Invariants of Modular Two-Row Groups

by

Yinglin Wu

A thesis submitted to the
Department of Mathematics and Statistics
in conformity with the requirements for
the degree of Doctor of Philosophy

Queen’s University
Kingston, Ontario, Canada
September 2009

Copyright © Yinglin Wu, 2009
Abstract

It is known that the ring of invariants of any two-row group is Cohen-Macaulay. This result inspired the conjecture that the ring of invariants of any two-row group is a complete intersection. In this thesis, we study this conjecture in the case where the ground field is the prime field \(\mathbb{F}_p \). We prove that all Abelian reflection two-row \(p \)-groups have complete intersection invariant rings. We show that all two-row groups with non-normal Sylow \(p \)-subgroups have polynomial invariant rings. We also show that reflection two-row groups with normal reflection Sylow \(p \)-subgroups have polynomial invariant rings. As an interesting application of a theorem of Nakajima about hypersurface invariant rings, we rework a classical result which says that the invariant rings of subgroups of \(\text{SL}(2, p) \) are all hypersurfaces.

In addition, we obtain a result that characterizes Nakajima \(p \)-groups in characteristic \(p \), namely, if the invariant ring is generated by norms, then the group is a Nakajima \(p \)-group.
Acknowledgments

I would like to thank both of my supervisors Professor Ian Hughes and Professor David Wehlau, whose expertise, understanding, patience, and support, added considerably to my graduate experience. I specially would like to thank Professor Ian Hughes for helping me select this thesis topic and guiding me through the whole research presented in this thesis. I would also like to thank Professor David Wehlau for many interesting and inspiring discussions, for generous support for years, and for devoting a lot time helping me edit my thesis. Finally, I together with my families would like to take this opportunity to show our eternal gratitude to my supervisors for their generous donations to my mother’s medical treatment.

A very special thanks goes out to my previous supervisor Professor Eddy Campbell for his inspiring year-long learning seminar on invariant theory, his support, and his encouragement.

I would also like to thank Ms. Jennifer Read for her great assistance and many valuable suggestions.
Lastly, I thank my parents, my wife and my wife’s family for love, support and patience, and thank my little daughter Jinfei for bringing me laughter everyday.
Statement of Originality

I hereby declare that the results in this thesis, unless accompanied by specific references, are original and have not been published elsewhere.

Yinglin Wu
Table of Contents

Abstract i

Acknowledgments ii

Statement of Originality iv

Table of Contents v

Chapter 1:

Introduction 1

1.1 Algebraic Structures of Invariant Rings 3

1.2 k-Row Groups and Their Kernels 6

1.3 What is this Thesis about 8

Chapter 2:

Literature Review 10
Chapter 3:

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Complete Intersections Adjoining an Extra Element</td>
<td>13</td>
</tr>
<tr>
<td>3.2</td>
<td>Abelian Reflection Two-Row p-groups</td>
<td>15</td>
</tr>
</tbody>
</table>

Chapter 4:

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Abelian Reflection Two-Row p-groups with Specific Normalizers</td>
<td>22</td>
</tr>
<tr>
<td>4.2</td>
<td>Two-Row Groups with Non-normal Sylow p-Subgroups</td>
<td>30</td>
</tr>
<tr>
<td>4.3</td>
<td>Two-Row Groups with a Normal Sylow p-Subgroup</td>
<td>35</td>
</tr>
</tbody>
</table>

Chapter 5:

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>A Theorem of Nakajima</td>
<td>40</td>
</tr>
<tr>
<td>5.2</td>
<td>Subgroups of $\text{SL}(2, p)$</td>
<td>41</td>
</tr>
<tr>
<td>5.3</td>
<td>A Counterexample</td>
<td>45</td>
</tr>
</tbody>
</table>

Chapter 6:

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concluding Remarks</td>
<td>46</td>
</tr>
</tbody>
</table>

Bibliography | 48 |
Appendix A:

Characterizing Nakajima p-groups 52
Chapter 1

Introduction

Let V be an n-dimensional vector space over an arbitrary field \mathbb{F}, $\text{GL}(V)$ the group of invertible linear transformations of V, and $S(V)$ the symmetric algebra on V. Given a basis of V, say $\{x_1, \ldots, x_n\}$, the symmetric algebra $S(V)$ can be identified with the polynomial algebra over \mathbb{F} in x_1, \ldots, x_n. Thus the linear transformations in $\text{GL}(V)$ can be naturally regarded as \mathbb{F}-algebra automorphisms of $S(V)$ which preserve degree.

Let G be a finite subgroup of $\text{GL}(V)$, we denote by $S(V)^G$ the set of elements of $S(V)$ left fixed by every element of G, which is called the ring of invariants of G, or the invariant ring of G. This is the object of study of the invariant theory of finite groups. Here is a simple example.

Example. Let \mathbb{C} be the complex numbers, and $V = \mathbb{C}^2$ with a basis $\{x_1, x_2\}$. Let
CHAPTER 1. INTRODUCTION

G be a subgroup of $\text{GL}(V)$ given by

$$G = \left\langle \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\rangle.$$

Then ring of invariants $S(V)^G = \mathbb{C}[x_1^2, x_2^3]$.

In general, the invariant ring $S(V)^G$ has many nice properties. Perhaps the most important one, due to Hilbert and Noether, is that $S(V)^G$ is a finitely generated F-algebra. It is also important to know that $S(V)$ is integral over $S(V)^G$, namely, every element of $S(V)$ satisfies a monic polynomial with coefficients in $S(V)^G$. We refer the reader to Neusel [23] for proofs of these properties.

It is important to note that the invariant theory of finite groups divides sharply between the non-modular case and the modular case. By the non-modular case we mean the case where the characteristic of the ground field does not divide the order of the finite group (we call such a group a non-modular group). By the modular case we mean the case where the characteristic of the ground field divides the order of the finite group (we call such a finite group a modular group). In general, the invariant theory of modular groups is not so well developed as that of non-modular groups.

There are several modern references available on invariant theory of finite groups, such as Benson [2], Campbell and Wehlau [6], Derksen and Kemper [9], Kane [17], Neusel and Smith [24], and Smith [28].
1.1 Algebraic Structures of Invariant Rings

One of the major interests in the invariant theory of finite groups lies in studying the relationship between the algebraic structure of the invariant ring $S(V)^G$ and properties of the finite linear group G. Here we discuss five important structures that rings of invariants might have, which form the following hierarchy:

- polynomial ring \Rightarrow hypersurface \Rightarrow complete intersection
- \Rightarrow Gorenstein \Rightarrow Cohen-Macaulay.

Recall that an element $g \in \text{GL}(V)$ is called a reflection (on V) if the subspace $(g - 1)V$ is one-dimensional. A reflection group is just a finite subgroup of $\text{GL}(V)$ which is generated by reflections. One of the most celebrated results about rings of invariants is the following.

Theorem 1.1.1 (Shephard and Todd [27], Chevalley [7], Serre [26]). Let G be a finite subgroup of $\text{GL}(V)$. If $S(V)^G$ is polynomial, then G is a reflection group. Conversely, if G is a non-modular reflection group, then $S(V)^G$ is polynomial.

This result does not answer the question of whether or not $S(V)^G$ is polynomial when G is a modular reflection group. In fact, there are modular reflection p-groups whose invariant rings are not even Cohen-Macaulay (c.f. Campbell, Geramita, Hughes, Shank, and Wehlau [4]), whereas the invariant rings of all non-modular finite groups are Cohen-Macaulay (see Hochster and Eagan [13]). Recall that an F-algebra
is called **Cohen-Macaulay** if it is a finitely generated free module over a polynomial \(\mathbb{F} \)-subalgebra.

Definition. Assuming that the ground field \(\mathbb{F} \) is of positive characteristic \(p \), a \(p \)-subgroup \(G \) of \(\text{GL}(V) \) is called a **Nakajima \(p \)-group** (on \(V \)) if there is a basis \(\{x_1, \ldots, x_n\} \) of \(V \) such that under this basis \(G \) is upper triangular and such that \(G = G_1 \cdots G_n \), where each subgroup \(G_i := \{g \in G \mid gx_j = x_j \text{ for } j \neq i\} \). We sometimes refer to \(\{x_1, \ldots, x_n\} \) as a Nakajima basis and refer to \(G = G_1 \cdots G_n \) as a Nakajima decomposition.

Obviously Nakajima \(p \)-groups are modular reflection \(p \)-groups. But a reflection \(p \)-group may not be a Nakajima \(p \)-group. Here is an example.

Example. Let \(V \) be a 4-dimensional vector space over the prime field \(\mathbb{F}_p \). Let \(G \) be a subgroup of \(\text{GL}(V) \) given by

\[
G = \left\langle \begin{bmatrix} I_2 & 0 & 0 \\ 0 & I_{n-2} \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} I_2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & I_{n-2} \end{bmatrix}, \begin{bmatrix} I_2 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & I_{n-2} \end{bmatrix} \right\rangle.
\]

Now \(G \) is a reflection subgroup of order \(p^3 \) in the obvious Nakajima \(p \)-group of order \(p^4 \). By applying Theorem 4.4 and Corollary 4.5 of Campbell and Hughes [5], we see that the invariant ring of \(G \) is a hypersurface, but not a polynomial ring. So \(G \) is not a Nakajima \(p \)-group.

The following important result concerns Nakajima \(p \)-groups.
Theorem 1.1.2 (Nakajima [20]). Let V be a finite-dimensional vector space over the prime field \mathbb{F}_p, and G a p-subgroup of $\text{GL}(V)$. Then G is a Nakajima p-group if and only if $S(V)^G$ is polynomial.

