional profile with no spanwise flow

will always eventually detach and convect downstream (see Rival et al. (2014)). For

such a case, the development of an LEV on a pitching or heaving profile is influenced

by a small number of parameters, as identified by Rival et al. (2009), Baik et al. (2012),

Widmann and Tropea (2015), and Wong and Rival (2015). In particular, the Strouhal
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Figure 6.1: The LEV formed on the suction side of a delta wing is fed by a leading-
edge shear layer. In order fo this LEV to remain stationary, the vorticity-
containing mass fed into the LEV must be balanced by spanwise transport
of vorticity-containing mass or vorticity annihilation. ξ is the coordinate
along the shear layer.

number St determines force generation, while the reduced frequency k dominates the

flow topology and the eventual detachment of the LEV. In turn, when the circulation

of an LEV is normalized by its feeding shear-layer velocity, Onoue and Breuer (2016)

found that circulation was not affected by reduced frequency. A very large reduced

frequency k represents a very fast motion compared to the development time of the

LEV, and subsequently the LEV never grows large enough to detach over the course

of the cycle. Several very powerful methods exist for predicting the development

of the LEV in two-dimensional cases for arbitrary motions, especially using discrete

vortex methods such as those exemplified by Ramesh et al. (2014) and Hemati et al.

(2014). However, these two-dimensional cases represent only a small subset of the

LEVs that are observed in engineering practice.

A canonical three-dimensional LEV is that of a delta wing, as shown in Figure

6.1. This LEV would rapidly saturate and detach if vorticity-containing mass was not

advected away along the span of the profile. This same physics governs LEV formation

in biological and bio-inspired swimmers and flyers, where leading-edge curvature is
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used to manipulate circulation and mass transport, as shown by Hartloper and Rival

(2013). For instance, Hartloper and Rival (2013) noted similar lunate tail fins in

several species of swimmers, while Videler et al. (2004) observed that the pronounced

leading-edge curvature of common swifts was utilized to form a stable LEV. Both the

spanwise advection of vorticity and the annihilation of vorticity are critical circulation

regulating mechanisms, as shown by Wong and Rival (2015) and Eslam Panah et al.

(2015), respectively. The spanwise advection of vorticity is especially difficult to

account for, as most models for LEV growth are explicitly two-dimensional, such as

the strip-theory approach used in Jain et al. (2015). Therefore, the current study

provides a design tool appropriate for both engineering practice and in the study

of biologically-inspired flows, by explicitly accounting for this spanwise circulation

transport.

The proposed design tool is a computationally-inexpensive model for LEV growth

in the presence of spanwise flow. This model is derived in the following section, based

on a Monte Carlo simulation of the advection of vorticity-containing mass along the

span of a profile. In order to validate this model, a canonical LEV is produced

experimentally utilizing a non-slender flat-plate delta wing, as described in Section

6.4. However it should be noted that this model is also applicable to biological and

bio-inspired flows. The resulting LEV is investigated in Section 6.5 utilizing high-

speed particle image velocimetry (PIV) to validate estimates for circulation entering

the LEV, while four-dimensional particle tracking velocimetry (4D-PTV) is used to

resolve the distribution of circulation along the span, and thus validate the spanwise

advection model.
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6.3 A One-Dimensional Monte-Carlo Simulation of Circulation Transport

Previous modelling efforts have either suffered from limited three-dimensional infor-

mation, or a dependence on empirical data, such as shear-layer thickness or velocity,

as in the case of Wong et al. (2013a). The proposed model attempts to solve these lim-

itations by treating circulation transport in the same way as other species transport

phenomena, where circulation follows the flow of mass through the domain. Such a

model requires the assumptions of limited vortex tilting and rapid advection relative

to the diffusion of vorticity. While vortex stretching can be included in this model, it

does not affect the outcome as vortex stretching is a circulation-conserving process.

This model can be divided into two parts: the feeding of circulation through a shear

layer; and the subsequent transport of that circulation along the span of a profile.

These two parts are each discussed in the following sections.

6.3.1 Shear-Layer Feeding

Wong and Rival (2015) give the feeding of a vortex as:

∂Γ

∂t
∝ u2

eff , (6.1)

where ueff is the effective velocity of the profile. The constant of proportionality

depends on the shape of the velocity profile in the shear layer. More precisely, this

expression for shear-layer feeding can be expanded as:

∂Γ

∂t
=

∂Γ

∂m′

∂m′

∂t
, (6.2)
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where m′ is the mass per unit span at a location of interest. Following the diagram of

the shear layer in Figure 6.2, the circulation about the shear layer is Γ = uol, where

uo is the outer shear-layer velocity. Meanwhile, the mass inside the shear layer (per

unit span) is ρdl. Thus, we can insert specific values into Equation (6.2) so as to

obtain:

∂Γ

∂m′

∂m′

∂t
=

(

uol

ρdl

)

(

1
2
(uo + ui)ρd

)

= 1
2
(u2

o + uoui) , (6.3)

where ui is the inner shear-layer velocity and can be assumed to be zero. Setting

ui = 0 gives a circulation feeding rate of:

∂Γ

∂t
= 1

2
u2
o , (6.4)

which is similar to the feeding rate for vortex rings determined in the literature,

such as in Didden (1979). Therefore, we need only to compute the outer shear-layer

velocity in order to estimate the flux of vorticity into the LEV.

