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Abstract 

The works described herein are broadly concerned with exploring the interactions between light 

and boron-containing ˊ-conjugated systems in order to build a complete understanding of the 

relationship between molecular structure and reactivity. Despite rapid progress in the field of N,C- 

and C,C-chelate organoborate photochemistry over the past ten years, only the effects of different 

-́conjugated backbones have been well documented, with the impact of the aryl substituents being 

virtually unknown. To remedy this deficiency and harness the full potential of this class of 

photochromic materials, methodologies for obtaining prochiral organoboranes and their respective 

chiral N,C- or C,C-chelate organoborates have been developed in order to investigate the influence 

of boron substitution on their excited-state reactivity. 

 

Chiral N,C-chelate organoboron compounds bearing two different aryl groups at the boron center 

have been found to undergo regioselective photoisomerization involving the less bulky substituent 

exclusively, generating various highly colored base-stabilized boriranes with an H-atom on the 

three-membered ring. These species thermally isomerize to 4bH-azaborepins via direct H-atom 

transfer from boracycle to pyridine with concomitant ring expansion. Furthermore, appropriate 

functionalization with mesityl/heterocycle substituents (thienyl, furyl and derivatives) enables 

quantitative phototransformations yielding rare, chiral N,B,X-embedded heterocycles (e.g. base-

stabilized 1,2-thiaborinines and 1,2-oxaborinines), which display strong blue-green to orange-red 

emission in the solid state. Mechanistic insights on these highly regioselective transformations were 

obtained via kinetic data and computational investigations on their excited-states. 

 

The effect of charge-transfer character on the photoreactivity of this class of photochromic 

molecules was also investigated by substituting the aryl groups of N,C-chelate organoborates with 

varying amine-donors. These compounds possess bright and tunable charge-transfer luminescence 
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depending on the donor strength of the amine functionality, as well as donor-dependent 

photochromic switching. These new findings help elucidate the influence of electronic structure on 

the photoreactivity of N,C-chelate organoborates. 

 

Lastly, combining a three-coordinated boron (BMes2) moiety with a four-coordinated 

photochromic organoboron unit leads to a series of new diboron compounds that undergo four-state 

reversible color switching in response to stimuli of light, heat, and fluoride ions. 
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Chapter 1 

Introduction 

Boron gets its name from the term borax (Arabic bȊraq meaning ñwhiteò), the mineral from which 

it was originally isolated, by analogy with carbon due to their chemical similarities. Unlike its 

neighbor on the periodic table however, boron only possesses enough valence electrons to form 

three covalent bonds. This means that organoboron compounds are inherently electron deficient 

and typically adopt a trigonal planar (sp2 hybridized) geometry with the empty pz orbital of boron 

lying orthogonal to the bonding plane. In this form, boron is isoelectronic and isostructural with a 

positively charged carbocation, which gives rise to many of the applications often associated with 

trivalent organoboranes (e.g. organic synthons, electron-transport materials, components of 

catalysts, and anion sensors). Coordinatively saturating these systems with anionic or neutral Lewis 

bases yields tetrahedral, four-coordinated boron compounds with a formal negative charge. This 

new bonding arrangement significantly alters the orbital composition of the resulting molecules, 

imparting new features such as intense charge transfer (CT) luminescence and, in some cases, 

unique photochemical reactivities such as photochromism or photoelimination. 

 

The contents of this thesis will document my recent efforts towards understanding and diversifying 

the previously discovered photoreactivity of N,C-chelate organoboron compounds. In particular, 

we aim to establish the role of the aryl groups on the boron atom through their systematic 

substitution, as well as develop new phototransformations by exploiting excited-state dynamics and 

reaction selectivities. With these goals in mind, simplified synthetic routes to prochiral boron 

reagents of the form ArôArBX (Arô, Ar = aryl groups; X = ïOCH3 or ïCl) will  be described, along 

with the preparation and photoreactivity of new, chiral N,C-chelate organoboron compounds. 

Furthermore, attempts to: 1) develop new high-efficiency boron-based emitters for organic light-
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emitting diodes (OLEDs), and 2) establish four-state switching in photochromic diboron systems 

will be described, while highlighting possible strategies for improving these types of functional 

materials. 

