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Abstract

The works described herein are broadly concemi¢iul exploring the interactions between light

and bororc 0 n't a i-canjugated systems in order to build a complete understanding of the
relationship between molecular structure and reactivity. Despite rapid progress in the field of N,C
and C,Cchelate oganoborate photochemistry over the past ten years, only the effects of different
"-conjugated backbones have been well documented, with the impact of the aryl substituents being
virtually unknown. To remedy this deficiency and harness the full poterftithi® class of
photochromic materials, methodologies for obtaining prochiral organoboranes and their respective
chiral N,G or C,CGchelate organoborates have been developed in order to investigate the influence

of boron substitution on their excitetiatereactivity.

Chiral N,C-chelate organoboron compounds bearing two different aryl groups at the boron center
have been found to undergegioselectivgphotoisomerization involving the less bulgybstituent
exclusively, generating various highly colorbeestabilized boriranes with an-atom on the
threemembered ringThese species thermally isomerize tdl4raborepia via direct Hatom
transfer fromboracycle to pyridine with concomitanig expansionFurthermore, ppropriate
functionalization with rasityl/heterocycle substituents (thienyl, furyl and derivativesables
guantitativephototransformatiomyielding rare chiral N,B,Xembeddeceterocycleqe.g. base
stabilized 1,2thiaborinines and 1;8xaborinines)which displaystrong bluegreen to eangered
emission in the solid stat®lechanistic insights on these highly regioseledtigasformations were

obtainedvia kinetic data and computationalestigations on their excitestates.

The effect ofchargetransfer characteon the photoreactity of this class of photochromic
molecules was also investigated by substituting the aryl groups eé¢i¢l&te organoborates with

varying aminedonors.These compounds possess bright and tunable clrarggfer luminescence
il



dependingon the donor strengt of the amine functionalityas well as donedependent
photochromic switchinglThesenew findings help elucidate the influence of electronic structure on

the photoreactivity of N,&helateorganoborates.

Lastly, @mbining a threecoordinated boron (BMes moiety with a fourcoordinated
photochromimrganoboromnit leads to a series of new diboron compounds that undergettaar

reversible color switching in responsestomuli of light, heat, and fluoride ions.
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Chapter 1

l ntroducti on

Borongets its name from the term borax (Arabi¢ r aq meani ng Awhiteod),

it was originally isolated, by analogy wittarbondue to their chemical similai#s. Unlike its
neighbor on the periodic table however, boron only possesses enough valence electrons to form
three covalent bonds. This means that organoboron compounds are inherently electron deficient
and typically adopt a trigonal planar {spybridized) geometry with the empty, prbital of boron

lying orthogonal to the bonding plane. In this form, boron is isoelectronic and isostructural with a
positively charged carbocation, which gives rise to many of the applications often associated with
trivalent organoboranese(g. organic synthons, electraransport materials, components of
catalysts, and anion sensors). Coordinatively saturating these systems with anionic or neutral Lewis
bases yields tetrahedral, fecwordinated boron compounds with a formabative charge. This

new bonding arrangement significantly alters the orbital composition of the resulting molecules,
imparting new features such as intense charge transfer (@iijdscence and, in some cases,

unique photochemical reactivities such astochromism or photoelimination.

The contents of this thesis will documemy recent efforts towards understanding and diversifying

the previously discovered photoreactivity of N;@elate organoboron compounds. In particular,

we aim to establish the role of the aryl groups on the boron atom through their systematic
substitution, a well as develop new phototransformations by exploiting exsiizte: dynamics and
reaction selectivities. With these goals in mind, simplified synthetic routes to prochiral boron
reagents of the form Ar 6i®CHOI C| wilt b2 desciibred, alon@ r vy |
with the preparation and photoreactivity of new, chiral f§l@late organoboron compounds.

Furthermore, attempts to: 1) develop new kédficiency bororbased emitters for organic light
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emitting diods (OLEDs), and 2) establish fotstate switching in photochromic diboron systems
will be described, while highlighting possible strategies for improving these types of functional

materials.

