Titel: Enantioselective Rhodium-Catalyzed Allylic Alkylation of \(\beta,\gamma\)-Unsaturated \(\alpha\)-Amino Nitriles: Synthetic Homoenolate Equivalents

Autoren: Timothy B. Wright, Ben W. H. Turnbull, and P. Andrew Evans

Dieser Beitrag wurde nach Begutachtung und Überarbeitung sofort als "akzeptierter Artikel" (Accepted Article; AA) publiziert und kann unter Angabe der unten stehenden Digitalobjekt-Identifizierungsnummer (DOI) zitiert werden. Die deutsche Übersetzung wird gemeinsam mit der endgültigen englischen Fassung erscheinen. Die endgültige englische Fassung (Version of Record) wird ehestmöglich nach dem Redigieren und einem Korrekturgang als Early-View-Beitrag erscheinen und kann sich naturgemäß von der AA-Fassung unterscheiden. Leser sollten daher die endgültige Fassung, sobald sie veröffentlicht ist, verwenden. Für die AA-Fassung trägt der Autor die alleinige Verantwortung.

Zitierweise: Angew. Chem. Int. Ed. 10.1002/anie.201900442
Angew. Chem. 10.1002/ange.201900442

Link zur VoR: http://dx.doi.org/10.1002/anie.201900442
http://dx.doi.org/10.1002/ange.201900442
Enantioselective Rhodium-Catalyzed Allylic Alkylation of \(\beta,\gamma \)-Unsaturated \(\alpha \)-Amino Nitriles: Synthetic Homoenoenate Equivalents

Timothy B. Wright, Ben W. H. Turnbull and P. Andrew Evans*

Abstract: An enantioselective rhodium-catalyzed allylic alkylation of \(\beta,\gamma \)-unsaturated \(\alpha \)-amino nitriles is described. This protocol provides a novel approach for the construction of \(\beta \)-stereogenic carbonyl derivatives via the catalytic asymmetric alkylation of a homoenolate equivalent. The particularly challenging nature of this transformation is highlighted by the fact that three modes of selectivity must be manipulated, namely regio- and enantioselectivity, in addition to geometrical control. The \(\gamma \)-stereogenic cyanoenamine products can be readily hydrolyzed in situ to afford the \(\beta \)-substituted carboxylic acids, which in turn provide expedient access to a number of related carbonyl derivatives. In addition, control experiments indicate that the chiral rhodium-allyl intermediate facilitates the selective formation of the \(E \)-cyanoenamine products, which is critical since the \(Z \)-isomer affords significantly lower enantiocontrol. As a consequence, garnering excellent \(E \)-selectivity in the alkylation step is vital for the development of a practical process.

Polarity reversal of a conventional functional group often provides a strategic advantage in synthesis, which can circumvent the inherent limitations associated with a more traditional bond-forming reaction.\(^1\) For instance, heteroatom-stabilized allylic anions constitute useful homoenoenate synthons for the construction of \(\beta \)-substituted carbonyl compounds.\(^2\) Nevertheless, the utility of these masked homoenolate equivalents is complicated by their ambident nature, which often leads to the formation of regiosomeric products (Scheme 1A).\(^3,4\) Notwithstanding this limitation, the asymmetric functionalization of allylic amines, carbamates and \(\alpha \)-amino nitriles has been successfully described, albeit these approaches employ a chiral auxiliary\(^5\) or require a stoichiometric chiral base\(^6,7\) to promote the formation of a chiral nonracemic lithium carbamion (Scheme 1B).\(^8,9\) We envisioned the development of an enantioselective transition metal-catalyzed variant, in which a heteroatom-stabilized allylic anion with a simple allyl electrophile would constitute an attractive approach to the asymmetric construction of \(\beta \)-stereogenic carbonyl derivatives. Although there have been several elegant advances in the development of asymmetric transition metal-catalyzed allyl-allyl cross-coupling reactions using achiral allyl nucleophiles (Scheme 1C),\(^9\) the analogous process with a heteroatom-stabilized allylic anion has not been forthcoming. Furthermore, in contrast to the aforementioned allyl-allyl coupling methods, which involve the enantioselective alkylation of either prochiral or racemic electrophiles, our strategy would employ an achiral allyl alcohol derivative in accord with our earlier efforts with more conventional pronucleophiles. For instance, we recently reported the enantioselective rhodium-catalyzed allylic alkylation reactions of prochiral ketones, nitriles and aldehydes.\(^10\)\(^-\)\(^13\) Nevertheless, the adaptation of this approach to encompass a homoenolate equivalent\(^14\) is significantly more challenging based on the fact that this process requires the coordination of three distinct modes of selectivity, namely, the regio- and enantioselectivity in conjunction with geometrical control. Herein, we now describe the first highly enantioselective rhodium-catalyzed allylic alkylation of \(\beta,\gamma \)-unsaturated \(\alpha \)-amino nitriles, which serve as synthetic homoenolate equivalents for the construction of \(\beta \)-stereogenic carboxylic acid derivatives (Scheme 1D). In this regard, this study delineates the importance of allylic anion geometry on the level of enantioselectivity in the rhodium-catalyzed process (vide infra).