Unfortunately, this result stated above does not extend to other fields of characteristic p as is shown by an example due to Stong (c.f. Neusel and Smith [24, Example 2, p. 164]). In contrast, we obtain a result which permits us to say this: Assume the ground field is of characteristic p. Then a p-subgroup of $\text{GL}(V)$ is a Nakajima p-group if and only if its ring of invariants is a polynomial algebra generated by norms. In fact, the sufficiency is well-known and not hard to see. We will prove the necessity in the Appendix of this thesis.

An invariant ring $S(V)^G$ is called a hypersurface algebra if it is generated as an \mathbb{F}-algebra by at most $\dim(V) + 1$ elements. Nakajima [21] made an extensive study of non-modular subgroups of $\text{GL}(V)$ whose rings of invariants are hypersurfaces. As for modular groups, Campbell and Hughes [5, Theorem 4.4] showed that rings of invariants of maximal proper subgroups of a Nakajima p-group over the prime field \mathbb{F}_p are hypersurfaces. Later Broer [3] found that this result can be extended to the other fields of characteristic p.

Definition. A finitely generated graded algebra A over a field \mathbb{F} of Krull dimension m is called a complete intersection if there is a polynomial algebra B over \mathbb{F} in $m + s$ indeterminates and a homogeneous ideal I of B generated by s elements such
that $B/I \cong A$.

Recall that an non-identity element $g \in \text{GL}(V)$ is called a bireflection if the subspace $(g - 1)V$ is at most two-dimensional. A necessary condition on G for $S(V)^G$ to be a complete intersection is given by the following result.

Theorem 1.1.3 (Kac and Watanabe [16, Theorem A]). If $S(V)^G$ is a complete intersection, then G is generated by bireflections.

As for Gorenstein rings of invariants, we refer the reader to Bass [1] for the definition. For our application, we mention the following result.

Theorem 1.1.4 (Watanabe [29, Theorem 1]). Let G be a non-modular subgroup of $\text{GL}(V)$ which contains no reflections. Then $S(V)^G$ is Gorenstein if and only if $G \subset \text{SL}(V)$.

1.2 k-Row Groups and Their Kernels

Given a finite subgroup G of $\text{GL}(V)$, we define a subspace of V by

$$V_G := \text{span}_F \{(g - 1)v \mid g \in G, v \in V\}.$$

If V_G is k-dimensional, then we call G a k-row group. By this definition, every subgroup of $\text{GL}(V)$ is a k-row group for some non-negative integer k. For each subgroup G of $\text{GL}(V)$, we define a group homomorphism given by the restriction of
G to V_G:

$$- : G \ni g \mapsto g|_{V_G} \in \text{GL}(V_G).$$

Obviously, the kernel of this homomorphism, denoted K_G, is the set of all the elements of G which acts trivially on V_G. We sometimes refer to K_G as the kernel of the group G. We note K_G is a normal subgroup of G.

On the other hand, given a k-dimensional subspace U of V, we may define two subgroups of $\text{GL}(V)$ as follows:

$$T(U) := \{ g \in \text{GL}(V) \mid (g - 1)V \subset U \},$$

$$E(U) := \{ g \in \text{GL}(V) \mid (g - 1)V \subset U \subset V^g \},$$

where V^g is the set of elements of V left fixed by an element $g \in G$. Since $V_{T(U)} = U = V_{E(U)}$, it follows that both $T(U)$ and $E(U)$ are k-row groups. In fact, $T(U)$ contains all the k-row subgroups G of $\text{GL}(V)$ with $V_G = U$, and $E(U)$ contains all the k-row subgroups of $\text{GL}(V)$ which act trivially on U. Therefore we refer to $T(U)$ as the largest k-row subgroup of $\text{GL}(V)$ with respect to U, and $E(U)$ as the largest k-row subgroup of $\text{GL}(V)$ which acts trivially on U. We note that $E(U)$ is the kernel of $T(U)$, namely, $E(U) = K_{T(U)}$, and that the kernel of $E(U)$ is itself. Given a basis X of V which is enlarged from a basis of U, we may identify the k-row multiplicative group $E(U)$ with the additive group $M_{k \times (n - 2)}(\mathbb{F})$ via the following isomorphism:

$$t_X : E(U) \ni g \mapsto A \in M_{k \times (n - 2)}(\mathbb{F}),$$
CHAPTER 1. INTRODUCTION

where A is the $2 \times (n - 2)$ matrix such that

$$[g]_X = \begin{bmatrix} I_k & A \\ 0 & I_{n-k} \end{bmatrix}_{n \times n}.$$

For $g \in E(U)$, we refer to $t_X(g)$ as the tail matrix of g under X. Sometimes we write $t(g)$ for $t_X(g)$ when no confusion arises. By this identification, we see that $E(U)$ is Abelian.

Let G be a k-row subgroup of $GL(V)$. Then V_G is a k-dimensional subspace. It is routine to verify that $K_G = G \cap E(V_G)$. It follows that K_G is elementary Abelian.

1.3 What is this Thesis about

When Bram Broer spoke in the Invariant Theory seminar at Queen’s University in 2005, he gave a proof of the result that the ring of invariants of an arbitrary two-row group is Cohen-Macaulay. This result had inspired the conjecture that the invariant ring of any two-row group is a complete intersection. I found this conjecture very interesting and decided that it would be my thesis topic.

In this thesis, we consider several cases where the conjecture holds and we find a counterexample showing that the conjecture does not hold for all non-modular groups.

In Chapter 3, we deal with two-row groups whose rings of invariants are complete intersections.
In Chapter 4, we deal with two-row groups whose rings of invariants are polynomial.

In Chapter 5, we give a direct simpler proof to the classical result which says the subgroups of $\text{SL}(2, p)$ all have hypersurface rings of invariants.

In Appendix, we prove a sufficient condition for Nakajima p-groups.
Chapter 2

Literature Review

Invariant rings of k-row groups, where k is small, behave quite interestingly. Landweber and Stong [19] showed invariant rings of one-row groups are polynomial. It is known that invariant rings of two-row groups are Cohen-Macaulay (For a proof, see Campbell and Wehlau [6, Theorem 4.17]). As mentioned before, there are 3-row groups whose invariant rings are not Cohen-Macaulay ([4]). There are reflection 4-row groups whose invariant rings are not Cohen-Macaulay (c.f. Kemper [18]).

There is work showing some particular two-row groups are actually complete intersections. For example, Neusel [22] showed invariant rings of modular cyclic two-row groups of order a power of a prime are complete intersections.

In this thesis, we focus on the conjecture that invariant rings of two-row groups
are complete intersections. We show that invariant rings of Abelian reflection two-row p-groups are complete intersections. In the proof of this result, both Proposition 3.1 and Theorem 4.4 of Campbell and Hughes [5] play crucial roles. We also show a quite general result that invariant rings of two-row groups with non-normal Sylow p-subgroups are polynomial.

Nakajima p-groups play an important role in our study of two-row groups. The formal definition of a Nakajima p-group is given in Shank and Wehlau[23] inspired by the study in Nakajima[20], which gave an intensive study of such groups.

The main theorem in Nakajima[21] about hypersurfaces inspired the new proof for the classical result that subgroups of $\text{SL}(2, p)$ all have hypersurface rings of invariants.

The proof of Theorem 8.1 in Gorenstein [12] inspired the proof of Proposition 4.2.1 in this thesis.
Chapter 3

Complete Intersection Invariant Rings

Let V be a finite-dimensional vector space over the prime field \mathbb{F}_p. In this chapter, we study those reflection two-row subgroups G of $\text{GL}(V)$ which are equal to their kernels K_G. By a result due to Nakajima (c.f. Chuai [8, Proposition 5.1.1]), such two-row groups of $\text{GL}(V)$ are exactly those Abelian reflection two-row p-subgroups of $\text{GL}(V)$. We show that their invariant rings are complete intersections.
3.1 Complete Intersections Adjoining an Extra Element

The following result says, roughly speaking, that often adjoining an extra element to a complete intersection yields another complete intersection. This result is at the core of our proof of the main theorem of this chapter.

Proposition 3.1.1. Let V be an n-dimensional vector space over a field \mathbb{F} of positive characteristic p. Let K be a finite p-subgroup of $\text{GL}(V)$, and H a maximal proper subgroup of K whose index in K is p. If $S(V)^K$ is a complete intersection and $S(V)^H = S(V)^K[a]$ for some homogeneous element $a \in S(V)^H$, then $S(V)^H$ is a complete intersection.

Proof. By Galois Theory, we have

$$a^p + \omega_{p-1}a^{p-1} + \cdots + \omega_1a + \omega_0 = 0,$$

where each ω_i is an element of $S(V)^K$.

Since $S(V)^K$ is a complete intersection of Krull dimension n, it follows that there is a polynomial ring R over \mathbb{F} in $n + s$ indeterminates, and a homogeneous ideal I of R which is generated by s homogeneous polynomials f_1, \ldots, f_s in R, such that

$$R/I \cong S(V)^K,$$

where ϕ is an isomorphism.
This induces an epimorphism

\[\Phi: R[X] \ni rX^k \mapsto \phi(r + I)a^k \in S(V)^K[a], \]

where \(R[X] \) is a polynomial ring over \(R \) in indeterminate \(X \) and \(r \in R \). Since we have

\[R[X]/\ker(\Phi) \cong S(V)^K[a] = S(V)^H, \]

in order to show that \(S(V)^H \) is a complete intersection algebra, we only need to prove that \(\ker \Phi \) is generated by \(s + 1 \) homogeneous elements.