Roshko (1954) gives the velocity of a shear layer as a function of the base pressure

coefficient Cps, which is the pressure coefficient in the separated region of a obstacle

in the flow:

uo = U∞

√

1− Cps , (6.5)

and thus the challenge is to determine a reasonable estimate for the base pressure

coefficient. A general solution for the pressure difference across a stalled flat plate

would constitute a solution to the unsteady lift problem, and thus such a value is

unavailable. However, we can consider the solution for a normal flat plate as a worst-

case scenario in order to determine the importance of the parameter. In order to

determine the sensitivity of the shear-layer velocity on the base pressure coefficient,
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Figure 6.2: The vorticity entering the leading-edge vortex can be determined by inte-
grating around a shear layer of length l and thickness d. Although these
values are important for intermediate steps, all geometric constraints ul-
timately cancel out in the derivation. ξ is the coordinate along the shear
layer.

we can determine a first-approximation of the base-pressure coefficient from a well-

known drag coefficient. Using the established drag coefficient of CD = 1.3 for low-

aspect ratio normal flat plates (see White (1999)), a base pressure can be estimated

by assuming a uniform pressure difference between the upstream and downstream

surfaces of the plate. This results in a shear-layer velocity approximately 10% greater

than the free-stream. Therefore, we will neglect this acceleration in the remainder of

the study. It should be noted that for any dynamic motion, for instance in biological

or bio-inspired profile motions, Kriegseis et al. (2013) showed that the appropriate

scaling velocity for the shear layer is the effective velocity ueff , and not the free-stream

velocity U∞. This allows for the extension of the above model to include unsteady

biological and bio-inspired locomotion modes, in addition to delta wings and rotating

machinery.
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Figure 6.3: In the proposed model, particles representing vorticity-containing mass
are initialized randomly along the span of the profile at every timestep. As
the local circulation generated at any timestep is ∆tu2

eff , this circulation
is divided equally among all the particles within a spanwise bin.

6.3.2 Spanwise Circulation Transport

The assumption that circulation follows the mass in the flow is valid for flows with

small vortex tilting and higher Reynolds numbers where viscous diffusion is small

relative to convection. While this dramatically simplifies the analysis of circulation

transport, it still requires the computation of mass transport within the flow. Estimat-

ing mass transport explicitly would require empirical values such as the shear-layer

thickness, which should ideally be avoided. A solution to this problem is proposed

here, where mass is treated implicitly in a Monte Carlo simulation.

At each timestep, particles are initialized randomly in a continuous uniform dis-

tribution along the spanwise domain of the profile, as shown in Figure 6.3. This

spanwise domain is discretized into i bins, each representing one spanwise slice that

is treated locally as two-dimensional. The circulation generated at that spanwise

slice ∆Γ = u2
o∆t is divided equally among all the particles in that domain, where this

shear-layer velocity may vary along the span for rotating or flapping profiles. Thus,

every particle is initialized with the circulation:

Γk =
1

N
u2
o∆t . (6.6)
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In the current study, the shear-layer velocity uo is uniform, but for flapping or rotating

profiles it may vary as a function of span. These particles are assumed to always

retain their initial circulation, for the duration of the simulation. This assumption

is equivalent to assuming that circulation transport is dominated by advection, such

that circulation follows regular species transport.

Spanwise flow is accounted for by advecting these particles through the domain at

the spanwise velocity, as shown in Figure 6.4. As these particles represent vorticity-

containing mass, their velocity is exactly the spanwise flow by definition. Thus, at

each timestep j, the circulation for a spanwise location zi is the sum of the elemental

circulation of all the particles generated at that location and time-step, plus the

circulation of particles initialized at prior timesteps that advected to that spanwise

location:

Γ(zi) =

N
∑

k=1

Γk . (6.7)

As an example, consider the delta wing of sweep angle Λ = 45◦ travelling at

a constant velocity U∞. If we assume that the spanwise flow is equal to half of

the component of the free-stream velocity aligned with the span, the spanwise flow

will be w = U∞/(2
√
2). The factor of 1/2 is a first-approximation of the no-slip

condition at the surface of the profile. The resulting spatially- and temporally-resolved

circulation distribution is shown in Figure 6.5, normalized for a chord of c. As one

would expect, the circulation distribution rapidly approaches a steady value, with a

linearly increasing circulation towards the profile tip.

By integrating the vorticity transport equation, Wong and Rival (2015) gives the
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the span of the profile by the spanwise flow w. Each spanwise location
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Figure 6.5: The time- and spanwise-resolved solution to the vortex growth on a delta
wing converges upon a conical circulation distribution. This conical circu-
lation distribution satisfies the vorticity transport equation when diffusion
and vortex tilting are neglected.



6.4. EXPERIMENTAL METHODS 115

circulation advection out of the vortex as:

∂Γ

∂t
= w

∂Γ

∂z
. (6.8)

When computing the circulation gradient ∂Γ/∂z, we find that it satisfies the relation-

ship:

∂Γ

∂z
=

1
2
u2
o

w
, (6.9)

meaning that all of the circulation that enters the vortex is being advected along the

span. In this way, the Monte Carlo simulation is satisfying the vorticity transport

equation simply by advecting circulation along the span with spanwise flow. The

model presented above is validated with the experiments described in the following

section.

6.4 Experimental Methods

A non-slender, flat-plate delta wing with sweep angle Λ = 45◦ is used here as a canon-

ical test case, as it exhibits a strong, stationary LEV that can be easily characterized

by optical measurements. Although the LEV in this case is a stationary vortex with

a uniform shear-layer feeding, the proposed Monte Carlo method is capable of re-

solving time-varying cases with non-uniform feeding, such as rotating and flapping

wings. This delta wing is investigated in the 15m-long optical towing tank at Queen’s

University, as shown in Figure 6.6. The towing tank has a 1 × 1 m2 cross-section,

with optical access through both side walls and the floor, while the partially-enclosed

roof section mitigates surface waves. A high-speed rack-and-pinion traverse was used

to tow the delta wing, which was mounted to a sting via the pressure-side of the
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Figure 6.6: A rack-and-pinion traverse is used to tow a flat-plate delta wing at a
Reynolds number of Re =250,000. The wing was mounted to a sting by
its pressure-side, which extended up 0.5 m to the high-speed traverse.

profile. A geometric angle-of-attack of αgeo = 20◦ is utilized for all measurements,

and the delta wing is towed at a velocity of U∞ = 0.833m/s, corresponding to a

Reynolds number of Re =250,000. The resulting flow-fields are captured with two

different measurement techniques in order to characterize the small-scale shear layer

and large-scale circulation transport, described in the two following sections, respec-

tively.