Preliminary studies focused on the rhodium-catalyzed alkylation of the allyl \(\alpha \)-amino nitrile \(1a' \) (R = Me), which is readily prepared \(\text{via} \) a one-pot Strecker reaction of cinnamaldehyde and N-methylaniline in the presence of trimethylsilyl cyanide. Treatment of the lithium amion of \(1a' \) with allyl acetate (2) in the presence of the chiral complex derived from Wilkinson’s catalyst and \((R) \)-BINOL-POMe\(^{15} \) at \(-10^\circ\)C in tetrahydrofuran (THF), led to the exclusive formation of the \(\gamma \)-alkylation product as predominantly the \(E \)-isomer (Table 1, entry 1). Interestingly, while

\(^{[*]}\) T. B. Wright, Dr. B. W. H. Turnbull and Prof. P. A. Evans
Department of Chemistry, Queen’s University
90 Bader Lane, Kingston, ON K7L 3N6 (Canada)
E-mail: andrew.evans@chem.queensu.ca
Homepage: http://www.chem.queensu.ca/people/faculty/evans/pae.htm
Supporting information for this article is given via a link at the end of the document.
The major geometrical isomer (E)-3a′ was isolated with 87% enantiomeric excess, the minor derivative (Z)-3a′ was formed with significantly lower enantioselectivity (20-25% ee), thereby indicating that the geometrical selectivity in the alkylation is critical for garnering useful selectivity (vide infra). In an effort to determine the impact of various reaction parameters on selectivity, we elected to initially investigate the effect of solvent. To this end, N,N-dimethylformamide (DMF) afforded poor geometrical selectivity favoring the Z-isomer, whereas 1,2-dimethoxyethane (DME) provided excellent geometrical and enantioselectivity for the formation of (E)-3a′, albeit significantly reduced regioselectivity (entries 2 vs 3). Encouraged by this result, we hypothesized that increased steric bulk on the α-amino substituent may disfavor γ-alkylation, in which the more bulky α-amino nitrile 1a′ (R = Ph) provided slightly increases regioselectivity, albeit with lower enantioselectivity (entry 4). Gratifyingly, the ethyl substituted α-amino nitrile 1a (R = Et) provided a similar improvement in regioselectivity in addition to slightly higher geometrical and enantiocontrol (entry 5). Further studies demonstrated that increasing the temperature to 0 °C offered a slight increase in the propensity for γ-alkylation (entry 6). Finally, given the excellent regiocontrol observed in THF, we envisioned that a mixed solvent system may provide the ideal combination to afford a highly efficient and selective process. Gratifyingly, a DME/THF (4:1) solvent mixture offered exquisite levels of regio- and enantioselectivity, in addition to complete geometric control, thereby furnishing the cyanoenamine (E)-3a in 81% yield and with 93% enantiomeric excess (entry 7).

Table 2 summarizes the application of the optimized reaction conditions (Table 1, entry 7) to a number of allylic α-amino nitriles with allyl acetate. The reaction is tolerant of a variety of electron-rich and electron-deficient aryl groups at the γ-position, albeit electron-donating substituents on the aryl ring lead to slightly lower levels of regioselectivity (entries 1–6). Nevertheless, a key and striking feature of this reaction is the exquisite levels of geometrical control and enantioselectivity regardless of the electronic nature of the aryl substituent, which makes this process...
COMMUNICATION

amenable to the direct one-pot synthesis of \(\beta \)-stereogenic carboxylic acids (vide infra). The reaction is also tolerant of disubstituted aromatic groups, which afford good efficiency and excellent levels of enantiomeric excess (entries 7-9). Additionally, bicyclic aromatic groups as well as nitrogen, sulfur and oxygen based heterocycles can be incorporated with comparable levels of stereocontrol (entries 10-15). Remarkably, \(\gamma \)-vinyl substituted allylic \(\alpha \)-amino nitriles 1p-1r also undergo selective alkylation with excellent levels of regio- and enantioselectivity (entires 16-18), thereby extending the scope beyond aryl and heteroaryl groups.\(^{[17]}\) Interestingly, in the aforementioned examples there is no evidence for alkylation at the \(\epsilon \)-position, which significantly expands the synthetic utility of this process. Overall, the ability to achieve high levels of regio- and enantioselectivity, in conjunction with exquisite geometrical control, makes the alkylation of \(\beta \)-unsaturated \(\alpha \)-amino nitriles a powerful method for the asymmetric construction of \(\gamma \)-stereogenic \(\alpha \)-cyanoenamines, which offer a myriad of potential synthetic applications.