Since \(\Phi \) is epimorphic, for each \(\omega_i \) there exists an \(r_i \in R \) such that we have \(\Phi(r_i) = \omega_i \). Put

\[f_{s+1} := X^p + r_{p-1}X^{p-1} + \cdots + r_1X + r_0. \]

We claim that

\[\ker(\Phi) = (f_1, \ldots, f_s, f_{s+1})R[X]. \]

It is easily seen that \(\ker(\Phi) \supseteq (f_1, \ldots, f_s, f_{s+1})R[X] \). To show that the inverse inclusion holds, consider an element \(q \in R[X] \) such that \(\Phi(q) = 0 \). Note that \(f_{s+1} \) is a monic polynomial. It follows that \(q = hf_{s+1} + t \), where both \(h \) and \(t \) are some polynomials in \(R[X] \), and either \(t = 0 \) or \(t \) has degree strictly less than \(p \), the degree of \(f_{s+1} \). Write

\[t = b_uX^u + \cdots + b_1X + b_0, \]
where \(u < p \), and each \(b_i \in R \). Since \(\Phi(t) = 0 \), we have

\[
\phi(b_u + I) a^u + \cdots + \phi(b_1 + I) a + \phi(b_0 + I) = 0.
\]

Since \(\{1, a, \ldots, a^{p-1}\} \) is a basis for the field extension \(Q(S(V)^H)/Q(S(V)^G) \), it follows that all \(\phi(b_i + I) = 0 \). Thus all \(b_i \in I \). This implies that \(t \in (f_1, \ldots, f_s) R[X] \).

Therefore \(q \in (f_1, \ldots, f_s, f_{s+1}) R[X] \). \(\Box \)

3.2 Abelian Reflection Two-Row \(p \)-groups

Let \(V \) be an \(n \)-dimensional vector space over the prime field \(\mathbb{F}_p \), where \(n \geq 2 \). As mentioned before, the reflection two-row subgroups \(G \) of \(\text{GL}(V) \) with \(G = K_G \) are exactly the Abelian reflection two-row \(p \)-subgroups of \(\text{GL}(V) \), and each such group \(G \) is a subgroup of \(E(V_G) \). So \(G \) can be identified with the additive group consisting of the tail matrices of elements of \(G \). We now show that their rings of invariants are complete intersections.

Theorem 3.2.1. Let \(G \) be an Abelian reflection two-row \(p \)-subgroup of \(\text{GL}(V) \). Then \(S(V)^G \) is a complete intersection.

Proof. By induction on \(n \). If \(n = 2 \), then \(G \) is the identity group, whose invariant ring is the polynomial algebra \(S(V) \) itself. We now assume \(n \geq 3 \).

Note that the tail matrix of any reflection in \(G \), under a given basis of \(V \) enlarged from a basis of \(V_G \), is of rank one, namely, its columns are pairwise linearly dependent.
Considering this, it is easily seen that there exists \(m \) reflections \(g_1', \ldots, g_m' \in G \) such that we can say the following:

1. For each \(i \in \{1, \ldots, m\} \), the \(i \)-th column of the tail matrix \(t(g_i') \) of \(g_i' \) is the only non-zero column of \(t(g_i') \), denoted \(\binom{\alpha_i}{\beta_i} \). To indicate this, we write \(t(g_i') = \begin{bmatrix} \binom{\alpha_i}{\beta_i} \\ \vdots \end{bmatrix} \).

2. For any other element in \(G \), the non-zero columns of its tail matrix only occur in the first \(m \) columns.

It follows that we may assume \(m = n - 2 \).

Consider the group generated by \(g_1', \ldots, g_{n-2}' \). If \(G = \langle g_1', \ldots, g_{n-2}' \rangle \), then clearly \(G \) is a Nakajima \(p \)-group, whose invariant ring is polynomial. We now proceed assuming \(G \neq \langle g_1', \ldots, g_{n-2}' \rangle \). Take an element \(g' \in G \setminus \langle g_1', \ldots, g_{n-2}' \rangle \), write

\[
t(g') = \begin{bmatrix} \binom{\eta_1}{\delta_1} \\ \vdots \\ \binom{\eta_{n-2}}{\delta_{n-2}} \end{bmatrix}.
\]

For the purpose of visualization, we arrange the \(n - 1 \) tail matrices obtained so far into the following picture:

\[
\begin{bmatrix}
\binom{\alpha_1}{\beta_1} \\
\vdots \\
\binom{\alpha_{n-2}}{\beta_{n-2}}
\end{bmatrix}, \quad
\begin{bmatrix}
\binom{\eta_1}{\delta_1} \\
\vdots \\
\binom{\eta_{n-2}}{\delta_{n-2}}
\end{bmatrix}
\]

Consider the pairs

\[
\left(\binom{\alpha_i}{\beta_i}, \binom{\eta_i}{\delta_i} \right), \text{ for } i = 1, \ldots, n - 2.
\]

If each such pair was linearly dependent, then \(g' \) would be a product of the appropriate powers of \(g_1', \ldots, g_{n-2}' \), a contradiction. Thus there exists at least one such pair
which is linearly independent. We may suppose that the first s pairs are linearly independent and the others are linearly dependent. Then, for each linearly dependent pair $\left(\left(\alpha_j \right)_j, \left(\eta_j \right)_j \right)$, where $j = s + 1, \ldots, n - 2$, we may add the appropriate multiple of $\left(\left(\alpha_j \right)_j \right)$ to the second row of the above picture to cancel the corresponding column. Thus we have a new picture:

$$
\begin{bmatrix}
\left(\alpha_1 \right)_1, & \cdots, & \left(\alpha_s \right)_s, & \left(\alpha_{s+1} \right)_{s+1}, & \cdots, & \left(\alpha_{n-2} \right)_{n-2} \\
\left(\eta_1 \right)_{d_1}, & \cdots, & \left(\eta_s \right)_{d_s}, & 0, & \cdots, & 0 \\
\end{bmatrix},
$$

where, the pairs $\left(\left(\alpha_i \right)_i, \left(\eta_i \right)_{d_i} \right)$, for $i = 1, \ldots, s$, are linearly independent. Since the last $n - 2 - s$ tail matrices on the first row of the picture above will not play roles in our argument any more, we ignore them by considering this picture:

$$
\begin{bmatrix}
\left(\alpha_1 \right)_1, & \cdots, & \left(\alpha_s \right)_s, & \left(\ast \right)_1, & \cdots, & \left(\ast \right) \\
\left(\eta_1 \right)_{d_1}, & \cdots, & \left(\eta_s \right)_{d_s}, & 0, & \cdots, & 0 \\
\end{bmatrix}.
$$

In the picture above, it is not hard to see that we may simply put $\left(\left(\alpha_i \right)_i \right) = \left(\left(1 \right)_i \right)$. For each $i \in \{2, \ldots, s\}$, up to multiplying $\left(\left(\alpha_i \right)_i \right)$ by the appropriate scalar, we may put $\left(\left(\alpha_i \right)_i \right) = \left(\left(0 \right)_i \right)$ if $\beta_i = 0$, and put $\left(\left(\alpha_i \right)_i \right) = \left(\left(1 \right)_i \right)$ if $\beta_i \neq 0$. Thus we may proceed assuming the following picture:

$$
\begin{bmatrix}
\left(\left(1 \right)_i \right)_1, & \cdots, & \left(\left(1 \right)_{t+1} \right)_{t+1}, & \left(\ast \right)_1, & \cdots, & \left(\ast \right) \\
\left(\eta_1 \right)_{d_1}, & \cdots, & \left(\eta_{t+1} \right)_{d_{t+1}}, & \left(\eta_s \right)_{d_s}, & 0, & \cdots, & 0 \\
\end{bmatrix},
$$

where t is some integer with $1 \leq t \leq s$, and the pairs $\left(\left(1 \right)_i, \left(\eta_i \right)_{d_i} \right)$ ($1 \leq i \leq t$) and $\left(\left(\alpha_j \right)_j, \left(\eta_j \right)_{d_j} \right)$ ($t + 1 \leq j \leq s$) are all linearly independent.
We now add the appropriate multiples of the first \(s \) tail matrices on the first row of the picture above to the second row of the picture and obtain:

\[
\begin{bmatrix}
(1_0)_1, & \ldots, & (1_0)_t, & \left(\frac{\alpha t+1}{1}\right)_{t+1}, & \ldots, & \left(\frac{\alpha s}{1}\right), & (\ast), & \ldots, & (\ast) \\
(0), & \ldots, & 0, & \left(\frac{\alpha t+1}{0}\right), & \ldots, & (\frac{\alpha s}{0}), & 0, & \ldots, & 0
\end{bmatrix}
\]

where all \(\lambda_i \)'s have to be non-zero.