6.4.1 High-Speed Shear-Layer Measurements

In order to test the shear-layer feeding model, high-speed planar particle image ve-

locimetry (2D-PIV) measurements are conducted over a small field-of-view, as shown

in Figure 6.7. This field-of-view is approximately 30 × 30 mm2, illuminated with a

527 nm Photonics Industries 40 mJ-per pulse Nd:YLF laser. This field of view is

placed at the half-span location, half way between the apex of the delta wing and the

wing tip. The laser is used to illuminate 100 µm hollow glass micro-spheres seeded

into the flow, which are tracked with a Photron SA-Z high-speed camera operating

at 10,000 Hz at a resolution of 1024× 1024 px2. Relatively large 64 px interrogation
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Figure 6.7: The shear layer on a flat-plate delta wing is captured using time-resolved
PIV. 100µm hollow glass microspheres were illuminated with a 40mJ
per-pulse high-speed laser and captured using a Photron SA-Z camera at
10,000 Hz. The field of view on the suction side (bottom) is approxi-
mately 30×30 mm2.

windows are used for PIV processing in order to compensate for the small field of

view, and an adaptive weighting scheme is applied to compensate for the high shear

expected in the leading-edge shear layer. A single run of data was used to produce the

shear-layer measurements. However, data from 200 adjacent frames were cast into

the plate-fixed coordinate frame and averaged in order to produce the final vector

field. The PIV algorithm is implemented in LaVision Davis 8.2.0.

6.4.2 Spanwise-Resolved Circulation advection Measurements

Four-dimensional particle tracking velocimetry (4D-PTV), as described by Schanz

et al. (2016), is used to capture the integral properties of the vortex above the flat-

plate delta wing. The volumetric, time-resolved data is necessary in order to measure

gradients of circulation along the span. The measurement system is illustrated in

Figure 6.8. 100 µm hollow glass micro-spheres are seeded into the flow and illuminated

with the same 40 mJ-per pulse laser as in the 2D-PIV measurements. The laser
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Figure 6.8: Volumetric, time-resolved 4D-PTV measurements were used to charac-
terize the velocity gradient tensor, in order to validate the Monte Carlo
simulation described in Section 6.3. 100µm hollow glass microspheres
were illuminated with a 40mJ per-pulse high-speed laser and captured
using four Photron SA-4 cameras at 1,500 Hz. The field of view as ap-
proximately 120×120×10 mm3, located on the suction side (bottom) of
the model.

is expanded to a much larger control volume than for the 2D-PIV measurements,

measuring 120 × 120 × 10 mm3, once again at the half-span. Particle images are

then captured with four Photron SA-4 high-speed cameras, operated at 1500 Hz at a

resolution of 1024× 1024 px2. Once again, a single run was used to characterize the

vorticity transport within the domain, where data from 50 adjacent frames were cast

into the plate-fixed coordinate frame and averaged in order to produce the final vector

field. The 4D-PTV algorithm used in this study is implemented in LaVision Davis

8.3.0 software. 4D-PTV has been shown to have a triangulation error of approximately

half that of tomographic-PIV, with triangulation errors of 0.1 px being typical in the

current study.
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6.5 Results and Discussion

The measurements of the flat-plate delta wing are used here to validate the Monte

Carlo simulation. First, the small-scale shear-layer measurements will be used as

reference, followed by the large-scale circulation transport and spanwise flow.

6.5.1 Shear-layer flux

The small-scale PIV measurements are shown in Figure 6.9 for both the velocity

and vorticity fields. After re-casting the velocity field into the plate-fixed frame of

reference, the vectors were then averaged in time in order to improve the signal-to-

noise ratio. The shear layer is sampled in order to measure the circulation feeding

into the LEV. The black lines shown in Figure 6.9 (a) are used to sample the effective

velocity ueff/U∞ following the method of Wong and Rival (2015), which is used in the

Monte Carlo simulations. Meanwhile, the black lines in Figure 6.9 (b) are used to

sample uxωz following the method of Wojcik and Buchholz (2014) in order to produce

the reference circulation feeding values. Multiple samples were utilized in order to

investigate the sensitivity of the shear-layer measurements to the chosen sampling

position.

The sampled shear-layer velocities ueff/U∞ are shown in Figure 6.10 (a), while the

vorticity fluxes uxωz are shown in Figure 6.10 (b). While velocity profiles are insensi-

tive to sampling position within the shear layer, it can be seen that the vorticity-flux

profile varies with the sampling location, based on the inclination of the shear layer.

However, the integral of the vorticity flux is insensitive to the sampling location, as

the vorticity layer is merely translated up as you progress in the streamwise direction.

Integral vorticity flux values were ∂Γ/∂t = 0.43, 0.42, and 0.38 at the three sampled
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Figure 6.9: The shear-layer feeding rate can be characterized in one of two ways: (a)
the rate of circulation feeding is proportional to the square of the effective
velocity u2

eff following Equation (6.4), or; (b) the rate of circulation feeding
is the integral of the product of chordwise-velocity and vorticity following
Equation (6.11). While the first method avoids any empirical dependence
on the shear-layer thickness, its accuracy must be validated.

locations from upstream to downstream locations, respectively. The modelled outer

shear-layer velocity, assuming Cps = 0, is slightly lower than the measured value

of ueff/U∞ = 1.27. As the worst-case scenario, shear-layer acceleration discussed

in Section 6.3.1 for a normal flat plate exhibited similar velocities to that observed

here. Therefore, the observed shear-layer velocities suggest limited sensitivity to the

geometric angle-of-attack αgeo. However, the measured inner shear-layer velocity of

ui ≈ 0 confirms the assumption used in Section 6.3 of a negligible inner velocity. This

modelled velocity gave a shear-layer feeding of:

∂Γ

∂t
=

1

2
u2
eff = 0.383 m2

s2
. (6.10)

Meanwhile, the measured vorticity flux following the method of Wojcik and Buchholz
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Figure 6.10: The velocity profiles sampled in Figure 6.9 are shown here as a function
of the shear-layer coordinate ξ. The velocity profile ueff and the vorticity
flux uxωz produce nearly identical circulation feeding rates.