Scheme 2 highlights the potential utility of the current process in target-directed synthesis. For example, Scheme 2A illustrates the use of reduced catalyst loading in a gram-scale reaction, which furnishes cyanoenamine 3a with commensurable levels of efficiency and selectivity. Schemes 2B and C demonstrate the efficacy of allylic \(\alpha \)-amino nitriles 1 for the enantioselective construction of \(\beta \)-stereogenic carboxylic derivative 5a\(^{[18]}\) in good yield and with excellent enantioselectivity (Scheme 2A). Moreover, the carboxylic acid can be readily converted to a variety of other \(\beta \)-substituted carbonyl derivatives. For example, treatment with methylthiolium affords the methyl ketone 6a with complete conservation of enantiomeric excess (Scheme 2B). Alternatively, the acid-catalyzed esterification with methanol provides the \(\beta \)-stereogenic methyl hydrocinamate 7a, while standard amide-bond forming conditions furnish the benzyl amide 8a to further highlight the synthetic utility of this process. The expedient formation of \(\beta \)-stereogenic esters and amides by this method is significant, given the challenges associated with their formation via catalytic Michael addition strategies.\(^{19}\) For example, there is a paucity of methods available for the direct asymmetric addition of allyl nucleophiles to \(\alpha \),\(\beta \)-unsaturated esters\(^{[20]}\) and the analogous process with enamides is unknown at present.\(^{[21]}\) Furthermore, the alternative disconnection involving the catalytic 1,4-arylation would require a challenging skipped dienolate or dienamide derivatives as the Michael acceptor.\(^{[22]}\) Overall, the excellent level of enantioselectivity in the one-pot synthesis of 5a\(^{[23]}\) illustrates the importance of garnering high geometrical control in the catalytic alkylation given that (-)-3a is formed with significantly lower levels of asymmetric induction (Table 1, entries 1-3). Hence, the inability to control the geometry of 3 would require a tedious separation of the \(\delta \)-isomer in order to access the \(\beta \)-stereogenic acid 5 with high levels of enantiomeric excess.

Scheme 3. (a) Geometrical outcome in the protonation and methylation of the lithium anion derived from 1a. (b) Proposed model for the origin of geometrical control in the rhodium-catalyzed alkylation of 1a.

In order to provide further insight into the role of geometrical selectivity in the rhodium-catalyzed allylic alkylation, we investigated the protonation and methylation of the anion derived from 1a. The deprotonation of 1a under the previously optimized conditions (Table 1, entry 7), followed by the addition of either aqueous ammonium chloride solution or methyl iodide resulted in significantly reduced geometrical selectivity compared to the catalytic asymmetric allylic alkylation reaction (Scheme 3). Indeed, the \(\gamma \)-substitution products were formed with poor geometrical selectivity in favor of the \(\delta \)-isomer (Scheme 3A),\(^{[24]}\) which contrasts the excellent geometrical selectivity obtained for (E)-3a (\(\varepsilon\) 95:5) in the rhodium-catalyzed allylic alkylation (Table 2, entry 1). Furthermore, the alkylation with methyl iodide affords the same level of geometrical selectivity (\(\varepsilon\) 93:7) in the presence of the chiral rhodium catalyst, suggesting that the geometry of the allylic anion is not altered in the presence of the metal complex, but the nature of the electophile.\(^{[25]}\) This data suggests that the deprotonation of 1a affords a geometrical.

A. Gram-Scale Alkylation of 1a

B. One-Pot Synthesis of \(\beta \)-Stereogenic Carboxylic Acid 5a

C. Further Transformations of Carboxylic Acid 5a

Scheme 2. (a) Gram-scale alkylation of 1a with reduced catalyst loading; crude regio- and \(\varepsilon\)/Z selectivity reported. (b) One-pot synthesis of \(\beta \)-stereogenic carboxylic acid 5a. (c) Further transformations of acid 5a.
mixture of fluxional allylic anions, wherein the E-isomer preferentially reacts with the chiral nonracemic rhodium-allyl intermediate to furnish (E)-3a (Scheme 3B). Furthermore, the α-facial alkylation of the two geometrical isomers is a critical component to controlling enantioselectivity, which is not immediately evident from the one-pot process, thereby making the isolation of the cyanoenamines 3 an important feature for the development of this process.