Finally, it is not hard to see that we may derive this picture:

\[
\begin{bmatrix}
(1_0)_1, & \ldots, & (1_0)_t, & \left(\frac{\alpha t+1}{1}\right)_{t+1}, & \ldots, & \left(\frac{\alpha s}{1}\right), & (\ast), & \ldots, & (\ast) \\
(0), & \ldots, & 0, & \left(\frac{\alpha t+1}{0}\right), & \ldots, & (\frac{\alpha s}{0}), & 0, & \ldots, & 0
\end{bmatrix}
\]

From now on we suppose that \(X := \{x_1, x_2, y_1, \ldots, y_{n-2}\} \) is the basis associated with this picture above, where \(\{x_1, x_2\} \) is a basis of \(V_G \). We note, from the picture above, that there exist \(g_1, g \in G \) such that

\[
t_X(g_1) = \begin{bmatrix} 1 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \end{bmatrix}_{2 \times (n-2)},
\]

\[
t_X(g) = \begin{bmatrix} 0 & 0 & \ldots & 0 & \lambda_{t+1} & \ldots & \lambda_s & 0 & \ldots & 0 \\ 1 & 0 & \ldots & 0 & 0 & \ldots & 0 & 0 & \ldots & 0 \end{bmatrix}_{2 \times (n-2)}.
\]

Now consider an element \(g_2 \in \text{GL}(V) \) with

\[
t_X(g_2) = \begin{bmatrix} 0 & 0 & \ldots & 0 \\ 1 & 0 & \ldots & 0 \end{bmatrix}_{2 \times (n-2)}.
\]

If \(g_2 \in G \), then it is easily seen that \(G = \langle g_1, g_2, G' \rangle \), where \(G' \) is some reflection subgroup of \(G \) which fixes \(\{x_1, x_2, y_1\} \) point-wise. If \(G' \) is a one-row group, then it is not hard to see that \(G' \) is a Nakajima \(p \)-group with respect to \(X \). And it follows that \(G \) is a Nakajima \(p \)-group, whose invariant ring is polynomial. If \(G' \) is a two-row
group, then it is an Abelian reflection two-row p-group. It follows that there is a natural faithful representation $\rho: G' \to \text{GL}(V')$, where V' is the subspace spanned by \{ x_1, x_2, y_2, \ldots, y_{n-2} \}, such that $\rho(G')$ is an Abelian reflection two-row p-subgroup of $\text{GL}(V')$. By the induction hypothesis, we see that $S(V)\rho(G')$ is an Abelian reflection two-row p-subgroup of $\text{GL}(V')$. By the induction hypothesis, we see that $S(V')\rho(G')$ is a complete intersection.

Since $S(V)^{G'} \cong S(V')^{\rho(G')}[y_1]$, it follows that $S(V)^G \cong S(V')^{\rho(G')}[N]$, where N is the norm of y_1 under G. By Proposition 3.1.1, we see that $S(V)^G$ is a complete intersection.

Thus we may assume $g_2 \notin G$. Note that this assumption forces $t \neq s$ in the picture above. Let E be the largest Abelian reflection two-row p-group containing G. We know that E is a Nakajima p-group. It is easily seen that we may have a maximal subgroup L of E which contains G and satisfies the condition $g_2 \notin L$. Thus, by Campbell and Hughes [5, Theorem 4.4], we have $S(V)^L = S(V)^E[a]$ for some homogeneous element $a \in S(V)^L$ which has these properties:

1. $(g_2 - 1)a \in S(V)^E$.

2. $(g_2 - 1)a$ divides the product $x_1 \prod_{\alpha \in \mathbb{F}_p} (x_2 + \alpha x_1)$. (See Campbell and Hughes [5, Section 4], or c.f. Hughes and Kechagias [14, Proposition 9].)

Let $K = \langle g_2, G \rangle$. We claim that $S(V)^G = S(V)^K[a]$. By Campbell and Hughes [5, Proposition 3.1], in order to show this we may prove that $(g_2 - 1)a$ divides $(g_2 - 1)c$ for any $c \in S(V)^G$, which can be achieved by showing that $x_1 \prod_{\alpha \in \mathbb{F}_p} (x_2 + \alpha x_1)$ divides $(g_2 - 1)c$ for any $c \in S(V)^G$. Now let c be in $S(V)^G$. Since g_1 and g are elements of
G, then for all $\alpha \in \mathbb{F}_p$ we have

$$(g_2 - 1)c = (g_2g^{-1} - 1)c = (g_2g_1^\alpha - 1)c.$$

It is easily seen that g_2g^{-1} and all $g_2g_1^\alpha$ are reflections, whose root vectors are exactly the distinct linear factors (up to scalars) of the product $x_1 \prod_{\alpha \in \mathbb{F}_p} (x_2 + \alpha x_1)$. (Note: a root vector of a reflection $g \in \text{GL}(V)$ is just a nonzero element of the 1-dimensional vector space $(g - 1)V$.) Because of the equalities above, it follows that all the root vectors divide $(g_2 - 1)c$, and thus so does the product, as desired.

Since K contains both g_1 and g_2, by an analogue of the argument for the situation where $g_2 \in G$, we see that $S(V)^K$ is a complete intersection. It follows from Proposition 3.1.1 that $S(V)^G$ is a complete intersection. \qed
Chapter 4

Polynomial Invariant Rings

Throughout this chapter, unless otherwise stated, let V be an n-dimensional vector space over the prime field \mathbb{F}_p, where p is an odd prime number.

From the preceding chapter, we know the invariant rings of Abelian reflection two-row p-subgroups of $\text{GL}(V)$ are complete intersections. As mentioned before, the Abelian reflection two-row p-subgroups are exactly the two-row subgroups which are equal to their kernels. In this chapter, we deal with two-row groups which are \textit{not} equal to their kernels. We show “almost” all these groups have polynomial invariant rings. More precisely speaking, if a two-row subgroup of $\text{GL}(V)$ has non-normal Sylow p-subgroups, then the invariant rings are polynomial; if a two-row subgroup of $\text{GL}(V)$ has normal Sylow p-subgroups, then its invariant ring is polynomial if we further assume both the two-row group and its Sylow p-subgroups are generated by
CHAPTER 4. POLYNOMIAL INVARIANT RINGS

reflections.

4.1 Abelian Reflection Two-Row p-groups

with Specific Normalizers

In proving that the invariant rings of some two-row groups which are not equal to their kernels are polynomial, an essential step is to show their kernels are Nakajima p-groups. The following results will tell us that the kernels are Nakajima p-groups if the two-row groups contain some specific elements.

Lemma 4.1.1. Let U be a two-dimensional subspace of V with a basis $X_0 = \{x_1, x_2\}$. Let M be a subgroup of $E(U)$.

Then we have the following conclusions.

1. Let a and b be elements in $T(U)$ whose actions on U under X_0 are given by the following:

$$a = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}. $$

If M is normalized by a and b, then M is a Nakajima p-group with respect to a basis X of V which is enlarged from the basis X_0 of U, and the Nakajima decomposition $M = M_1 \cdots M_n$ satisfies the conditions: $M_1 = M_2 = 1$, and $M_i = 1$ or p^2 for $i = 3, \ldots, n$. We refer to such a Nakajima p-group as a full Nakajima p-group.
2. If M is normalized by one of the two elements c and d in $T(U)$ whose actions on U under X_0 are given by the following:

$$
\bar{c} = \begin{bmatrix} 1 & 0 \\ 0 & \zeta \end{bmatrix}, \quad \bar{d} = \begin{bmatrix} \xi & 0 \\ 0 & 1 \end{bmatrix},
$$

where ζ and ξ are non-zero and non-identity scalars, then M is a Nakajima p-group with respect to a basis X of V which is enlarged from the basis X_0 of U.

3. Let a and b be elements in $T(U)$ whose actions on U under X_0 are given by the following:

$$
\bar{a} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad \bar{b} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.
$$

If M is a reflection group and M is normalized by either a or b, then M is a Nakajima p-group with respect to a basis X of V which is enlarged from the basis X_0 of U.

Proof. We note that M is an elementary Abelian p-group consisting of elements of order p.

1. Let X be a basis of V which is enlarged from X_0. Take a non-identity element $g \in M$, whose tail matrix under X can be expressed as

$$
g = \begin{bmatrix} \alpha \\ \beta \end{bmatrix},
$$

where α and β are row vectors of \mathbb{F}_p^{n-2}, at least one of which is non-zero. Without loss of generality, suppose that β is non-zero. Since both a and b normalize M, then both
$g_1 := aga^{-1}g^{-1}$ and $g_2 := bg_1b^{-1}g_1^{-1}$ are elements of M, whose tail matrices under X can be expressed as

$$g_1 = \begin{bmatrix} \beta \\ \vdots \\ 0 \end{bmatrix} \text{ and } g_2 = \begin{bmatrix} 0 \\ \vdots \\ \beta \end{bmatrix}.$$

Up to a change of the basis X on the elements not in X_0 and up to raising g_1 and g_2 to appropriate powers, we may assume that the tail matrices of g_1 and g_2 under X can be expressed as

$$g_1 = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{bmatrix}_{2 \times (n-2)} \quad \text{and} \quad g_2 = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \end{bmatrix}_{2 \times (n-2)}.$$

Putting $X = \{x_1, x_2, \ldots, x_n\}$, let E' be the subgroup of $E(U)$ which consists of the elements whose tail matrices under X form this set

$$\left\{ \begin{bmatrix} 0 & \lambda_1 & \cdots & \lambda_{n-3} \\ 0 & \mu_1 & \cdots & \mu_{n-3} \end{bmatrix} \bigg| \lambda_i, \mu_i \in \mathbb{F}_p, i = 1, \ldots, n-3 \right\}.$$

It is not hard to see that $M = \langle g_1, g_2, M' \rangle$, where $M' = E' \cap M$. Note that E' acts trivially on $\{x_1, x_2, x_3\}$. Let V' be the subspace of V which is spanned by $\{x_1, x_2, x_4, \ldots, x_n\}$. Then there is a natural faithful representation $\rho: E' \to \text{GL}(V')$ such that $\rho(E')$ is the largest two-row subgroup of $\text{GL}(V')$ which acts trivially on U. Clearly $\rho(M')$ is a subgroup of $\rho(E')$. Let $T'(U)$ be the largest two-row subgroup of $\text{GL}(V')$ with respect to the subspace U of V', then it is easily to verify that $\rho(M')$ is normalized by any such elements a' and b' of $T'(U)$ whose actions on U are given by the following:

$$\overline{a'} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad \overline{b'} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$
Thus, by induction on the dimension of V, we may assume that $\rho(M')$ is a full Nakajima p-group with respect to a basis $\{x_1, x_2, x_4', \ldots, x_n'\}$ of V', which is enlarged from X_0. Note that M' acts trivially on $\{x_1, x_2, x_3\}$. It follows that M' is also a Nakajima p-group with respect to the basis $X' = \{x_1, x_2, x_3, x_4', \ldots, x_n'\}$. This implies easily that M is a full Nakajima two-row p-group with respect to the basis X', which is enlarged from X_0. This completes the proof.