This chapter will begin with a brief overview of concepts related to photophysical and
photochemich processes, followed by an introduction to photochromic systems and a
comprehensive review of organoboron photochemistry. The original motivations for utilizing four
coordinated organoborates in optoelectronieg).(OLEDs) will be discussed, as well aset
discovery of several new classes of photoresponsive organoboron molecules and their potential

applications.

1.1Interactions between Light and Matter

Light from the Sun has played an integral role in the development of man and his environment
since the daw of time, with the evolution gfhotosynthesi sophisticated series of photophysical

and photochemical processes) representisgiring example. Despite this intimate relationship
between light and matter, the development of photochemistry as alideseims highly limited

until the second decade of the twentieth century, mainly because the only light source available to
pioneersinthisareawasthes‘sh%.ln fact, it wasnot unt i | after
orbital theory around 1932950, which gave the theoretical framework for interpreting the
absorption spectra of organic molecules, that the concepts needed to understandtakesend

their underlying photophysical and/or photochemical processes ent&fg8ihce the 1960s, the

fields of photochemistry and photophysics have blossomed, with various relationships between
structure and photochemical reactivity or photoluminescence now well established and methods of

harnessing their utility dammented”*? In spite of their cleadifferences, photochemistry and



photophysics are often mischaracterized as equivalent, which necessitates the separate introduction

of each topic in the following sections.

1.1.1Photophysical Processes

Photophysics refers to a series of excitation and desicth processes that can occur once a
molecule has absorbed photons of suitable energy (see Figure 1.1 and TdbleThd)act of
absorbing light I) promotes the molecule to a higher energy electronic state with the same spin
multiplicity, as opposed to a higher vibrational state within the same eliecstare. Compared to
nuclear motion, electronic transitions induced by absorption are virtually instantaneoti$)(10
meaning that molecular excitation must occur to a new vibrational level within a higher electronic
state of similar nuclear positiortbjs is known as the Frandgkondon principle. From this Franck
Condon state, the molecule has several different methods of releasing its excess energy. It can
fluoresce 2), which dissipates energy radiativébllowing relaxation tahe lowest excited ate,

or undergo isoenergetic radiationless transitions resulting in a vibrationally excited molecule in a
lower electronic state. When these processes occur without a change in spin multiplicity, it is
referred to as internal conversidd),(while those imolving a spin flip are known as intersystem
crossing) (&ndl rTever se i nt eb). Giyes that singlettodriplstand g (T
triplet to singlet transitions are forbidden by spin selection rules, prafdsslie onlydirectway

to geneate a triplet excitedtate from a singlet ground state. Once a triplet excited state has been
accessed, the molecule can undergo radiative ded@@ysinglet ground statéia phosphorescence

(6). Since this transition is forbidden, the lifetime pifosphorescence tends to be significantly
longer than fluorescence, ranging from microseconds to seconds. Vibrational rela®ds@nfast
radiationless process that returns the excited molecule to the lowest energy vibrational state within
its currentelectronic state, and is typically governed by intermolecular collisions of the excited
species with neighboring molecules such as solvent. In combination with internal conv@xsion (

3



this is one pathway that returns molecules to their ground statgu@h&um efficiencgf radiative

deactivation pathways (fluorescence or phosphorescence) is defined as:

>

Equation 1 0 B OB,
> >

whereki s t he rate of yisatheisanof thegated &l campeting procdsseg k
including photochemical transformations. This relationship becomes important when designing
photoresponsive materiale.g. emitters for OLEDs or photochromic systems), as one needs to

consider how this value can be either maximiae minimized depending on the situation.

E NFT= Q) — —
) — == /(3
=__ T2 :--+=E
S =
== (5) —
) _—— Tl
Q) == - )
= —— Vibrational States
— 7 (6) = Electronic State
[ l Radiative Processes
S + Non-radiative Processes
0 v
=== Photochemical Reactions

Figure 1.1 Jablonski diagram illustrating the various processes that occur following light

absorption (Reproduced from Ref. 11)

Table 1.1 Summary of photophysical processes and their associated rates

Process Name Time Scale (s)