In conclusion, we have developed a direct and highly enantioselective rhodium-catalyzed allylic alkylation of β,γ-unsaturated α-amino nitriles, which serve as synthetic homoenolate equivalents. A critical aspect to the development of this methodology is the ability to control the geometrical outcome of the transformation, given that the rhodium-catalyzed alkylation of discrete allylic anion isomers does not proceed with uniform enantiocontrol in the formation of E- and Z-allylation products. Overall, the ability to govern a highly regio- and enantioselective reaction provides efficient access to γ-stereogenic α-cyanoenamines, which represent potentially interesting synthetic homoenolates or equivalents. For mechanistic studies, see: (d) Oliver, S.; Beak, P.; Evans, P. A. Angew. Chem. Int. Ed. 2014, 53, 10759.

Acknowledgements

We sincerely thank the National Sciences and Engineering Research Council (NSERC) for a Discovery Grant and Queen’s University for financial support. NSERC is also thanked for supporting a Tier 1 Canada Research Chair (PAE) and for a PGDS3 Scholarship (TBW). We also acknowledge the Government of Ontario for an Ontario Graduate Scholarship (TBW).

Conflict of interest

The authors declare no competing financial interest.

Keywords: allylic substitution • β-amino nitrile • asymmetric catalysis • homoenolate • rhodium-catalyzed

[4] For a related example where the alkylation of an allylic cyanhydrin anion proceeds with complete α-selectivity (i.e. acyl anion), see: Turbill, B. W.; Oliver, S.; Evans, P. J. Am. Chem. Soc. 2015, 137, 15374.

[16] The use of a secondary allylic acetate furnishes the β,γ-stereogenic carboxylic acid with excellent β/α selectivity and in good yield, albeit with poor diastereosecontrol.

[17] Allyl-substituted allylic β-amino nitriles undergo allylic alkylation with poor regiocontrol. Studies on these systems are the subject of further investigation in our laboratory.
The absolute configuration of the product is assigned by comparison of the optical rotation for acid \(5a\) with the literature; see ref 5c, or Allin, S. M.; Essat, M.; Baird, R. D.; McKee, V.; Elsegool, M.; Edgar, M.; Andrews, D. M.; Shah, P.; Aspinall, I. Org. Biomol. Chem. 2005, 3, 809.

For an example of the enantioselective conjugate addition of a homoallylic Grignard to an \(\alpha,\beta\)-unsaturated ester, see: Wang, S.-Y.; Loh, T.-P. Chem. Commun. 2010, 46, 8694.

To our knowledge, a single catalytic enantioselective example of the conjugate addition of Grignard reagents to enamides has been reported, see: (a) Rodrigues-Fernandez, M.; Yan, X.; Collados, J. F.; White, P. B.; Hanusynyan, S. R. J. Am. Chem. Soc. 2017, 139, 14224. For a review on asymmetric conjugation additions to unsaturated amides and lactams, see: (b) Byrd, K. M. Beilstein J. Org. Chem. 2015, 11, 530.

The uniform level of enantiomeric excess between \(5a\) and \((E)-3a\) is attributed to incomplete hydrolysis of the minor \(Z\)-isomer. Please see SI for details on the independent hydrolysis of \((E)-3a\) and \((Z)-3a\).

Previous studies on the alkylation of related allylic \(\alpha\)-amino nitriles are known to provide predominantly \(Z\)-alkylation adducts.\(^{[5b]}\)

Methylation of the anion derived from \(1a\) in the presence of \(\text{RhCl}([\text{PPh}_3])_2\) and \((R)\)-BINOL-POMe affords \(9a\) with the same \(E/Z\) ratio, which is consistent with two distinct allylic anions reacting at different rates in the rhodium-catalyzed alkylation; please see SI for details.
Timothy B. Wright, Ben W. H. Turnbull and P. Andrew Evans*

Page No. – Page No.

Enantioselective Rhodium-Catalyzed Allylic Alkylation of \(\beta,\gamma \)-Unsaturated \(\alpha \)-Amino Nitriles: Synthetic Homoenoenate Equivalents

We report the first example of a catalytic asymmetric allylic alkylation of \(\beta,\gamma \)-unsaturated \(\alpha \)-amino nitriles, which function as synthetic homoenoenate equivalents.