2. We prove the conclusion holds for the case where M is normalized by c. The case where M is normalized by d follows similarly.

Let X be a basis of V which is enlarged from X_0. First, if M is a one-row subgroup of $E(U)$, then it is easily seen that M is a Nakajima p-group with respect to a basis of V which is enlarged from X_0. We now assume that M is a two-row subgroup of $E(U)$. It follows that there must be an element $g \in M$ whose tail matrix under X can be expressed as

$$g = \begin{bmatrix} \alpha \\ \beta \end{bmatrix},$$

where α and β are row vectors of \mathbb{F}_p^{n-2} with β non-zero. Since c normalizes M, it follows that $g_1 := cgc^{-1}g^{-1} \in M$, whose tail matrix under X can be expressed as

$$g_1 = \begin{bmatrix} 0 \\ (\zeta - 1) \beta \end{bmatrix}.$$

Up to a change of the basis X on the elements not in X_0 and up to raising g_1 to some power, we may further assume that the tail matrix of g_1 under X can be expressed
 CHAPTER 4. POLYNOMIAL INVARIANT RINGS

as

\[
g_1 = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \end{bmatrix}_{2 \times (n-2)}.
\]

Put \(X = \{ x_1, \ldots, x_n \} \). Now we have two cases to consider according to whether there is an element \(g' \in M \) such that the (1,1)-entry of the tail matrix of \(g' \) under \(X \) is non-zero.

Case 1. Assume that there is no such an element \(g' \). Let \(E_1 \) be the subgroup of \(E(U) \) which consists of the elements whose tail matrices under \(X \) form this set

\[
\left\{ \begin{bmatrix} 0 & \lambda_1 & \cdots & \lambda_{n-3} \\ 0 & \mu_1 & \cdots & \mu_{n-3} \end{bmatrix} \left| \lambda_i, \mu_i \in \mathbb{F}_p, i = 1, \ldots, n-3 \right. \right\}.
\]

It is easy to see that \(M = \langle g_1, M_1 \rangle \), where \(M_1 = E_1 \cap M \). Let \(V_1 \) be the subspace of \(V \) which is spanned by \(\{ x_1, x_2, x_4, \ldots, x_n \} \). Then there is a natural faithful representation \(\rho_1 : E_1 \to \text{GL}(V_1) \) such that \(\rho_1(E_1) \) is the largest two-row subgroup of \(\text{GL}(V_1) \) which acts trivially on \(U \). Clearly \(\rho_1(M_1) \) is a subgroup of \(\rho_1(E_1) \). Let \(T_1(U) \) be the largest two-row subgroup of \(\text{GL}(V_1) \) with respect to the subspace \(U \) of \(V_1 \), then it is easily to verify that \(\rho_1(M_1) \) is normalized by any such elements \(a_1 \) and \(b_1 \) of \(T_1(U) \) whose actions on \(U \) under \(X_0 \) are given by the following:

\[
\overline{a_1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad \overline{b_1} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.
\]

Case 2. Assume that we have such an element \(g' \). Its tail matrix under \(X \) is can be written as

\[
g' = \begin{bmatrix} \alpha' \\ \beta' \end{bmatrix},
\]
where α' and β' are row vectors of \mathbb{F}_p^{n-2}, and $\alpha' = (\alpha'_3, \ldots, \alpha'_n)$ with α'_3 non-zero. Then, as we argued before, we have the element whose tail matrix under X can be written as
\[
\begin{bmatrix}
0 \\
(\zeta - 1)\beta'
\end{bmatrix}.
\]
Hence we see that we have the element $g_2 \in M$ whose tail matrix under X is of this form
\[
g_2 = \begin{bmatrix}
\alpha' \\
0
\end{bmatrix}.
\]
We may assume $\alpha'_1 = 1$. Now change X to this basis
\[
X' = \{x_1, x_2, x_3, x'_4 := x_4 - \alpha'_4 x_1, \ldots, x'_n := x_n - \alpha'_n x_1\}.
\]
Thus the tail matrices of g_1 and g_2 under X' can be written as
\[
\begin{align*}
g_1 &= \begin{bmatrix}
0 & 0 & \cdots & 0 \\
1 & 0 & \cdots & 0
\end{bmatrix}_{2 \times (n-2)}, \\
g_2 &= \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0
\end{bmatrix}_{2 \times (n-2)}.
\end{align*}
\]
Let E_2 be the subgroup of $E(U)$ which consists of the elements whose tail matrices under X' form this set
\[
\left\{ \begin{bmatrix}
0 & \lambda_1 & \cdots & \lambda_{n-3} \\
0 & \mu_1 & \cdots & \mu_{n-3}
\end{bmatrix} \middle| \lambda_i, \mu_i \in \mathbb{F}_p, i = 1, \ldots, n-3 \right\}.
\]
It is not hard to see that $M = \langle g_1, g_2, M_2 \rangle$, where $M_2 = E_2 \cap M$. Let V_2 be the subspace of V which is spanned by $\{x_1, x_2, x'_4, \ldots, x'_n\}$. Then there is a natural faithful representation $\rho_2 : E_2 \to \text{GL}(V_2)$ such that $\rho_2(E_2)$ is the largest two-row
subgroup of GL(V_2) which acts trivially on U. Clearly $\rho_2(M_2)$ is a subgroup of $\rho_2(E_2)$. Let $T_2(U)$ be the largest two-row subgroup of GL(V_2) with respect to the subspace U of V_2, then it is easily to verify that $\rho_2(M_2)$ is normalized by any such elements a_2 and b_2 of $T_2(U)$ whose actions on U under X_0 are given by the following:

$$\bar{a}_2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \text{ and } \bar{b}_2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

Thus, by induction on the dimension of V, for each $i = 1, 2$, we may assume that $\rho_i(M_i)$ is a Nakajima p-group under some basis of V_i, say $\{x_1, x_2, x_{i4}, \ldots, x_{in}\}$. It follows that M_i is a Nakajima p-group under the basis $\{x_1, x_2, x_3, x_{i4}, \ldots, x_{in}\}$, where $i = 1, 2$. This implies easily that in each case M is a Nakajima p-group with respect to some basis of V which is enlarged from X_0. This completes the proof.

3. We prove the conclusion holds for the case where M is normalized by a. The case where M is normalized by b follows similarly.

Let X be a basis of V which is enlarged from X_0. First, if M is a one-row subgroup of $E(U)$, then it is easily seen that M is a Nakajima p-group with respect to a basis of V which is enlarged from X_0. We now assume that M is a two-row subgroup of $E(U)$. It follows that there must be a reflection $g \in M$ such that the second row of the tail matrix of g under X is non-zero. Up to a change of the basis X on the elements not in X_0 and up to raising g to some power, we may assume that the tail
matrix of g under X is of this form:

$$g = \begin{bmatrix} \zeta & 0 & \ldots & 0 \\ 1 & 0 & \ldots & 0 \end{bmatrix}_{2 \times (n-2)}.$$

Since a normalizes M, it follows that both $g_1 = aga^{-1}g^{-1}$ and $g_2 = gg_1^{-\zeta}$ are in M, whose tail matrices under X are of the following form:

$$g_1 = \begin{bmatrix} 1 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \end{bmatrix}_{2 \times (n-2)},$$

$$g_2 = \begin{bmatrix} 0 & 0 & \ldots & 0 \\ 1 & 0 & \ldots & 0 \end{bmatrix}_{2 \times (n-2)}.$$

Putting $X = \{x_1, x_2, \ldots, x_n\}$, let E' be the subgroup of $E(U)$ which consists of the elements whose tail matrices under X form this set

$$\left\{ \begin{bmatrix} 0 & \lambda_1 & \ldots & \lambda_{n-3} \\ 0 & \mu_1 & \ldots & \mu_{n-3} \end{bmatrix} \bigg| \lambda_i, \mu_i \in \mathbb{F}_p, i = 1, \ldots, n-3 \right\}.$$

It is not hard to see that $M = \langle g_1, g_2, M' \rangle$, where $M' = E' \cap M$. Let V' be the subspace of V which is spanned by $\{x_1, x_2, x_4, \ldots, x_n\}$. Then there is a natural faithful representation $\rho: E' \to \text{GL}(V')$ such that $\rho(E')$ is the largest two-row subgroup of $\text{GL}(V')$ which acts trivially on U. Clearly $\rho(M')$ is a subgroup of $\rho(E')$. Let $T'(U)$ be the largest two-row subgroup of $\text{GL}(V')$ with respect to the subspace U of V', then it is easily to verify that $\rho(M')$ is normalized by any such elements a' and b' of $T'(U)$ whose actions on U are given by the following:

$$\overline{a'} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad \overline{b'} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$
Thus, by induction on the dimension of V, we may assume that $\rho(M')$ is a Nakajima p-group with respect to a basis $\{x_1, x_2, x'_4, \ldots, x'_n\}$ of V', which is enlarged from X_0. It follows that M' is a Nakajima p-group with respect to the basis $X' = \{x_1, x_2, x_3, x'_4, \ldots, x'_n\}$. This implies easily that M is a Nakajima p-group with respect to the basis X', which is enlarged from X_0. \hfill \qed

4.2 Two-Row Groups with Non-normal Sylow p-Subgroups

We prove the following result.