(2014) gave a very similar value:

∂Γ

∂t
=

∫ d

0

uxωz dξ = 0.431 m2

s2
, (6.11)

where ξ is the shear-layer coordinate. These results validate that the shear-layer

feeding model predicts circulation feeding to within approximately 10 %. This model

avoids the explicit use of the shear-layer thickness, eliminating the empiricism required

for a shear-layer feeding estimates. With this model validated, the spanwise flow and

integral circulation will be analysed in the following section.

6.5.2 Spanwise Flow and Circulation Redistribution

In order to compute integral circulation transport properties, 4D-PTV data is re-cast

into a plate-fixed frame of reference. That 4D-PTV data is visualized in the z-vorticity

field in Figure 6.11. It should be noted that although Figure 6.11 appears to be two-

dimensional, this is only a projection of three-dimensional data, such that the entire
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Figure 6.11: The three-dimensional vorticity field is shown here projected onto a sin-
gle plane. Vorticity values below and upstream of the wing have been
masked. The domain used to integrate circulation values and compute
spanwise flow and circulation gradient values tabulated in Table 6.1 is
shown as the dashed box.

velocity-gradient tensor and the gradient of circulation can be resolved directly. A

single investigation window, indicated by the dashed box in Figure 6.11, was used as

both an integration domain and as an averaging window in order to compute circu-

lation transport properties. This large field of view was used to compute circulation,

spanwise flow, and the circulation gradient, as tabulated in Table 6.1. Furthermore,

the shear-layer feeding discussed in Section 6.5.1 is included for comparison.

Circulation is the first parameter tabulated in Table 6.1. Despite the shear-layer

feeding being similar between the Monte Carlo simulation and the measured quan-

tities, the model underestimates circulation. However, it can be observed that the

proportion by which circulation is underestimated is almost identical to the quantity

by which the circulation feeding is underestimated. The measured case exhibits ap-

proximately 16% higher circulation and 13% higher circulation feeding than the Monte

Carlo simulation. Thus, in future work it may be possible to improve the presented
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Table 6.1: Circulation, circulation transport, and shear layer properties for a flat plate
delta wing are estimated with a low-cost Monte Carlo simulation. The
results of that simulation are compared here to 4D-PTV measurements
for the case of a non-slender flat-plate delta wing.

Γ (m2/s2) w (m/s) Shear-layer feeding (m2/s2) ∂Γ
∂z

(m/s) Residual (%)
Measured 0.220 0.33 0.431 1.19 9
Modelled 0.190 0.30 0.383 1.22 1.1

Monte Carlo method by including an estimate for the base pressure coefficient.

By running the simulation again using the empirical feeding rate of ∂Γ/∂t =

0.43 m2/s2 as an input parameter, we can estimate the sensitivity of the proposed

model to the feeding rate, and therefore determine the value of improving circula-

tion feeding models. Using this circulation feeding value, the modelled circulation

is approximately 9% greater than the measured values, which is also equal to the

residual in the measured case. The residual of the circulation balance, tabulated in

the final column of Table 6.1, is defined as the difference between the circulation fed

into the LEV through the leading-edge shear layer and the circulation leaving the

domain due to vorticity advection. This difference is expressed as a percentage of

the circulation fed into the LEV. For instance, the residual of the vorticity balance

in the measured test case is 9%, meaning that 91% of the circulation that enters the

domain in steady-state is advected out of the domain in the spanwise direction, val-

idating the assumption of a advection-dominated circulation balance in Section 6.3.

In the modelled case, the residual of 1% represents a small numerical error due to the

discretization of mass into particles, as part of the Monte Carlo method. However,

the larger 9% value measured on the delta wing is more significant, as it suggests

that a proportion of circulation that enters the LEV through the leading-edge shear

layer is not being advected downstream, due either to vorticity being tilted out of
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the measurement plane, reducing the in-plane circulation measurement, or by vor-

ticity annihilation from the surface of the profile. If this residual is due to vorticity

annihilation, the magnitude of annihilation that we observe here is significantly less

than that reported by Wojcik and Buchholz (2014). However, Wojcik and Buchholz

(2014) also observed that vorticity annihilation decreased with increasing Reynolds

number, and in turn their Reynolds numbers were approximately an order of magni-

tude smaller than in the current study. As the model proposed here is intended for

extremely low-cost early estimates, such as for rapid parameter studies or flow con-

trol, this 9% error is within commonly accepted tolerance. Therefore, the proposed

Monte Carlo simulation represents an extremely low-cost and versatile model, easily

applied to unsteady problems and rotating wings.

6.6 Conclusions

In this study a model is proposed to predict the time-resolved circulation of an LEV

in the presence of spanwise flow. This model is a Monte Carlo simulation of vorticity-

containing mass advected along the span of the profile. A priori knowledge required

to successfully implement this model is limited to the profile shape, profile kinematics,

and free-stream velocity. This kinematic model frees the modeller from using empir-

ical data on the shear-layer velocity or thickness, or circulation gradients in order to

compute the circulation distribution.

This model is applied to the stationary LEV above a flat-plate delta wing, as a

canonical case with which to validate the Monte Carlo simulations. The model for

circulation feeding into the LEV is within 15% of values measured with high-speed

PIV. Simply using the component of the free-stream velocity along the leading edge,
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in this case U∞/(2
√
2), produced a spanwise flow very similar to that measured on

the delta wing. This spanwise flow, in turn, advected a similar quantity of circulation

along the span as a real delta wing, resulting in an estimate of circulation within

15% of measured values. The ratio between modelled and measured circulation was

very similar to the ratio of modelled and measured circulation feeding. When the real

feeding rate is applied to the modelled case, the predicted circulation is 9% abive the

measured value, which is precisely the quantity of circulation annihilated or tilted out

of the measurement plane in the physical case Furthermore, this improved circulation

estimate validates each of the other assumptions made about circulation transport

in Section 6.3. In particular, it is shown that circulation is indeed advected with

vorticity-containing mass along the span of the profile, and in addition both vortex

tilting and vorticity diffusion are minimal at higher Reynolds numbers, as tested here.