 

This chapter will begin with a brief overview of concepts related to photophysical and 

photochemical processes, followed by an introduction to photochromic systems and a 

comprehensive review of organoboron photochemistry. The original motivations for utilizing four-

coordinated organoborates in optoelectronics (e.g. OLEDs) will be discussed, as well as the 

discovery of several new classes of photoresponsive organoboron molecules and their potential 

applications. 

 

1.1 Interactions between Light and Matter 

Light from the Sun has played an integral role in the development of man and his environment 

since the dawn of time, with the evolution of photosynthesis (a sophisticated series of photophysical 

and photochemical processes) representing a shining example. Despite this intimate relationship 

between light and matter, the development of photochemistry as a discipline was highly limited 

until the second decade of the twentieth century, mainly because the only light source available to 

pioneers in this area was the Sun.[1,2] In fact, it wasnôt until after the development of molecular 

orbital theory around 1930-1950, which gave the theoretical framework for interpreting the 

absorption spectra of organic molecules, that the concepts needed to understand excited-states and 

their underlying photophysical and/or photochemical processes emerged.[3ï6] Since the 1960s, the 

fields of photochemistry and photophysics have blossomed, with various relationships between 

structure and photochemical reactivity or photoluminescence now well established and methods of 

harnessing their utility documented.[7ï10] In spite of their clear differences, photochemistry and 
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photophysics are often mischaracterized as equivalent, which necessitates the separate introduction 

of each topic in the following sections. 

 

1.1.1 Photophysical Processes 

Photophysics refers to a series of excitation and deactivation processes that can occur once a 

molecule has absorbed photons of suitable energy (see Figure 1.1 and Table 1.1).[11] The act of 

absorbing light (1) promotes the molecule to a higher energy electronic state with the same spin 

multiplicity, as opposed to a higher vibrational state within the same electronic state. Compared to 

nuclear motion, electronic transitions induced by absorption are virtually instantaneous (10ī15 s), 

meaning that molecular excitation must occur to a new vibrational level within a higher electronic 

state of similar nuclear positions; this is known as the Franck-Condon principle. From this Franck-

Condon state, the molecule has several different methods of releasing its excess energy. It can 

fluoresce (2), which dissipates energy radiatively following relaxation to the lowest excited state, 

or undergo isoenergetic radiationless transitions resulting in a vibrationally excited molecule in a 

lower electronic state. When these processes occur without a change in spin multiplicity, it is 

referred to as internal conversion (3), while those involving a spin flip are known as intersystem 

crossing (S Ÿ T; 4) and reverse intersystem crossing (T Ÿ S; 5). Given that singlet to triplet and 

triplet to singlet transitions are forbidden by spin selection rules, process (4) is the only direct way 

to generate a triplet excited-state from a singlet ground state. Once a triplet excited state has been 

accessed, the molecule can undergo radiative decay to its singlet ground state via phosphorescence 

(6). Since this transition is forbidden, the lifetime of phosphorescence tends to be significantly 

longer than fluorescence, ranging from microseconds to seconds. Vibrational relaxation (7) is a fast 

radiationless process that returns the excited molecule to the lowest energy vibrational state within 

its current electronic state, and is typically governed by intermolecular collisions of the excited 

species with neighboring molecules such as solvent. In combination with internal conversion (3), 
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this is one pathway that returns molecules to their ground state. The quantum efficiency of radiative 

deactivation pathways (fluorescence or phosphorescence) is defined as:  

Equation 1          ■◊□
▓►

▓►  ▓▪►
 

where kr is the rate of radiative decay, and Ɇknr is the sum of the rates of all competing processes 

including photochemical transformations. This relationship becomes important when designing 

photoresponsive materials (e.g. emitters for OLEDs or photochromic systems), as one needs to 

consider how this value can be either maximized or minimized depending on the situation. 