Proposition 4.2.1. Let U be a two-dimensional vector space over the prime field \mathbb{F}_p. If there are two elements g_1 and g_2 of order p in $\text{GL}(U)$ such that neither is a power of the other, then $\langle g_1, g_2 \rangle = \text{SL}(U)$. Moreover, there exists a basis of U such that the matrices of g_1 and g_2 under such a basis are of the following forms respectively

\[
\begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
1 & 0 \\
1 & 1
\end{bmatrix},
\]

where α and β are non-zero scalars in \mathbb{F}_p.

Proof. Since g_1 and g_2 are p-elements, it follows that both $U_1 := U^{g_1}$ and $U_2 := U^{g_2}$ are one-dimensional. Let $X := \{x_1, x_2\}$ be a basis of U, where $x_1 \in U_1$. Then it is
not hard to see that \(g_1 \) has this matrix
\[
[g_1]_X = \begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix}
\]
for some non-zero scalar \(\alpha \).

We claim that \(U_1 \neq U_2 \). Otherwise, \(g_2 \) would have this matrix
\[
[g_2]_X = \begin{bmatrix} 1 & \gamma \\ 0 & 1 \end{bmatrix}
\]
for some non-zero scalar \(\gamma \). This would imply that \(g_2 \) is a power of \(g_1 \), a contradiction.

Thus we may suppose that \(x_2 \in U_2 \). Then \(g_2 \) has this matrix
\[
[g_2]_X = \begin{bmatrix} 1 & 0 \\ \beta & 1 \end{bmatrix}
\]
for some non-zero scalar \(\beta \). Therefore, by Theorem 8.4 in Gorenstein [12], we have
\[
\langle g_1, g_2 \rangle = \text{SL}(U).
\]

Recall that the order of \(\text{GL}(2, p) \) is \((p^2 - 1)(p^2 - p)\) and that the order of \(\text{SL}(2, p) \) is \((p + 1)(p - 1)p\).

Theorem 4.2.2. Let \(V \) be a finite-dimensional vector space over the prime field \(\mathbb{F}_p \), and \(G \) a two-row subgroup of \(\text{GL}(V) \). If there is a non-normal Sylow \(p \)-subgroup of \(G \), then \(S(V)^G \) is a polynomial ring.

Proof. By assumption, there are at least two distinct Sylow \(p \)-subgroups of \(G \), say \(Q_1 \) and \(Q_2 \). Note that \(K_G \) is a proper normal subgroup of both \(Q_1 \) and \(Q_2 \). It follows
that \overline{Q}_1 and \overline{Q}_2 are two distinct cyclic subgroups of \mathcal{G}, where \mathcal{G} is the image of the restriction map, which are generated by two elements of order p, say \overline{g}_1 and \overline{g}_2. By Lemma 4.2.1, we have $\langle \overline{g}_1, \overline{g}_2 \rangle = \text{SL}(V_G)$. Thus $\text{SL}(V_G)$ is a normal subgroup of \mathcal{G}.

Note that $\mathcal{G}/\text{SL}(V_G)$ is a cyclic group whose order divides $p - 1$. This implies that \mathcal{G} is generated by $\text{SL}(V_G)$ and a non-modular element $\overline{\omega}$ with

$$[\overline{\omega}]_{X_0} = \begin{bmatrix} \alpha & 0 \\ 0 & 1 \end{bmatrix}.$$

There is an element $\overline{\lambda} \in \text{SL}(V_G)$ with

$$[\overline{\lambda}]_{X_0} = \begin{bmatrix} \epsilon & 0 \\ 0 & \epsilon^{-1} \end{bmatrix},$$

where ϵ is a primitive $(p - 1)$-st root of unit.

Let ω' and λ' be two elements of G such that their restrictions to V_G are $\overline{\omega}$ and $\overline{\lambda}$ respectively. Consider the group $H' = \langle K_G, \omega', \lambda' \rangle$. Obviously H'/K_G is non-modular. By the Schur-Zassenhaus Theorem (see Gorenstein [12, Theorem 2.1, p. 221]), there is a subgroup H of H', which is isomorphic to H'/K_G, such that $H' = HK_G$. Then $\omega' = \omega l_1$ and $\lambda' = \lambda l_2$ for some elements $\omega, \lambda \in H$ and $l_1, l_2 \in K_G$.

It follows that $\overline{\omega} = \overline{\omega'}$ and $\overline{\lambda} = \overline{\lambda'}$. Note that H is a non-modular subgroup of G and V_G is a H-module. It follows from Maschke’s Theorem (c.f. Dummit and Foote [17, p. 849]) that there is a complementary H-module W of V_G in V. Clearly H acts trivially on W. Now enlarge the basis X_0 of V_G to a basis X compatible with the
CHAPTER 4. POLYNOMIAL INVARIANT RINGS

33

direct sum $V = V_G \oplus W$. Then

$$[\omega]_X = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & I_{n-2} \end{bmatrix}_{n \times n} \quad \text{and} \quad [\lambda]_X = \begin{bmatrix} \epsilon & 0 & \cdots & 0 \\ 0 & I_{n-2} \end{bmatrix}_{n \times n}.$$

Since $S(V) \subset \overline{G}$, there are two elements τ and π in G such that

$$[\tau]_X = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 0 & I_{n-2} \end{bmatrix}_{n \times n} \quad \text{and} \quad [\pi]_X = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & I_{n-2} \end{bmatrix}_{n \times n}.$$

Since both τ and π normalize K_G, it follows from Lemma 4.1.1 that K_G is a Nakajima p-group with respect to a basis $Y = Y_0 \cup Y_1$, where $Y_0 = X_0$ and Y_1 is a basis of W. Thus we may simply think of X as Y. Putting $X = \{x_1, x_2, \ldots, x_n\}$, we see that K_G is a Nakajima p-group which can be written as $K_G = K_{s+1}K_{s+2} \cdots K_n$, where K_i is a subgroup generated by two elements g_{1i} and g_{2i} which satisfy these conditions: both act trivially on all the elements of X other than x_i, and $(g_{1i} - 1)x_i = x_1$ and $(g_{2i} - 1)x_i = x_2$. Moreover, it is not hard to see that any element of $T := T(V_G)$ which acts trivially on x_1, x_2, \ldots, x_s lies in K_G. Then it is not hard to see that K_G is normal in T.

Computing $\phi := \lambda \tau \lambda^{-1} \tau - \epsilon^2$, we find

$$[\phi]_X = \begin{bmatrix} I & \delta t_{\tau} \\ 0 & I \end{bmatrix},$$

where

$$\delta = \begin{bmatrix} \epsilon - \epsilon^2 & * \\ 0 & \epsilon^{-1} - \epsilon^2 \end{bmatrix}$$

is a 2×2 invertible matrix. Obviously we have $\phi \in K_G$. Let δ be the element of T
which satisfies
\[[\delta]_X = \begin{bmatrix} \delta & 0 \\ 0 & I \end{bmatrix}. \]

Since \(K_G \) is normal in \(T \), it follows that \(\xi := \delta^{-1} \phi \delta \in K_G \) and
\[[\xi]_X = \begin{bmatrix} I & t_{\tau} \\ 0 & I \end{bmatrix}. \]

Thus there is an element \(\tau' \in G \) with
\[[\tau']_X = \begin{bmatrix} \tau & 0 \\ 0 & I \end{bmatrix}. \]

Similarly, we can show that there is an element \(\pi' \) with
\[[\pi']_X = \begin{bmatrix} \pi & 0 \\ 0 & I \end{bmatrix}. \]

Now it is easy to see that
\[G = \langle K_G, \tau', \pi', \omega \rangle = K_G G', \]
where \(G' = \langle \tau', \pi', \omega \rangle \). Since we have \(\text{SL}(V_G) \leq G' \leq \text{GL}(V_G) \), it is not hard to see that \(S(V)^{G'} \) is a polynomial algebra generated by \(u, v, x_3, \ldots, x_n \) for some \(u, v \in S(V) \). Since \(K_G \) is a Nakajima \(p \)-group, then \(S(V)^G = S(V)^{K_G} \) is a polynomial algebra generated by norms \(x_1, x_2, N_3, \ldots, N_n \). Now it is routine to verify that \(S(V)^G \) is a polynomial algebra generated by \(u, v, N_3, \ldots, N_n \). \(\square \)
4.3 Two-Row Groups with a Normal Sylow

p-Subgroup

When two-row groups over \mathbb{F}_p are not equal to their kernels and have normal Sylow p-subgroups, by imposing the condition of being generated by reflections on both the two-row groups and their Sylow p-subgroups, we can prove the invariant rings of such two-row groups are polynomial.

Recall that an element $g \in \text{GL}(V)$ is called a generalized reflection (on $\text{S}(V)$) if there is a homogenous polynomial a of positive degree such that $gb - b \in aS(V)$ for all $b \in S(V)$. The following result is essentially a theorem of Nakajima.

Theorem 4.3.1. Let V be a finitely dimensional vector space over the prime field \mathbb{F}_p. Let G be a reflection subgroup of $\text{GL}(V)$, and L a normal subgroup of G such that G/L is non-modular. If $S(V)^L$ is a polynomial ring, then $S(V)^G$ is a polynomial ring.