(1) Absorption 105

(2 Fluorescence 107 10¢7
(3) Internal Conversion 10127 10°°
(4) Intersystem Crossing (ST) 10727 10°
(5) Reverse Intersystem Crossingi(B) 107 10
(6) Phosphorescence 10°7 10°
(7 Vibrational Relaxation 10°37 1012
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It is important to keep in mind that the excited states described above refer to states that have
specific electrordistributions within their molecular orbitals. As a consequence, a molecule in its
excited state shoul d n odtatebnelecole busrathdreamewdchemisal a fi h
entity with different bond lengths, geometry, charge distribution, tegdémcrearrange its

structure, and ability to interact with other molecules. For example, excited molecules can
sometimes associate themselves with other ground state species (Figure 1.2). When this occurs
between two molecules of the same chemical natbey, form excimers (excited dimer), which

exhibit broad, reghifted emission relative to their individual monomers. This type of dimerization

can also occur between two different types of molecules, leading to the formation of exciplexes
(excited complex®). Exciplexes are more commonly observed when an elegtmom or 6 s ex ci t
state interacts withanelectranc c e pt or 6 s ground state,-transfesul ti ng
(CT) charactel*?

A"+ A ——=[A*A| Excimer

(a) A+ hv
T™A*+B —|A*-B| Exciplex

n—= Interactions

(b) O *+ O —>*—>BI Emissi
“ ‘O‘ 009000

Violet Emission

Figure 1.2 (a) General schematic showitige formationof excimers and exciplexesd(b) the

" -stacked dimer formation of pyrene leading to blue excimer emission

Excimers are different from excited state dimers in that the latter refers to the excited states of
stable dimers which are formedthre ground state prior to excitation. The first report on excimers
appeared in 1956% where Forster and cavorkers showed that pyrene excimer emission could be

observed even at relatively low concentratiob@ {M) due to the long fluorescence lifetime of
5



pyrends excited state (650 ns). Many of the waibwn excimer emitters are based onypwgtlic
aromatic hydrocarbons (PAHs), where ex<i mer f

interactions between one excited state and one ground state aromatic molecule.

This notion of excitegtate molecules being their own entities becomes idlyamportant when
discussing photochemistry, as the differing chemical/physical properties beéxeiged and

groundstate species is what gives rise to the unique features availablddatiee

1.1.2Photochemical Processes

The discipline of photochestry is concerned with the study of chemical change induced by light
following the promotion of molecules from thgiround statd¢o an electronicallgxcitedstate By

virtue of the fact that excitestates are generateth external perturbation, theyenecessarily
transient and only exhibit their unique properties when they survive long enough to do so. There
exist many different pathways that can deactivate exsi@e species (Figure 1.3; top), such as

the photophysical processes described in &ectl.1.1 €.g. radiative and nomadiative
deactivation), bimolecular electroror energy transfét? and unimolecular photochemical
transformations. In #nlatter, radiationless transitions result in chemical reactions that change the
molecular composition of the starting speciesbondb r ea ki ng and/ or i someri z
excess energy is dissipated. Due to the competitive nature of all thbsaystthe ultimate fate

of excitedstate species is governed by the various rates (lifetimes; see Table 1.1) of these processes
for a given system. Photochemical reactions are often categorized into four different types based
on their mechanism (see Figut.3; bottom): (a) hot ground state; (b) adiabatic; (c) diabatic; and

(d) reactions that proceeth intermediates.



Luminescence

*hv' (Radiative Decay)

Degradation to Heat
(Nonradiative Decay)

Photoreaction
(Chemical Reaction)

T/%% ) "'\ h3 N

h3 h3 I h3 P : N
A P A P A P A P
@ (b) (c) (d)

/A
(@ A+hv A*\A+ heat
P

Figure 1.3 Various pathways for an excitetiate species to lose its energy (tépand cross
sections of excitedand groundstate potential energy surfaces along the reaction coordinate

leading fromA to P in four different types of lpotoreactions (bottortt}

@Il n a Ahot 0 gtiono then akcitesl imalec@es imeediately undergo internal
conversion to a vibrationaHgxcited electronic ground state, which can either form the
productP or relax back to the starting speciés Due to the rate at which vibrational
relaxation occurs isolution, these types of reactions are more likely to generate product
when performed with molecules in their gaseous state at low temperature and pressure.