 

Figure 1.1 Jablonski diagram illustrating the various processes that occur following light 

absorption (Reproduced from Ref. 11) 

 

Table 1.1 Summary of photophysical processes and their associated rates 

Process Name Time Scale (s) 

(1) Absorption 10ҍ15 

(2) Fluorescence 10ҍ9 ï 10ҍ7 

(3) Internal Conversion 10ҍ12 ï 10ҍ6 

(4) Intersystem Crossing (S ï T) 10ҍ12 ï 10ҍ6 

(5) Reverse Intersystem Crossing (T ï S) 10ҍ9 ï 101 

(6) Phosphorescence 10ҍ6 ï 100 

(7) Vibrational Relaxation 10ҍ13 ï 10ҍ12 

E

S0

S1

S2

T1

T2

Photochemical Reactions

Vibrational States

Electronic State

Radiative Processes

Non-radiative Processes

(1)

(3)
(3)

(2)

(4)

(5)

(7)

(7)

(7)

(7) (6)
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It is important to keep in mind that the excited states described above refer to states that have 

specific electron distributions within their molecular orbitals. As a consequence, a molecule in its 

excited state should not be considered as a ñhotò ground-state molecule, but rather a new chemical 

entity with different bond lengths, geometry, charge distribution, tendency to rearrange its 

structure, and ability to interact with other molecules. For example, excited molecules can 

sometimes associate themselves with other ground state species (Figure 1.2). When this occurs 

between two molecules of the same chemical nature, they form excimers (excited dimer), which 

exhibit broad, red-shifted emission relative to their individual monomers. This type of dimerization 

can also occur between two different types of molecules, leading to the formation of exciplexes 

(excited complexes). Exciplexes are more commonly observed when an electron-donorôs excited 

state interacts with an electron-acceptorôs ground state, resulting in a complex with charge-transfer 

(CT) character.[12]  

 

Figure 1.2 (a) General schematic showing the formation of excimers and exciplexes and (b) the 

-́stacked dimer formation of pyrene leading to blue excimer emission 

 

Excimers are different from excited state dimers in that the latter refers to the excited states of 

stable dimers which are formed in the ground state prior to excitation. The first report on excimers 

appeared in 1956,[13] where Förster and co-workers showed that pyrene excimer emission could be 

observed even at relatively low concentrations (10ī3 M) due to the long fluorescence lifetime of 
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pyreneôs excited state (650 ns). Many of the well-known excimer emitters are based on polycyclic 

aromatic hydrocarbons (PAHs), where excimer formation occurs as a result of favourable ˊ-ˊ 

interactions between one excited state and one ground state aromatic molecule. 

 

This notion of excited-state molecules being their own entities becomes especially important when 

discussing photochemistry, as the differing chemical/physical properties between excited and 

ground state species is what gives rise to the unique features available to the former.  

 

1.1.2 Photochemical Processes 

The discipline of photochemistry is concerned with the study of chemical change induced by light 

following the promotion of molecules from their ground state to an electronically excited-state. By 

virtue of the fact that excited-states are generated via external perturbation, they are necessarily 

transient and only exhibit their unique properties when they survive long enough to do so. There 

exist many different pathways that can deactivate excited-state species (Figure 1.3; top), such as 

the photophysical processes described in Section 1.1.1 (e.g. radiative and non-radiative 

deactivation), bimolecular electron- or energy transfer,[14] and unimolecular photochemical 

transformations. In the latter, radiationless transitions result in chemical reactions that change the 

molecular composition of the starting species via bond-breaking and/or isomerization such that itôs 

excess energy is dissipated. Due to the competitive nature of all these pathways, the ultimate fate 

of excited-state species is governed by the various rates (lifetimes; see Table 1.1) of these processes 

for a given system. Photochemical reactions are often categorized into four different types based 

on their mechanism (see Figure 1.3; bottom): (a) hot ground state; (b) adiabatic; (c) diabatic; and 

(d) reactions that proceed via intermediates. 
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Figure 1.3 Various pathways for an excited-state species to lose its energy (top)[14] and cross-

sections of excited- and ground state potential energy surfaces along the reaction coordinate 

leading from A to P in four different types of photoreactions (bottom)[11] 

 

(a) In a ñhotò ground state reaction, the excited molecules immediately undergo internal 

conversion to a vibrationally-excited electronic ground state, which can either form the 

product P or relax back to the starting species A. Due to the rate at which vibrational 

relaxation occurs in solution, these types of reactions are more likely to generate product 

when performed with molecules in their gaseous state at low temperature and pressure. 