Proof. Let $g \in G$ be a reflection with root vector x, and (x) the corresponding prime ideal in $S(V)$. It is known that $(g - 1)S(V) \subset (x)$. Since $S(V)^L \cap (x)$ is a homogeneous prime ideal of $S(V)^L$ of height one and $S(V)^L$ is a unique factorization domain, it follows that $(g - 1)S(V)^L \subset S(V)^L \cap (x) = S(V)^L f$ for some homogeneous polynomial f of $S(V)^L$. Hence G/L is generated by generalized reflections on $S(V)^L$. It follows that $S(V)^L$ is a finitely generated free module over $S(V)^G$ (c.f. Hochster
and Eagon [13, Proposition 16]). Since $S(V)^L$ is polynomial, it follows that $S(V)^G$ is polynomial.

\[\square \]

Theorem 4.3.2. Let G be a reflection two-row subgroup of GL(V). If G/K_G is a non-trivial non-modular group, then $S(V)^G$ is a polynomial ring.

Proof. Since G is a reflection group with non-trivial G/K_G, there must be a reflection $g \in G \setminus K_G$. Since G/K_G is non-modular, it follows that gK_G is of order t, co-prime to p. Since any non-identity element in K_G is of order p, it follows that the order of g is either t or tp. Put $h = g^p$, then h is a reflection of order t which is not in K_G. Thus there exists a basis X enlarged from V_G such that h has this matrix

$$
[h]_X = \begin{bmatrix}
1 & 0 & \vdots & 0 \\
0 & a & \vdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & I_{n-2}
\end{bmatrix}_{n \times n},
$$

where a is a non-zero scalar in \mathbb{F}_p. Since h normalizes K_G, it follows from (2) of Lemma 4.1.1 that K_G is a Nakajima p-group. Thus S^{K_G} is a polynomial ring. By Theorem 4.3.1, we see S^G is a polynomial ring. \[\square \]

Any p-subgroup of G which properly contains K_G is a Sylow p-subgroup of G. Since K_G is a normal p-subgroup of G, it follows that every Sylow p-subgroup of G contains K_G.

Lemma 4.3.3. Let G be a two-row subgroup of GL(V). Let P be a reflection p-subgroup of G which contains K_G. If P/K_G is non-trivial, then P and K_G are Nakajima groups with respect to the same Nakajima basis X enlarged from V_G.
Moreover, we have \(P = \langle \tau, K_G \rangle \), where \(\tau \) is the element of \(\text{GL}(V) \) which has this matrix

\[
[\tau]_X = \begin{bmatrix}
\frac{1}{a} & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 1 & \frac{1}{a} \\
\end{bmatrix}_{n \times n}.
\]

Proof. Obviously \(P/K_G \) is a non-trivial cyclic group of order \(p \). Since \(P \) is a reflection \(p \)-group, there must be a reflection \(\tau \) of order \(p \) outside of \(K_G \) such that \(P = \langle \tau, K_G \rangle \).

Since \((\tau - 1)V_G\) is non-zero and \((\tau - 1)V_G \subset (\tau - 1)V\), it follows that \(\tau \) is a reflection of order \(p \) on \(V_G \). Thus there is a basis \(X \) enlarged from \(V_G \) such that \(\tau \) has this matrix

\[
[\tau]_X = \begin{bmatrix}
\frac{1}{a} & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 1 & \frac{1}{a} \\
\end{bmatrix}_{n \times n},
\]

where \(a \) is a non-zero scalar and \(A \) is a \(2 \times (n-2) \) matrix over \(\mathbb{F}_p \). Since \(\tau \) is a reflection, up to a change of the basis \(X \) on the elements outside of \(V_G \) and up to a change to a power of \(\tau \), we may further assume that \(\tau \) has this matrix

\[
[\tau]_X = \begin{bmatrix}
\frac{1}{a} & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 1 & \frac{1}{a} \\
\end{bmatrix}_{n \times n}.
\]

This implies that \(\tau \) acts trivially on a complementary subspace of \(V_G \). Since \(P \) is a reflection group, it follows that \(K_G \) is a reflection group. Since \(\tau \) normalizes \(K_G \), it follows from Lemma 4.1.1.(3) that \(K_G \) is a Nakajima \(p \)-group with the Nakajima basis \(X \).

Theorem 4.3.4. Let \(G \) be a reflection two-row subgroup of \(\text{GL}(V) \) which contains a normal reflection Sylow \(p \)-subgroup. If \(G/K_G \) is modular, then \(\text{S}(V)^G \) is a polynomial ring.
Proof. Since K_G is a p-group, it is contained in a Sylow p-subgroup Q of G, which, by assumption, is generated by reflections. Since G/K_G is modular, it is not hard to see that Q is generated by K_G and a reflection τ of order p.

Note that $S(V)^Q$ is always a polynomial ring by Lemma 4.3.3. Since Q is normal in G, then $S(V)^G$ is a polynomial ring by Theorem 4.3.1.
Chapter 5

Hypersurface Invariant Rings

Roughly speaking, the simplest two-row groups are subgroups of $GL(2, p)$. Throughout this chapter, we always assume that p is an odd prime number. In section 1, we derive a simple result from a result due to Nakajima on hypersurface invariant rings.

In section 2, we rework Dickson’s classic result that invariant rings of subgroups of $SL(2, p)$ are all hypersurfaces, which was previously obtained by exhibiting generators of invariant rings in all cases. We give a simpler, direct and transparent proof which does not touch any invariants except for a few simple cases. Our method works for the complex numbers and even more generally for other fields of characteristic zero. In section 3, we show an example of a particular non-modular cyclic subgroup of $GL(2, p)$ whose invariant ring is not a complete intersection.
5.1 A Theorem of Nakajima

Let V be a finite-dimensional vector space over an arbitrary field \mathbb{F}. Given a subspace W of V which is of codimension one, let G_W be the set of elements of G which fix W point-wise. (In non-modular case, it is not hard to show that G_W is a cyclic group.) If G_W is non-trivial, then W is called a \textbf{reflecting hyperplane of} G, and we refer to the order of G_W as \textbf{the order of the reflecting hyperplane} W. We now present a criterion on hypersurfaces due to Nakajima [21, Corollary 4.3].

Theorem 5.1.1. Let V be a vector space over a field of positive characteristic p. Let G be a finite reflection subgroup of $\text{GL}(V)$ whose order is not divisible by p, and H a normal subgroup of G such that G/H is Abelian. If H contains no reflections, then $S(V)^H$ is a hypersurface if and only if there is a reflection subgroup L of G such that $H = L \cap \text{SL}(V)$ and the orders of reflecting hyperplanes of L are equal to the index of H in L.

Using this theorem, we can prove the following lemma. This lemma will be used to show that the invariant rings of the subgroups of $\text{SL}(2, p)$ are all hypersurfaces.

Lemma 5.1.2. Let V be a vector space over a field of positive characteristic p. Let G be a non-modular reflection subgroup of $\text{GL}(V)$, and H a normal subgroup of G such that G/H is Abelian. If $H = G \cap \text{SL}(V)$ and G/H is a cyclic group of order a prime number, then $S(V)^H$ is a hypersurface.
Proof. Since $\text{SL}(V)$ does not contain any diagonalizable reflections and H is non-modular, it follows that H contains no reflections. By Theorem 5.1.1, we only need to prove the orders of all reflecting hyperplanes of G are equal to the order of G/H. Let W be reflecting hyperplane of G. Consider the group G_W consisting of elements of G which fix W point-wise. Obviously G_W is non-modular. So its non-identity elements are all diagonalizable reflections. This implies $G_W \cap \text{SL}(V) = 1$. Since H is a normal subgroup of G, it follows that we have

$$(G_W H)/H \cong G_W/(G_W \cap H) \cong G_W/(G_W \cap \text{SL}(V)) \cong G_W.$$

Note that $(G_W H)/H$ is a subgroup of G/H. Thus G_W can be embedded into G/H. Since the order of G/H is a prime number and $G_W \neq 1$, it follows that $|G_W| = |G/H|$.

This completes the proof.

\section{5.2 Subgroups of $\text{SL}(2, p)$}

Let $Z = \{\pm I\}$ be the center of $\text{SL}(2, p)$ with p odd. Denote by $\text{PSL}(2, p)$ the factor group of $\text{SL}(2, p)$ by Z. In this section, we list all subgroups of $\text{SL}(2, p)$ up to isomorphisms. This list can be derived from a classical result due to Dickson [11, pp. 285] (c.f. Huppert [15, 8.27 Hauptsatz]). In the following we present a special case of the Dickson’s result by restricting to the prime field \mathbb{F}_p.

Theorem 5.2.1 (Dickson [11, p. 285]). The group $\text{PSL}(2, p)$ has only the following
subgroups up to isomorphisms.

1). An elementary Abelian p-group.

2). A cyclic group of order m, where $2m$ divides $p \pm 1$.

3). A Dihedral group of order $2m$, where $2m$ divides $p \pm 1$.

4). The alternating group A_4 for $p > 2$.

5). The symmetric group S_4 for $p^2 \equiv 1 \pmod{16}$.

6). The alternating group A_5 for $p = 5$ or $p^2 \equiv 1 \pmod{5}$.

7). A semidirect product of an elementary Abelian group of order p^m with a cyclic group of order t, where t divides $p - 1$.

8). The group $\text{PSL}(2, p)$.

From the theorem above, it is not hard to derive all the subgroups of $\text{SL}(2, p)$ by straightforward but tedious computations (c.f. Dickson [10, §9]).