(b) In adiabatic reactions, the entire transformation occurs along the estitedpotential
energysurface, yielding the excitestateform of the product®*) before it relaxes back to
the ground state. Given the need to remain in the exsitgéd over the course of the
reaction, these types of reactions often occur through ldivger triplet stateswhere the
competing photophysical processes are relatively slow. In cases where adiabatic reactions
proceed through singlstates, structural changes are usually miedg. proton transfer)

with a low activation barrier.



(c) Diabatic reactions involve the direct formatiorRofia a conical intersection that connects
the excitedand ground state potential energy surfaces geometrically.

(d) As the name suggests, reactions that involve intermediates are photochemical
transformatios where a reactive intermediate with low lying exciéates is generated,
thereby overcoming the barrier required to fdPmSome common intermediates in these

reactions are carbenes, biradscaind zwitterions.

While there aremany different types ofphotochemical reactions.g. cistrans isomerization,
electrocyclization, sigmatropic rearrangements,-diethane rearrangements, photocycloaddition,
photoinduced nucleophile addition, photoinduced proton addition, and photoinduced electron

transfer)?* only a select few are ad by photochromic systems in their photochemical switching.

1.2 Photochromism

Photochromism is defined as the reversible transformation of a chemical entity between two states
eachwith distinct absorption profiles, wherein at least one of the transfonsaisogoverned by
light.*® This unique property of certain organic molecules has been known sincedti€00s,

with the first reported example being the photochemically driven addition, td €@tracene as
observed by Fritsche in 1867 Many decades lateseveralo f t he now ficl assi co
systems such saspiropyranst” spirooxazine$§® fulgides!® diarylethenes (DTEZ]® and
azobenzen&slwere discovered and have since been utilized in several applications such as optical
memory devices, molecular switchesmart windows, and ophthalmic glas&g?
Mechanistically, the photochromic systems listed above are based orcisihansisomerization
around a C=C or Nelebtrogdiaatinhsaccdrding td theoWoodsv&tdffman

rules (see Figure 1.4 for an example of DTE photoswitching;;Y 1.18. With respect to
photochromic systems that incorporate boron, there exiséw reports on DTEs bearing
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triarylboron substituents, where the physical and chemical properties of the DTE are modulated by
the presence of the organoboron mol&ty® Switching directly at a boron core is far more rare
however with the only known examples being tbis-trans isomerization of azobenzeirased
N,C-chelate organoboron nwpoundsl.2 and 1.3/2°2% disrotatoryboraNazarov cyclization of

BMes, substituted borepif.4,2Y 1,2-pyridyl shift of borolelutidine adductl.55? and di” -borae

rearrangement N;Chelate orgaoborates described by us (see Secti@Bandl1.3.5.

Figure 1.4 Examples of diarylethene i} and known borotbased photoswitches reported by the

groups of Kawashiméi) ,**2% Yamaguchiii) ¥ and Braunschweigv)??

Despite the limited number of examples of photochromic systems based on boron, the
photochemistry of boranes and organoboron compounds possdsesgsaad rich history, with
some of the first reports on the photolytic decomposition of diboranetB))Blating back to
19131 For the purpose of this thesis, the following section will only focus on the phdivisac

of tri- and tetraaryl ayanoborates given their relevance to the topitmad"



1.3 Photochemistry of Organoboron Compounds

1.3.1Photoreactivity of Triarylboranes

One of the few examples of a pbractive triaryl boron system is the tris{aphthyl)boranel(.6;

Figure 1.5), originally reported in 19%7. Irradiation of1.6was claimed to result in the formation

of the Enaphthylborend..7, based on the isolation of hlnaphthyl anctis-1,2-cyclohexanediol

when the reaction was carried out in cyclohexene solution, suggesting a borapahapr
intermediate 1.8). Attempts to reproduce these results by Schttal®*® proved unsuccessful,
leading them to propose a different mechanism based on thendthane rearrangemerite(
Zimmerman rearrangemerit}, where photoexcitation generates thieQCcoupled1.9 which is
capable of undergoing rearrangement and rearomatization to give biradi€alThe boryl
comporent of this new biradical is speculated to abstract hydrogen from solvent or add to its double
bond (when the solvent is cyclohexene), after which a second rearomatization ancalbssybf

radicalgives the 1,dbinaphthyl product.