(b)  In adiabatic reactions, the entire transformation occurs along the excited-state potential 

energy surface, yielding the excited-state form of the product (P*) before it relaxes back to 

the ground state. Given the need to remain in the excited-state over the course of the 

reaction, these types of reactions often occur through longer-lived triplet states, where the 

competing photophysical processes are relatively slow. In cases where adiabatic reactions 

proceed through singlet-states, structural changes are usually minor (e.g. proton transfer) 

with a low activation barrier. 

hɜ
P*

PA

hɜ

PA PA PA

hɜ

hɜ

(a) (b) (c) (d)
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(c) Diabatic reactions involve the direct formation of P via a conical intersection that connects 

the excited- and ground state potential energy surfaces geometrically.  

(d) As the name suggests, reactions that involve intermediates are photochemical 

transformations where a reactive intermediate with low lying excited-states is generated, 

thereby overcoming the barrier required to form P. Some common intermediates in these 

reactions are carbenes, biradicals, and zwitterions. 

 

While there are many different types of photochemical reactions (e.g. cis-trans isomerization, 

electrocyclization, sigmatropic rearrangements, di- -́methane rearrangements, photocycloaddition, 

photoinduced nucleophile addition, photoinduced proton addition, and photoinduced electron 

transfer),[9,11] only a select few are used by photochromic systems in their photochemical switching. 

 

1.2 Photochromism 

Photochromism is defined as the reversible transformation of a chemical entity between two states, 

each with distinct absorption profiles, wherein at least one of the transformations is governed by 

light.[15] This unique property of certain organic molecules has been known since the mid-1800s, 

with the first reported example being the photochemically driven addition of O2 to tetracene as 

observed by Fritsche in 1867.[16] Many decades later, several of the now ñclassicò photochromic 

systems such as spiropyrans,[17] spirooxazines,[18] fulgides,[19] diarylethenes (DTEs),[20] and 

azobenzenes[21] were discovered and have since been utilized in several applications such as optical 

memory devices, molecular switches, smart windows, and ophthalmic glasses.[22ï24] 

Mechanistically, the photochromic systems listed above are based on either cis-trans isomerization 

around a C=C or N=N double bond or 6ˊ-electrocyclizations according to the Woodward-Hoffman 

rules (see Figure 1.4 for an example of DTE photoswitching; 1.1 Ÿ 1.1a). With respect to 

photochromic systems that incorporate boron, there exist a few reports on DTEs bearing 
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triarylboron substituents, where the physical and chemical properties of the DTE are modulated by 

the presence of the organoboron moiety.[25ï28] Switching directly at a boron core is far more rare 

however, with the only known examples being the cis-trans isomerization of azobenzene-based 

N,C-chelate organoboron compounds 1.2 and 1.3,[29,30] disrotatory bora-Nazarov cyclization of ï

BMes2 substituted borepin 1.4,[31] 1,2-pyridyl shift of borole-lutidine adduct 1.5,[32] and di- -́borate 

rearrangement N,C-chelate organoborates described by us (see Section 1.3.3 and 1.3.5). 

  

Figure 1.4 Examples of diarylethene (i)[20] and known boron-based photoswitches reported by the 

groups of Kawashima (ii) ,[29,30] Yamaguchi (iii) ,[31] and Braunschweig (iv) [32] 

 

Despite the limited number of examples of photochromic systems based on boron, the 

photochemistry of boranes and organoboron compounds possesses a long and rich history, with 

some of the first reports on the photolytic decomposition of diborane(6) (B2H6) dating back to 

1913.[33] For the purpose of this thesis, the following section will only focus on the photoreactivi ty 

of tri- and tetraaryl organoborates given their relevance to the topics at hand.[34] 
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1.3 Photochemistry of Organoboron Compounds 

1.3.1 Photoreactivity of Triarylboranes 

One of the few examples of a photoreactive triaryl boron system is the tris(1-naphthyl)borane (1.6; 

Figure 1.5), originally reported in 1977.[35] Irradiation of 1.6 was claimed to result in the formation 

of the 1-naphthylborene 1.7, based on the isolation of 1,1-binaphthyl and cis-1,2-cyclohexanediol 

when the reaction was carried out in cyclohexene solution, suggesting a boracyclopropane 

intermediate (1.8). Attempts to reproduce these results by Schuster et al.[36] proved unsuccessful, 

leading them to propose a different mechanism based on the di- -́methane rearrangement (i.e. 