Approximately 9% of the circulation entering the flat-plate delta wing is not trans-

ported out of the LEV through circulation advection. As the Monte Carlo simulation

neglected viscous diffusion, vorticity annihilation, and vortex tilting, this residual

value may be difficult to account for without dramatically changing the modelling

formulation. However, this 9% is also within common engineering tolerance for early-

stage design tools, before applying high-fidelity methods at a higher cost later. As

such, the proposed model provides an attractive and extremely low-cost platform for

estimating the time- and spanwise-resolved circulation distribution within an LEV on

planforms of complex shape and/or undergoing unsteady motion as found in biological

and biomimetic swimming and flying.
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Chapter 7

Synthesis

Nature’s flyers and swimmers exhibit graceful, forceful aerobatics and aquatic ma-

noeuvres. Animals achieve such large lift coefficients, tight turning radii, and im-

pressive acceleration through the skilful manipulation of vortices in the flow. Yet,

while these observations are found in a substantial fraction of the studies cited by

this thesis, the ultimate goal of robust, nimble and efficient biomimetic flying and

swimming machines remains elusive. In that great tradition, the current thesis does

not offer a breakthrough. However, in addition to their self-contained conclusions,

the preceding chapters provide collective insight clustered around three themes: the

use of profile kinematics and flexibility as a method of flow control; techniques for

investigating such highly-separated three-dimensional flows; and the applications of

biomimetic flow physics to areas outside of flying and swimming machines. These

themes are discussed in more detail below, followed by an outlook and concluding

remarks.
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7.1 Wing Shape and Kinematics as Flow Control

As discussed in Chapter 1, some animals exploit flow control techniques familiar to

aeronautical engineers and naval architects. For instance, the dog-toothed leading-

edge of high-performance aircraft bears a strong resemblance to the manipulation

of the alula in birds of prey. Meanwhile, the manipulation of profile kinematics and

shape is well outside the scope of modern aviation. However, Chapters 2 and 3 showed

that manipulating the profile motion itself can nevertheless be quite an effective flow

control. In both studies this control amounted to a balance of circulation entering

a vortex versus the amount leaving it. The rate of circulation entering a vortex was

given as:

∂Γ

∂t
∝ u2

eff , (7.1)

similar to the rate of vortex growth in piston-cylinders found by Didden (1979).

For a profile undergoing sinusoidal plunging h = h0 sin(2πft), this can be non-

dimensionalized as:

∂Γ

∂t

1

U2
∞

∝ u2
eff

U2
∞

=
(2πfh0)

2 + U2
∞

U2
∞

= π2St2 + 1 , (7.2)

meaning that an animal can change its stroke amplitude or frequency to increase or

decrease its circulation generation. This of course fits in neatly with the findings

of Baik et al. (2012) that Strouhal number dictates force generation, and the close

relationship between formation number and stroke amplitude, as discussed in Chapter

1. Similarly, maximum growth of an LEV in a period of motion c2/T is curiously
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related to the integral of circulation generation over the period of motion:

c2/T

u2
effT

∝ 1

π2
k2 , (7.3)

which is once again in line with the observations in literature that the reduced fre-

quency k dictates LEV growth and detachment in two-dimensional flows. Thus, even

without considering any three-dimensionality, an animal already has a tremendous

amount of control authority over vortex growth.

Once three-dimensional effects are considered, circulation can further be controlled

through vorticity transport:

∂Γ

∂t
= −w

∂ωz

∂z
A . (7.4)

Here, circulation can now be controlled by modulating spanwise flow w through profile

sweep, as in Chapter 2 and Wong et al. (2013a), or through profile deformation, as in

Chapter 3. Alternatively, it was found in Chapter 4 that the vorticity gradient can be

controlled by varying the angle-of-attack gradient, which can be controlled through

profile twist.

These studies examine a fraction of the available parameter space in biomimetic

locomotion, and there is thus immense opportunity to continue investigations into the

use of profile kinematics for circulation control. For instance, chordwise flexibility and

profile twist can both alter circulation generation, while twist in particular can also

modify the angle of attack to drive vorticity convection. Other methods of altering

the balance of circulation have been identified as well, such as vorticity annihilation

(see Wojcik and Buchholz (2014)) or downwash induced by the tip vortices (see Birch

and Dickinson (2001)). These too may have biomimetic means of control yet to be
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understood. The prospect of determining such methods requires a corresponding leap

in measurement accuracy and resolution, which brings us to the following section.

7.2 Analysing Unsteady Separated Flows

Once there are scaling rules such as those laid out in Section 7.1, there is a desire

to move on to developing low-cost predictive tools. Each of the Chapters 2, 3 and

4 determined scaling relationships for the convection of vorticity between rotation

rate, profile flexibility and angle-of-attack gradient. While each of these studies gives

insight into the flying and swimming strategies of animals, the models they present

are scaling relationships, and therefore are not sufficient to be predictive engineering

tools. One promising path forwards is to investigate vorticity transport as a function

of mass transport, as opposed a function of kinematic parameters.

Chapters 2, 3 and 4 each investigated vorticity transport utilizing velocimetry

data produced via particle-tracking methods, both traditional 3D-PTV and Shake-

the-Box. For Chapter 2 in particular, 3D-PTV was found to be extremely robust due

its tolerance for low illumination when studying large volumes. Later on, Shake-the-

Box also allowed for the resolution of the entire velocity gradient tensor in a single

measurement realization, limiting the influence of run-to-run variability in the analysis

(for instance due to ensemble averaging). However, in each of these cases, circulation

transport was then studied in the familiar Eulerian frame of reference, discarding the

inherent mass transport information provided by PTV. The desire to retain mass-

transport inspired the vorticity-correction method presented in Chapter 5. Studying

the relationship between vorticity transport and mass transport is very promising,

as a simple relationship between the two would allow for the determination of the
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dynamic redistribution of circulation in a flow from bulk velocities. These velocities

in turn can be determined from profile kinematics and shape much more easily than

attempting to estimate the vorticity field directly.