B(OH),

f . :‘ {“] “ﬁ.

C1°H7 O 910H7 C10H7
hv B O
Schuster O ’

1.10 l
OO C1oH7

+ B

SO
Figure 1.5 Photoreactivity ofl.6as proposed by Rams&y(top) and Schust&f! (bottom)

Unlike 1.6, no Q C coupled products are observed when triphenylborarid)(is irradiated in

cyclohexandFigure 1.6)*® Instead, Williams and eworkers isolated phenaind phenylboronic
10



acid as the major products. When the solvent was switched to methanol, irradiation gave the
expected biphenylTGC coupled product albeit in low yields. The isolated yields could be improved
by complexation of piperidine or pyridine witliphenylborane .121.13 in methanol prior to
irradiation, which generates mixtures biphenybhenytl,3-cyclohexadiene, and-ghenytl,4-
cyclohexadiee in ratios of 1.4:1.1:1:trace and 15.8:5:respectively (overall yield of ~85% in

both cases). Thincrease in OC coupled product formation with the addition of Lewis bases is
particularly noteworthy, as teereadant structurs and reactivitiearesimilar to those of tetraaryl

borates (discussed in Section 1.3.2) and-bh€late organoborates ($iea 1.3.3).

[:1\/[:] B(OH), OH
e eRe
@ cyhex ’

1.1

hv MeOH

88 ggngHz = :

1.12 1.13 112=14:11:1
113=158:1:25

Figure 1.6 Photoreactivity ofl.11i 1.13asestablished by Williant¥’

Based on their discovery that compound can undergo a botldazarw cyclization, Yamaguchi

and ceworkers attempted to extend this reactivity to simpler substrates such as dimesitylboryl
substituted (hetero)areneBigure 1.7;1.147 1.18).B% Insteadof cyclization, they observed the
formation of spirocyclic boraindanésl4ai 1.18aexclusively following 1 hour of irradiation with

a highpressure mercury lamp, which are reminiscerithephotoproducts obtained by photolysis

of arylalkenylketone¥% Mechanistically, excitation with UV light induces a [E$§matropic H

shift yielding either a zwitterionic or biradical intermedialel@" and 1.18&) intermediate.

Nanogcond laser flash photolysis (BF experiments in toluene or dichloromethane detected no
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transient species, while a broad amxd606008RE k
nm was noted in acetonitrile, suggesting that the intermedialy lilas some ionic character since
it can be stabilized in polar solvents. The subsequé@t libnd forming step must be very fast
given that no ignals were observed when theR.[experimentsvere performed in toluene. One
interesting aspect of this reagctigs the initial [1,6]sigmatropic rearrangement, which occurs
necessarily in the exciteztate owing to the different orbital phasatarafacialpf the H and G

atoms involved in the reactiavhen in the ground state

ey odp

‘ 1.14a - 1. 16a

><

1.17 1.17a

Aﬂﬂ
—\—L—\
o b
X X X
nonon

Zow

-CHs

{
oy g ﬁg& ﬁﬁ

F t
Most Likely the ormation
(b) Intermediate
Based on
Nanosecond
Flash Photolysis
B
N
H S
1.18a

Figure 1.7 (a) Photoreactivity of BMes functionalized (hetero)arenésl4i 1.18 and(b) the

proposed mechanism for the formatiorlaf&

One final photoisomerization of note is the conversion cbbiszocycloborabutylidene into the
bis-boronbridged stilbend.19via high energy light (254 nngs shown in Figure 1.8 he product

of this isomerization was found to be air and moisture stalie to the bulky 2,4;6

12
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triisopropylphenyl groups on boron. Based on DFT calculations, &iafgproposed a mechanism
involving double homolytic BCpr bond cleavage to give a tetraradical intermediate that readily

undergoes BC bond formation followingotation of the boryl and phenyl fragments.