Zimmerman rearrangement),[37] where photoexcitation generates the CïC coupled 1.9 which is 

capable of undergoing rearrangement and rearomatization to give biradical 1.10. The boryl 

component of this new biradical is speculated to abstract hydrogen from solvent or add to its double 

bond (when the solvent is cyclohexene), after which a second rearomatization and loss of a boryl 

radical gives the 1,1-binaphthyl product. 

  

Figure 1.5 Photoreactivity of 1.6 as proposed by Ramsey[35] (top) and Schuster[36] (bottom) 

 

Unlike 1.6, no CïC coupled products are observed when triphenylborane (1.11) is irradiated in 

cyclohexane (Figure 1.6).[38] Instead, Williams and co-workers isolated phenol and phenylboronic 
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acid as the major products. When the solvent was switched to methanol, irradiation gave the 

expected biphenyl CïC coupled product albeit in low yields. The isolated yields could be improved 

by complexation of piperidine or pyridine with triphenylborane (1.12/1.13) in methanol prior to 

irradiation, which generates mixtures biphenyl, 1-phenyl-1,3-cyclohexadiene, and 1-phenyl-1,4-

cyclohexadiene in ratios of 1.4:1.1:1:trace and 15.8:1:2.5 respectively (overall yield of ~85% in 

both cases). The increase in CïC coupled product formation with the addition of Lewis bases is 

particularly noteworthy, as these reactant structures and reactivities are similar to those of tetraaryl 

borates (discussed in Section 1.3.2) and N,C-chelate organoborates (Section 1.3.3). 

  

Figure 1.6 Photoreactivity of 1.11 ï 1.13 as established by Williams[38] 

 

Based on their discovery that compound 1.4 can undergo a bora-Nazarov cyclization, Yamaguchi 

and co-workers attempted to extend this reactivity to simpler substrates such as dimesitylboryl 

substituted (hetero)arenes (Figure 1.7; 1.14 ï 1.18).[39] Instead of cyclization, they observed the 

formation of spirocyclic boraindanes 1.14a ï 1.18a exclusively following 1 hour of irradiation with 

a high-pressure mercury lamp, which are reminiscent of the photoproducts obtained by photolysis 

of arylalkenylketones.[40] Mechanistically, excitation with UV light induces a [1,6]-sigmatropic H-

shift yielding either a zwitterionic or biradical intermediate (1.18a+ī and 1.18a..) intermediate. 

Nanosecond laser flash photolysis (LFP) experiments in toluene or dichloromethane detected no 
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transient species, while a broad and weak transient absorption band ranging from ɚabs = 600ï900 

nm was noted in acetonitrile, suggesting that the intermediate likely has some ionic character since 

it can be stabilized in polar solvents. The subsequent CïC bond forming step must be very fast 

given that no signals were observed when the LFP experiments were performed in toluene. One 

interesting aspect of this reaction is the initial [1,6]-sigmatropic rearrangement, which occurs 

necessarily in the excited-state owing to the different orbital phase (antarafacial) of the H- and C-

atoms involved in the reaction when in the ground state.  

 

Figure 1.7 (a) Photoreactivity of ïBMes2 functionalized (hetero)arenes 1.14 ï 1.18 and (b) the 

proposed mechanism for the formation of 1.18a  

 

One final photoisomerization of note is the conversion of bis-benzocycloborabutylidene into the 

bis-boron-bridged stilbene 1.19 via high energy light (254 nm) as shown in Figure 1.8. The product 

of this isomerization was found to be air and moisture stable due to the bulky 2,4,6-
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triisopropylphenyl groups on boron. Based on DFT calculations, Piers et al. proposed a mechanism 

involving double homolytic BïCPh bond cleavage to give a tetraradical intermediate that readily 

undergoes BïC bond formation following rotation of the boryl and phenyl fragments. 