These ideas were applied directly in Chapter 6, where a low-cost model for the

circulation balance on a delta wing was proposed and validated. Such a model would

not be possible without both high-quality Lagrangian and Eulerian information in

order to validate the vorticity transport model. The use of these analysis techniques

on a delta wing demonstrates one example of the extensibility of these vorticity trans-

port models to non-biomimetic applications, which is described in more detail in the

following section.

7.3 Applications Outside of Biomimetic Locomotion

Vortex-dominated flows are ubiquitous throughout aerodynamics and hydrodynamics,

and are in no way limited to bio-inspired flows. The turbine case studied in Chapter

4 is an excellent example: a wind turbine subject to a gust experiences dynamic stall

just as a flapping wing does, and is subject to similarly strong rotational accelerations.

Utilizing blade-element methods where individual nodes do not communicate mass,

momentum, or circulation transport will thus generate erroneous results. Chapter 4

demonstrates not only that typical gust profiles exposed to a turbine would result

in similar LEV formation to that on a natural flyer, but that the spanwise flow

configuration typical to wind turbines produces the largest, most unsteady loads. The

same technique could be applied to rotor craft, which experience similar rotational

accelerations and similar dynamic stall behaviour.

The above analysis also applies to delta wings, as demonstrated in Chapter 6.
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Figure 7.1: A delta wing exhibits a stationary LEV, similar to the flapping propulsors
of natural swimmers and flyers. This LEV must also satisfy the conserva-
tion of mass and circulation, and therefore can be modelled using similar
techniques to those developed for biomimetic propulsion.

Despite the absence of rotation, delta wings exhibit the same stably attached LEV as

in biological flight, as shown in Figure 7.1. A significant fraction of the analysis on

LEV stabilisation on biological flyers has focused on rotation, as described in Section

1.1.2. Yet, the LEV must satisfy the exact same conditions on a delta wing as on an

insect wing: mass and circulation must be conserved.

7.4 Outlook

We are naturally left with new questions as we make progress with the old ones. In

particular, the focus of this thesis has been on a limited subset of three-dimensional

flows where the only significant additions to the two-dimensional case are spanwise

flow and angle-of-attack gradients. Extending the relationships for vortex growth
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and circulation convection derived in earlier chapters to true low-cost models, those

appropriate for design work, is an obvious goal for future researchers. This work

will involve investigations on finite wings to determine how the above relationships

change in the presence of strong tip vortices. In the context of flexibility, this work

also limited itself to investigating spanwise bending. Of course, actual propulsors also

exhibit both twist and chordwise flexibility. Chordwise flexibility in particular is very

pronounced in aquatic mammals and other swimmers.

Swimming and flying animals have developed their manoeuvring ability due to

the evolutionary pressure from their environment, and gust loading and riverine un-

steadiness are both in need of greater investigation. A gust encounter, such as passing

near a roller embedded in the flow, can be abstracted as a phase-lag in angle-of-attack

between the leading and trailing-edges of the profile, as demonstrated by Wong et al.

(2013b). As such, it may be possible to model gusts through dynamic cambering. A

comparison of dynamic cambering effects from a gust encounter to that of chordwise

flexibility may be very fruitful, considering the need for further investigation in both

cases.

7.5 Closing remarks

More than a century ago the form and function of bird wings were informing the first

powered flight. Today, biological swimmers and flyers are far from relinquishing all

of their secrets. While this thesis was narrow in scope, it was conducted with the

knowledge that a problem like biomimetic locomotion will only yield through many

small incremental steps.

This work has produced scaling relationships for LEV growth and detachment,
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proposed a method by which animals use their profile kinematics as a form of flow

control, and developed measurement techniques that may be useful to future inves-

tigation. A model based on these scaling relationships has also been applied to a

non-biomimetic application, a delta wing, as a demonstration of its robustness. It

is hoped that these contributions both advance our understanding of biological be-

haviour, and provide tools necessary for improving engineered vehicles and machinery

going forward.
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Schröder (2016). “Pressure-field extraction from Lagrangian flow measurements:

first experiences with 4D-PTV data”. In: Experiments in Fluids 57, p. 102.



BIBLIOGRAPHY 144

Nudds, R. L., G. K. Taylor, and A. L. R. Thomas (2004). “Tuning of Strouhal num-

ber for high propulsive efficiency accurately predictes how wingbeat frequency

and stroke amplitude relate and scale with size and flight speed in birds”. In:

Proceedings of The Royal Society: B 271, pp. 2071–2076.

Ol, M. V. and M. Gharib (2003). “Leading-Edge Vortex Structure of Nonslender Delta

Wings at Low Reynolds Numbers”. In: AIAA Journal 41, pp. 16–26.

Ol, M. V., L. Bernal, C.-K. Kang, and W. Shyy (2009). “Shallow and deep dynamic

stall for flapping low Reynolds number airfoils”. In: Experiments in Fluids 46,

pp. 883–901.

Onoue, K. and K. S. Breuer (2016). “Vortex formation and shedding from a cyber-

physical pitching plate”. In: Journal of Fluid Mechanics 793, pp. 229–247.

Orszag, S. A. (1969). “Numerical methods for the simulation of turbulence”. In:

Physics of Fluids 12(12), pp. II–250.

— (1971). “On the elimination of aliasing in finite-difference schemes by filtering

high-wavenumber components”. In: Journal of the Atmospheric sciences 28(6),

p. 1074.

— (1972). “Comparison of pseudospectral and spectral approximation”. In: Studies

in Applied Mathematics 51(3), pp. 253–259.

Ozen, C. and D. Rockwell (2012). “Three-dimensional vortex structure on a rotating

wing”. In: Journal of Fluid Mechanics 707, pp. 541–550.

Pitt Ford, C. W. and H. Babinsky (2013). “Lift and the Leading Edge Vortex”. In:

Journal of Fluid Mechanics 720, pp. 280–313.



BIBLIOGRAPHY 145

Poelma, C., W. B. Dickson, and M. H. Dickinson (2006). “Time-resolved reconstruc-

tion of the full velocity field around a dynamically-scaled flapping wing”. In: Ex-

periments in Fluids 41, pp. 213–225.