iPr,
ﬁj\ipr é/ipr
iP
wr pre-1.19 ; 1.19

Figure 1.8 Photoisomerization dfis-benzocycloborabutylidene into thedder diborolel.19

1.3.2Photoreactivity of Tetraarylborates

Unlike their triarylboraneounterparts, tetraarylborates are vkelbwn to undergo photoreactions,
with the results of these experiments causing significant debate in the litérfatti®ome of the
first report§” on the photoreactivity of tetraarylborates were published in 1967 by Wilkams
al.,***2 where they were able to isolate biphenylpHenytl,4-cyclohexadiene, and sodium
diphenyl borinate following 254 nm adiation of sodium tetraphenylborateZ0 Figure 1.9) in
agueous or alcoholic solutions. Depending on whether the reactions were carried out under air or
N2 gave differing amounts of the organic products (~59% biphesylR7% ZXphenytl,4-
cyclohexadiengespectively). Most importantly, Williamst al. were able to determine that both
benzene rings in the biphenyl product came from the same molecu0o@nd that the @Gtoms
connecting those rings were originally bound to boron. In light of thesmd@sdthey proposed
that excitation of1.20 results in a di -borate rearrangement, similar to the Zimmerman
rearrangement, which couples two of theattms bound to boron and leads to a series of
rearrangements prior to releasing sodium diphenylborimetetee organic products. These results

were later supported by the work of Schuster.21),“4 who isolated and crystallographically

13



characterized the first boratanorcaradieh@l@) formed fran a fAwal ko rearrangem

Ci C coupling eventDespite the varying groups dn21, this photoreaction is not selective for
specific aryl groups on boron, generating a mixture of both bipkemsyl .21aandl . 2)hrad 6

phenytphenyl (L.21b) coupled products in equal amounts.

Williams: @ Q v, QQWCFKU‘) ++PhBONa
o0 o oo”

1.20

Schuster: Q @ Na Q ©—|Na Q ©—|Na
B B

S o Ity U Wy U
Ph
@ Q 1.21a 1.21a’
“B hv

Jage
j% Phﬁt

Ph

1.21b

" |Na .
QO‘BQL @\ dNa+ O Ph Q ©—|N
3D 5 ) VAN

1.20

Eisch:

Figure 1.9 Photoreactivity of tetraarylboratés?20and1.21as interpreted by Williams, Schuster,
and Eisch

Eisch and cavorkers offered a different interpretation of these photoreactions based on trapping
experiments conducted with diphenyl acetylene, which gave the borirene sp&2iéd Their
rationalization for obtaining this product was that a diphenyl borene anion was formed in solution
and subsguently trapped by the alkyne, although Schuster was not able to reproduce these results

in a later report’® Additional reactivities of note are those listed in Figure 1.10, which includes

14



the photostability of spircompoundlL.23 due to its rigid struct@*® and various photochemical
di-"-borate rearrangements.241 1.27).49%% With respect to the latter set of transformations, all
of the products generated by photolysis were found to be hightgasitive, a common feature of
molecules bearing a borirane/borirene or boretane ring (saturated/unsaturatedetimteered or

four-membered boracycles respectively).

1.23

QQMQ@ @QWQ@
V20 Y-S S -

1.24 1.24a 1.25 1.25a

Mes

Q Q _hv _ Q@ CH3OD D D Mes, hv I
)\)\ B———Mes

Ph% O Ph— >_ph 2) CH3C02D Ph Ph / _

1.26

Figure 1.10 Photoreactivity of organoboraté23i 1.27

1.3.3Photoreactivity of B(ppy)Mes: and its Derivatives

Our interest in organoboron photochemistry began roughly 1@ wem, with the discovery that
N,C-chelate organoboron compounds such.a8r api dl'y | ose their bl ue
a n dy. ~@0%) and change color (colorless to deep blue; Figure 1.11) upon irradiation with UV
light.®¥ NMR spectroscopy revealed that an intramolectgarrangemenhad occurred, where

one of the mesityl substituents formally inserts into th€Rbond. The producl.28arepresents

one of the first exampéof an azaboratabisnorcaradiene (or bstabilized borirane), and is highly
reminiscent ofl.21aas characterized by SchustérThe photochemical transformation df28

was found to be extremely efficient, with a photoisomerization quantum yield of 0.80 relative to
15
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potassium ferrioxalate, while the thermal reaction flog8aY 1.28was found to be quite facile,

with a halflife at roomtemperature of ~462 minutes aadtivation barrier 026.3 kcal/mol.