 

Figure 1.8 Photoisomerization of bis-benzocycloborabutylidene into the ladder diborole 1.19 

 

1.3.2 Photoreactivity of Tetraarylborates 

Unlike their triarylborane counterparts, tetraarylborates are well-known to undergo photoreactions, 

with the results of these experiments causing significant debate in the literature.[41ï46] Some of the 

first reports[47] on the photoreactivity of tetraarylborates were published in 1967 by Williams et 

al.,[41,42] where they were able to isolate biphenyl, 1-phenyl-1,4-cyclohexadiene, and sodium 

diphenyl borinate following 254 nm irradiation of sodium tetraphenylborate (1.20; Figure 1.9) in 

aqueous or alcoholic solutions. Depending on whether the reactions were carried out under air or 

N2 gave differing amounts of the organic products (~59% biphenyl vs. 97% 1-phenyl-1,4-

cyclohexadiene respectively). Most importantly, Williams et al. were able to determine that both 

benzene rings in the biphenyl product came from the same molecule of 1.20, and that the C-atoms 

connecting those rings were originally bound to boron. In light of these findings, they proposed 

that excitation of 1.20 results in a di- -́borate rearrangement, similar to the Zimmerman 

rearrangement, which couples two of the C-atoms bound to boron and leads to a series of 

rearrangements prior to releasing sodium diphenylborinate and the organic products. These results 

were later supported by the work of Schuster (1.21),[44] who isolated and crystallographically 
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characterized the first boratanorcaradiene (1.21a) formed from a ñwalkò rearrangement after the 

CïC coupling event. Despite the varying groups on 1.21, this photoreaction is not selective for 

specific aryl groups on boron, generating a mixture of both biphenyl-phenyl (1.21a and 1.21aô) and 

phenyl-phenyl (1.21b) coupled products in equal amounts. 

 

Figure 1.9 Photoreactivity of tetraarylborates 1.20 and 1.21 as interpreted by Williams, Schuster, 

and Eisch 

 

Eisch and co-workers offered a different interpretation of these photoreactions based on trapping 

experiments conducted with diphenyl acetylene, which gave the borirene species 1.22.[46] Their 

rationalization for obtaining this product was that a diphenyl borene anion was formed in solution 

and subsequently trapped by the alkyne, although Schuster was not able to reproduce these results 

in a later report.[48] Additional reactivities of note are those listed in Figure 1.10, which includes 
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the photostability of spiro-compound 1.23 due to its rigid structure[45] and various photochemical 

di- -́borate rearrangements (1.24 ï 1.27).[49,50] With respect to the latter set of transformations, all 

of the products generated by photolysis were found to be highly air-sensitive, a common feature of 

molecules bearing a borirane/borirene or boretane ring (saturated/unsaturated three-membered or 

four-membered boracycles respectively). 

 

Figure 1.10 Photoreactivity of organoborates 1.23 ï 1.27 

 

1.3.3 Photoreactivity of B(ppy)Mes2 and its Derivatives 

Our interest in organoboron photochemistry began roughly 10 years ago, with the discovery that 

N,C-chelate organoboron compounds such as 1.28 rapidly lose their blue fluorescence (ɚ = 480 nm 

and ūfl. ~ 10%) and change color (colorless to deep blue; Figure 1.11) upon irradiation with UV 

light.[51] NMR spectroscopy revealed that an intramolecular rearrangement had occurred, where 

one of the mesityl substituents formally inserts into the BïCPh bond. The product 1.28a represents 

one of the first examples of an azaboratabisnorcaradiene (or base-stabilized borirane), and is highly 

reminiscent of 1.21a as characterized by Schuster.[44] The photochemical transformation of 1.28 

was found to be extremely efficient, with a photoisomerization quantum yield of 0.80 relative to 
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potassium ferrioxalate, while the thermal reaction from 1.28a Ÿ 1.28 was found to be quite facile, 

with a half-life at room temperature of ~462 minutes and activation barrier of 26.3 kcal/mol. 