Polhamus, E. C. (1966). A Concept of the Vortex Lift of Sharp-Edge Delta Wings

Based on a Leading Edge Suction Analogy. Tech. rep. NASA.

Raben, S. G., S. D. Ross, and P. P. Vlachos (2014). “Computation of Finite Time

Lyapunov Exponents from Time Resolved Particle Image Velocimetry Data”. In:

Experiments in Fluids.

Raffel, M., C. Willert, S. Wereley, and J. Kompenhans (2007). Particle image ve-

locimetry: a practical guide. 2nd ed. Springer, pp. 164–176.

Ramesh, K., A. Gopalarathnam, K. Granlund, M. V. Ol, and J. R. Edwards (2014).

“Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows

with intermittent leading-edge vortex shedding”. In: Journal of Fluid Mechanics

751, pp. 500–538.

Rival, D. and C. Tropea (2010). “Characteristics of Pitching and Plunging Airfoils

Under Dynamic-Stall Conditions”. In: Journal of Aircraft 47 (1), pp. 80–86.

Rival, D. E., T. Prangemeier, and C. Tropea (2009). “The Influence of Airfoil Kine-

matics on the Formation of Leading-Edge Vortices in Bio-Inspired Flight”. In:

Experiments in Fluids 46, pp. 823–833.

Rival, D. E., J. Kriegseis, P. Schaub, A. Widmann, and C. Tropea (2014). “Charac-

teristic Length Scales for Vortex Detachment on Plunging Profiles with Varying

Leading-Edge Geometry”. In: Experiments in Fluids 55.1, pp. 1–8.



BIBLIOGRAPHY 146

Rockwood, M. P., K. Taira, and M. A. Green (2016). “Detecting Vortex Forma-

tion and Shedding in Cylinder Wakes Using Lagrangian Coherent Structures”. In:

AIAA Journal 55, pp. 15–23.

Ronsten, G. (1992). “Static Pressure Measurements on a Rotating and a Non-Rotating

2.375 m Wind Turbine Blade. Comparison with 2D Calculations”. In: Journal of

Wind Engineering and Industrial Aerodynamics 39, pp. 105–118.

Roshko, A. (1954).On the drag and shedding frequency of two-dimensional bluff bodies.

Tech. rep. National Advisory Comittee for Aeronautics.

Sane, S. P. (2003). “The aerodynamics of insect flight”. In: Journal of Experimental

Biology 206, pp. 4191–4208.

Sane, S. P. and M. H. Dickinson (2002). “The aerodynamic effects of wing rotation

and a revised quasi-steady model of flapping flight”. In: Journal of Experimental

Biology 205, pp. 1087–1096.

Scarano, F. and P. Moore (2012). “An advection-based model to increase the temporal

resolution of PIV time series”. In: Experiments in Fluids 52, pp. 919–933.
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Appendix A

The non-dimensionalization of Euler-Bernoulli

beam theory and typical examples

The key non-dimensional parameters governing flapping-wing fluid-structure interac-

tion were outlined by Kang et al. (2011). These parameters are as follows:

Re = ρUc/µ Reynolds number,

AR = R/c Aspect ratio,

ρ∗ = ρs/ρ Density ratio,

δ∗ = δ/c Thickness ratio,

k = πfc/U Reduced frequency,

St = h0k/πc Strouhal number,

Π1 = Eδ∗3/(12ρU2) Effective stiffness, and

CF = F/(1
2
ρU2c2AR) Force coefficient.

Many of the above terms are either standard aerodynamic parameters of Reynolds

number Re, reduced frequency k, Strouhal number St, aspect ratio AR, and force

coefficient CF , or geometric parameters of chord c, span R, and thickness δ. However,

the effective stiffness and density ratio must be recovered from the non-dimensionalization
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of the Euler-Bernoulli Equation:

EI
∂4h

∂z4
+m

∂2h

∂t2
= CF

1
2
ρU2c . (A.1)

Expanding the second moment of area I and linear density m, and dividing through

by the dynamic pressure gives:

2
Eδ3

12ρU2

∂4h

∂z4
+ 2

ρs
ρ

δ

U2

∂2h

∂t2
= CF . (A.2)

We can then make the following set of substitutions:

h = h∗c ,

δ = δ∗c ,

∂
∂t

= ∂
∂t∗

f , and

∂
∂z

= ∂
∂z∗

1
R
, (A.3)

where h∗, t∗, and z∗ are the non-dimensional versions of h, t and z, respectively. The

beam equation now takes the following form:

2
Eδ∗3

12ρU2

(

c4

R4

)

∂4h∗

∂z∗4
+ 2

ρs
ρ
δ∗

(

π2f 2c2

U2

)

1

π2

∂2h∗

∂t∗2
= CF . (A.4)

As the effective stiffness Π1 and the density ratio ρ∗ are both now apparent, along

with the reduced frequency k and aspect ratio AR, we can use the definitions of those
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terms to clean up the non-dimensional Euler-Bernoulli equation:

2Π1

AR4

∂4h∗

∂z∗4
+ 2ρ∗δ∗

(

k

π

)2
∂2h∗

∂t∗2
= CF (z, t) . (A.5)

The coefficients in the above equation varies from the one presented by Kang et al.

(2011) by the way in which the distributed force was defined, however the two are

functionally identical.

Both the physical and dimensionless structural parameters for several insect species

are presented in Table A.1. The stiffness EI, chord c, and span R are taken from

Combes and Daniel (2003). Reference velocities are taken from the ‘Great Flight

Diagram’ of Tennekes (2009), averaged with respect to insect order. There is no

publication of the variation of thickness ratio with species, however Usherwood and

Ellington (2002) give a general approximation of 1.6%, while Kang and Shyy (2014)

give 2%. A value of 1.6% was used in the generation of the table below. A single

density of ρs = 1200 kg

m3 was also used, as given by Combes and Daniel (2003), giving

a uniform density ratio of ρ∗ = 1000.