Different from other fomc o or di nat ed boron compohadlsb ovheé )c hY d
L U MO (-backbone) as thein &ansition (see Section 1.5.8)28possesses a CT transition from
HOMO{Mes) Y L adkbgné)as its lowest energy transition, which is thought to be

responsible for its unique reactivity.

Figure 1.11 Photochromism of N,&helate orgaoboratel.28

In an effort to understand and expand this photoreactivity, differenthe@te organoborates with
substituted backbones were prepared and investight2@ii (1.33; Figure 1.12). The emission of
these molecules and visible colors of theispective dark isomers are rdd291.30 and blue
shifted (L.31) relative tol.28due to the electrewithdrawing and electredonating ability of the
substituents on ppy which tune their LUMO leviétsin all three examlgs, the quantum yield of
photoisomerization was found to be lower comparetl.28 (e.g.lUpr120= 0 . 310:1= 0.20).
While the reverse transformations frdn29a1.31aY 1.291.31are accessible with heatiagj70

°C, compoundL.30was found to be unstable towards prolonged irradiation; a common feature
fluorinated N,Cchelate organobyates that is not yet understoodcdrporating metal atoms such
asplaa i num( 1 1) or -cognudatkd dagkbonerdfi2@®resultd ie cormponds with far
worse photochromic switching ability due to low lying metaligand CT ¢MLCT) states inl.32
and e x t-eomugatiah in1.335%% both of which introduce competing excited state

deactivation pathways.
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Figure 1.12 Compoundd4..297 1.33with varying substituents on the ppackbone

Replacing pyridine by other neutral donors such dmedérocyclic carbenes (NHC;34/1.35 and
(benz)azolesl( 361 1.41) gives compounds that display additional photo/thermal reactivity beyond
those demonsdted in the parent molecule. Beginning witB41.35(Figure 1.13)** the stronger
donating ability of NHCvs. pyridine increases their HOMOUMO gap relative t01.28 by
destabilizing the LUMO level. As such, compouldd34/1.35absorb in the UV region (< 320 nm)
while maintaining th@nalogouss; transitonofH OMO{M&e s ) Y L Uadkdgné)*Similar

to the photoreactivity 01.28 the quantum yield of isomerization fbr341.35are quite high at
0.75 and 0.60 respectively. The basabilized boriranesl(34d1.359 generated by photolysis are
thermally stable at 118C and even aistable for several days in the solid state. Compounds
1.34d1.35acan be sensitized by 350 nmHighowever, leading to the formation of products
1.34K01.35h where boron has formally inserted into one of thél®onds on the backbone of the
ligand. Itis believedhatthese transformations ocota a borylene intermediatatl which attacks

the phewl Ci H bond following G N bond rotation of the backbone.

17



1.34-1.35

Figure 1.13 Photochemical borylene generation aridHGctivation 0f1.341.35

Irradiation of the (benz)azolehelate compoundk.361 1.39(Figure 1.145% results in thermally

unstable borirane$.36a1 1.39athat undergo CH bond activation of the methyl group on the

borirane ring, generating intermediatés36b i 1.39h Additional heating induces further
transformations, suchasa®3d gmat r opi ¢ b odr yaln ds hsiufbts etqathegnitv & niv
chirality at the C2 positdbonThée thwe mHbenhz)azel
of this reaction sequence are: 1) the tipgned transition statd$) goi n@ fdwodis Ai t i s
highly reminiscent of spiropyran photochromi8fhand 2) the ability to switch the chirality at the

azoleC2 atom with heat/light, which could potentially allow organoboron compounds to be used

for controlling the stereochemistry of organic molecules.

Azole, 1.36:

Benzazole, 1.3
1.3
1.3

XX X X
nunitn
ovwwm

7:
8:
9: N-CH3

Figure 1.14 Multistructural transformations df.3G 1.39upon irradiation and heating
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