Different from other four-coordinated boron compounds which display HOMO(ˊ-backbone) Ÿ 

LUMO(ˊ*-backbone) as their S1 transition (see Section 1.5.5), 1.28 possesses a CT transition from 

HOMO(ˊ-Mes) Ÿ LUMO(ˊ*-backbone) as its lowest energy transition, which is thought to be 

responsible for its unique reactivity. 

   

Figure 1.11 Photochromism of N,C-chelate organoborate 1.28 

 

In an effort to understand and expand this photoreactivity, different N,C-chelate organoborates with 

substituted backbones were prepared and investigated (1.29 ï 1.33; Figure 1.12). The emission of 

these molecules and visible colors of their respective dark isomers are red (1.29/1.30) and blue-

shifted (1.31) relative to 1.28 due to the electron-withdrawing and electron-donating ability of the 

substituents on ppy which tune their LUMO levels.[52] In all three examples, the quantum yield of 

photoisomerization was found to be lower compared to 1.28 (e.g. ūPI-1.29 = 0.30; ūPI-1.31 = 0.51). 

While the reverse transformations from 1.29a/1.31a Ÿ 1.29/1.31 are accessible with heating at 70 

oC, compound 1.30 was found to be unstable towards prolonged irradiation; a common feature of 

fluorinated N,C-chelate organoborates that is not yet understood. Incorporating metal atoms such 

as platinum(II) or gold(I) into the ˊ-conjugated backbone of 1.28 results in compounds with far 

worse photochromic switching ability due to low lying metal-to-ligand CT (3MLCT) states in 1.32 

and extended ˊ-conjugation in 1.33,[53,54] both of which introduce competing excited state 

deactivation pathways. 
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Figure 1.12 Compounds 1.29 ï 1.33 with varying substituents on the ppy-backbone 

 

Replacing pyridine by other neutral donors such as N-heterocyclic carbenes (NHC; 1.34/1.35) and 

(benz)azoles (1.36 ï 1.41) gives compounds that display additional photo/thermal reactivity beyond 

those demonstrated in the parent molecule. Beginning with 1.34/1.35 (Figure 1.13),[55] the stronger 

donating ability of NHC vs. pyridine increases their HOMO-LUMO gap relative to 1.28 by 

destabilizing the LUMO level. As such, compounds 1.34/1.35 absorb in the UV region (< 320 nm) 

while maintaining the analogous S1 transition of HOMO(ˊ-Mes) Ÿ LUMO(ˊ*-backbone). Similar 

to the photoreactivity of 1.28, the quantum yield of isomerization for 1.34/1.35 are quite high at 

0.75 and 0.60 respectively. The base-stabilized boriranes (1.34a/1.35a) generated by photolysis are 

thermally stable at 110 oC and even air-stable for several days in the solid state. Compounds 

1.34a/1.35a can be sensitized by 350 nm light however, leading to the formation of products 

1.34b/1.35b, where boron has formally inserted into one of the CïH bonds on the backbone of the 

ligand. It is believed that these transformations occur via a borylene intermediate Int1  which attacks 

the phenyl CïH bond following CïN bond rotation of the backbone.  
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Figure 1.13 Photochemical borylene generation and CïH activation of 1.34/1.35 

 

Irradiation of the (benz)azole-chelate compounds 1.36 ï 1.39 (Figure 1.14)[56] results in thermally 

unstable boriranes 1.36a ï 1.39a that undergo CïH bond activation of the methyl group on the 

borirane ring, generating intermediates 1.36b ï 1.39b. Additional heating induces further 

transformations, such as a 1,3-sigmatropic boryl shift to give ñcò and subsequent inversion of the 

chirality at the C2 position of the (benz)azole unit yielding ñdò. The two most interesting features 

of this reaction sequence are: 1) the ring-opened transition state (TS) going from ñcò to ñdò as it is 

highly reminiscent of spiropyran photochromism,[18] and 2) the ability to switch the chirality at the 

azole-C2 atom with heat/light, which could potentially allow organoboron compounds to be used 

for controlling the stereochemistry of organic molecules. 

 

  

Figure 1.14 Multistructural transformations of 1.36ï1.39 upon irradiation and heating 




























































































































































































































































































































































































































