No similar table could be produced for either birds or aquatic animals. While

some data on the flexural stiffness of flight feathers is available, notably by Worcester

(1996) covering a broad range of bird sizes, there is not sufficient data to compute

dimensionless parameters. Appropriate data for fish or cetaceans is similarly unavail-

able.
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Table A.1: Structural properties of several insect species, organized by order: dragonflies, lacewings, bees and
wasps, flies, and butterflies and moths.

Name
Order Genus Common name EI (Nm2) c (m) R (m) Uref (ms−1) Π1 Re AR k

Odonata

Aeshna Hawker dragonfly 1.13× 10−4 1.09× 10−2 4.28× 10−2

2.91

3.32 1.90× 103 3.93 0.249
Pachydiplax Blue dasher dragonfly 3.91× 10−5 7.60× 10−3 3.16× 10−2 3.85 1.33× 103 4.16 0.211

Lestes Emerald damselfly 1.04× 10−5 4.80× 10−3 2.34× 10−2 3.43 8.38× 102 4.88 0.169
Ischnura Forktail damselfly 8.74× 10−6 4.20× 10−3 1.99× 10−2 5.48 7.33× 102 4.74 -

Neuroptera Hemerobius Brown lacewing 6.70× 10−7 3.50× 10−3 9.00× 10−3 1.85 24.7 3.90× 102 2.57 -

Hymenoptera
Pepsis Tarantula hawk 1.64× 10−5 6.60× 10−3 2.20× 10−2

6.83
1.25 2.71× 103 3.33 -

Sceliphron Mud dauber wasp 3.03× 10−6 3.70× 10−3 1.38× 10−2 1.49 1.52× 103 3.73 -
Bombus Bumble bee 5.91× 10−6 4.70× 10−3 1.13× 10−2 3.58 1.93× 103 2.79 0.238

Diptera

Tipula Crane fly 3.35× 10−6 4.10× 10−3 1.66× 10−2

3.07

3.91 7.54× 102 4.05 0.273
Villa Bee fly 3.71× 10−6 4.40× 10−3 1.34× 10−2 10.2 8.09× 102 3.04 -

Eristalis Hover fly 3.79× 10−6 4.00× 10−3 1.13× 10−2 20.6 7.36× 102 2.83 0.861
Calliphora Blowfly 1.23× 10−6 4.20× 10−3 9.40× 10−3 14.0 7.72× 102 2.24 0.697

Lepidoptera
Manduca Carolina sphinx 2.17× 10−4 2.17× 10−2 5.40× 10−2

3.03
2.31 3.94× 103 2.49 0.450

Ochlodes Woodland skipper 2.56× 10−6 6.70× 10−3 1.30× 10−2 8.14 1.22× 103 1.94 0.396
Pieris Cabbage white 1.18× 10−5 1.25× 10−2 2.16× 10−2 4.92 2.27× 103 1.73 0.156
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Based on the non-dimensional Euler-Bernoulli equation from Equation (A.5), a

stiffness landscape can be produced as a function of the dimensionless stiffness Π1 and

density ratio ρ∗, as shown on the left-side of Figure A.1. Markers representing the

approximate parameters exhibited by insects, birds, and swimmers are included, with

the resulting time-trace of the tip amplitude (normalized by root amplitude) shown

on the right of in Figure A.1. The particular magnitudes of the curves in this figure

are also affected by the other dimensionless parameters presented at the beginning

of this Appendix, however their general form remains the same. Utilizing only small

changes in specific dimensionless stiffness Π1 and density ratio ρ∗, the time-history of

tip amplitudes can be made to collapse across all of this entire parameter space, as

shown in Figure A.2.
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Figure A.1: The tip amplification can be parameterized in terms of dimensionless
stiffness and density ratio, as shown on the left. Choosing stiffness and
density ratios within the range of swimmers, birds, and insects, this tip
amplification can be visualized by the tip path, shown on the right.
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Figure A.2: Given the same stiffness landscape as in Figure A.1, small changes in
the selection of stiffness and density can be chosen in order to collapse
the resulting tip paths. Thus, regardless of the environment, it would
be possible for animals to converge upon the same optimum gradient in
effective incidence.
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Appendix B

Comparing Optical Measurement Techniques

This thesis utilized a wide range of optical measurements, with frame rates ranging

from 165 Hz to 10, 000 Hz, and measurement volumes ranging from 9E2 mm3 to

2E6 mm3. These volumes were selected based on the specific structures that needed

to be captured. For instance, in the case of the PIV and PTV measurements in

Chapter 2, both leading- and trailing-edge vorticity was to be captured on a 7.5

cm chord profile. This necessitated control volumes slightly larger than 7.5 cm.

Meanwhile, the 30×30 mm2 control volume for the PIV measurements in Chapter

6 needed to measure the fine-scale details of a separated shear layer, requiring a

small control volume to maximize the spatial resolution of the camera sensor. To

illustrate this optimization, the measurement systems used in each chapter have been

compiled in Table B.1. Despite the large variation in frame rate and control volume,

the pixel shifts of all systems are roughly similar, as this was the primary indicator

used to determine frame rate. The slightly larger pixel shift used in the 3D-PTV

measurements of Chapter 2 is due to the physically-limited frame rate of the cameras

used in that study, which was accommodated for by using a lower particle seeding

density.
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Table B.1: Physical parameters of the optical measurement techniques used in this thesis.

Chapter Technique Frame Rate (Hz) Resolution (px2) Control Volume Re Dimensional Velocity (m/s) Particle Shift (px/frame)
2 3D-PTV 165 2560×1280 80×80×200 mm3 7500 0.1 7.75
2 PIV 250 1024×1024 120×120 mm2 7500 0.1 3.41
3 4D-PTV 1000 1024×1024 130×130×10 mm3 100,000 0.3 2.36
4 4D-PTV 1000 1024×1024 130×130×10 mm3 100,000 0.3 2.36
5 4D-PTV 900 1024×1024 100×100×30 mm3 100,000 0.33 3.81
6 4D-PTV 1500 1024×1024 120×120×10 mm3 250,000 0.833 4.74
6 PIV 10,000 1024×1024 30×30 mm2 250,000 0.833 2.84
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