Proposition 5.2.2. The group $\text{SL}(2, p)$ with p odd has only the following subgroups up to isomorphisms.

1). The group $\text{SL}(2, p)$.

2). A modular subgroup H of $\text{SL}(2, p)$ containing a normal cyclic group P of order p such that H/P is a cyclic group of order dividing $p - 1$.
3). A non-modular cyclic subgroup.

4). A non-modular subgroup H of order $4m$, where m divides $(p \pm 1)/2$, which is generated by two elements a and b satisfying conditions $a^m = -I$, $b^2 = -I$, and $bab^{-1} = a^{-1}$.

5). Non-modular subgroups H_3, H_4 and H_5, where $H_m = \langle a, b \mid a^m = b^3 = (ab)^3 = -I \rangle$, and $p \geq 5$ if $m = 3$, $p^2 \equiv 1 \pmod{16}$ if $m = 4$, and $p^2 \equiv 1 \pmod{5}$ if $m = 5$.

The rest of this chapter is devoted to showing that all subgroups of $\text{SL}(2, p)$ have hypersurface rings of invariants. It is known that the invariant ring of $\text{SL}(2, p)$ is a polynomial. By simple straightforward computation it is not hard to see that the invariant rings of the groups described in 2) and 3) of the above proposition are hypersurfaces.

Consider a subgroup H of $\text{SL}(2, p)$ which is described in 4) of Proposition 5.2.2. Let the notation be as in Proposition 5.2.2. We work over \mathbb{F}_p^2. Let $\omega = \epsilon_2 + \epsilon_2^{-1}$, where $\epsilon_2 \in \mathbb{F}_p^2$ is a primitive $2m$-th root of unit. Clearly $\omega \in \mathbb{F}_p$ regardless of whether $2m$ divides $p - 1$ or $p + 1$. We write

$$a = \begin{bmatrix} \omega & 1 \\ -1 & 0 \end{bmatrix}.$$

Using direct computations, we may find $k \in \text{GL}(2, p^2)$ such that

$$kHk^{-1} = \left\langle \begin{bmatrix} \epsilon_2 & 0 \\ 0 & \epsilon_2^{-1} \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\rangle = H'.$$
Let $R := \left \langle H', \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right \rangle$. It is easily seen that R is a reflection group containing H' of index 2. Thus, by Lemma 5.1.2, the invariant ring of H', and hence of H, is a hypersurface.

In the following propositions, we show that the invariant rings of H_m are all hypersurfaces.

Proposition 5.2.3. Rings of invariants of H_3 and H_5 are hypersurfaces.

Proof. Put $c = b^{-1}ab$. Since $cab = b^{-1}(ab)^2 = -b^{-1}$, we see $H_m = \langle a, c \rangle$. We work over \mathbb{F}_p^2. Let $\omega = \epsilon_{2m} + \epsilon_{2m}^{-1}$, where $\epsilon_{2m} \in \mathbb{F}_p^2$ is a primitive $2m$-th root of unit. Again, $\omega \in \mathbb{F}_p$ regardless of whether $2m$ dividing $p - 1$ or $p + 1$. We write

$$a = \begin{bmatrix} \omega & 1 \\ -1 & 0 \end{bmatrix}.$$

Let $R_m = \langle a, c, \epsilon_{2m}I \rangle$. It is not hard to see that $R_m = \langle \epsilon_{2m}^{\pm 1}a, \epsilon_{2m}^{\pm 1}c \rangle$ is a reflection group. Since $(\epsilon_{2m}I)^m = -I \in H_m$, we see the order of R_m/H_m is the prime number m. Lemma 5.1.2 completes the proof.

Proposition 5.2.4. The invariant ring of H_4 is a hypersurface.

Proof. Put $c = b^{-1}ab$. Then we have $H_4 = \langle a, c \rangle$. Let $\omega = \epsilon_{2m} + \epsilon_{2m}$. Write

$$a = \begin{bmatrix} \omega & 1 \\ -1 & 0 \end{bmatrix}.$$

Now put $R_4 = \langle a, b, \epsilon_4I \rangle$. It is not hard to show that $R_4 = \langle \epsilon_4a^2, \epsilon_4c^2, \epsilon_4ab \rangle$ is a reflection group. Since the index of H_4 in R_4 is 2, it follows from Lemma 5.1.2 that the invariant ring of H_4 is a hypersurface.
5.3 A Counterexample

Consider the following non-modular cyclic subgroup of \(\text{GL}(2, p) \), with \(p \geq 5 \):

\[
H = \langle \begin{bmatrix} \epsilon & 0 \\ 0 & \epsilon \end{bmatrix} \rangle,
\]

where \(\epsilon \) is a primitive \((p - 1)\)-st root of unit in \(\mathbb{F}_p \). Clearly \(H \) is a two-row group.

Since \(H \) contains no reflections and is not a subgroup of \(\text{SL}(2, p) \), it follows from Theorem 1.1.4 that the invariant ring of \(H \) is not Gorenstein, and so is not a complete intersection.
Chapter 6

Concluding Remarks

The main results of this thesis are displayed in the following:

Theorem (Theorem 3.2.1). Let G be an Abelian reflection two-row p-subgroup of $\text{GL}(V)$. Then $S(V)^G$ is a complete intersection.

Theorem (Theorem 4.2.2). Let V be a finite-dimensional vector space over the prime field \mathbb{F}_p, and G a two-row subgroup of $\text{GL}(V)$. If there is a non-normal Sylow p-subgroup of G, then $S(V)^G$ is a polynomial ring.

Theorem (Theorem 4.3.2). Let G be a reflection two-row subgroup of $\text{GL}(V)$. If G/K_G is a non-trivial non-modular group, then $S(V)^G$ is a polynomial ring.

Theorem (Theorem 4.3.4). Let G be a reflection two-row subgroup of $\text{GL}(V)$ which contains a normal reflection Sylow p-subgroup. If G/K_G is modular, then $S(V)^G$ is a polynomial ring.
Theorem (Theorem A.0.2). Let \mathbb{F} be a field of characteristic p, V an n-dimensional vector space over \mathbb{F}, and G a finite p-subgroup of $GL(V)$. If $S(V)^G$ is a polynomial algebra generated by norms $N_i := \prod_{x \in G(y_i)} x$, $i = 1, ..., n$, of a basis $\{y_1, ..., y_n\}$ of the vector space V, then G is a Nakajima p-group.

Finally we reworked Dickson’s classic result that invariant rings of subgroups of $SL(2, p)$ are all hypersurfaces, which was previously obtained by exhibiting generators of invariant rings in all cases. We give a simpler, direct and transparent proof which does not touch any invariants except for a few simple cases. Our method works for the complex numbers and even more generally for other fields of characteristic zero.

There is much future work to do: How to deal with modular two-row groups generated by bireflections? Can we extend the prime field to a bigger field? Can we adopt the systematic method mentioned in Neusel [22].
Bibliography

48

Appendix A

Characterizing Nakajima p-groups

Recall that, given any two finite subgroups S and T of a group G, we always have $|ST||S \cap T| = |S||T|$ (note that ST need not be a group). This is a classical result in the theory of finite groups (see Rotman [25, Theorem 2.20] for a proof).

Lemma A.0.1. Let S_1, \ldots, S_m be m subgroups of a finite group S, then we have

$$\prod_{i=1}^{m} |S_i| = \left| \bigcap_{i=1}^{m} S_i \right| \cdot \prod_{j=2}^{m} \left| \left(\bigcap_{i=1}^{j-1} S_i \right) S_j \right| \leq \left| \bigcap_{i=1}^{m} S_i \right| |S|^{m-1}.$$

Proof. By induction on m, it is easy to show that the equality holds using the result mentioned above. As for the inequality, it holds by the observation that

$$\left| \left(\bigcap_{i=1}^{j-1} S_i \right) S_j \right| \leq |S|$$

for $j = 2, \ldots, m$. □

Let G be a finite group and X a G-set. Recall that, for $x \in X$, the isotropy group of x under G is $G_x = \{ g \in G : gx = x \}$ and the orbit of x under G is $G(x) = \{ gx : g \in G \}$.

52
Theorem A.0.2. Let \mathbb{F} be a field of characteristic p, V an n-dimensional vector space over \mathbb{F}, and G a finite p-subgroup of $GL(V)$. If $S(V)^G$ is a polynomial algebra generated by norms $N_i := \prod_{x \in G(y_i)} x$, $i = 1, \ldots, n$, of a basis $\{y_1, \ldots, y_n\}$ of the vector space V, then G is a Nakajima p-group.

Proof. For $i = 1, \ldots, n$, let $H_i := \bigcap_{j=1, j \neq i}^n G_{y_j}$. First of all we are going to show $G = H_{\sigma(1)} \cdots H_{\sigma(n)}$ for any permutation σ on $\{1, \ldots, n\}$. Since each norm N_i is just the product of elements in $G(y_i)$, we have

$$|G| = |G_{y_i}| |G : G_{y_i}| = |G_{y_i}| |G(y_i)| = |G_{y_i}| \cdot \deg(N_i).$$

On the other hand, since N_1, \ldots, N_n generate the polynomial invariant ring of G, we have $|G| = \prod_{i=1}^n \deg(N_i)$. Thus

$$|G|^n = \prod_{i=1}^n (|G_{y_i}| \cdot \deg(N_i))$$

$$= \left(\prod_{i=1}^n |G_{y_i}| \right) \left(\prod_{i=1}^n \deg(N_i) \right)$$

$$= \left(\prod_{i=1}^n |G_{y_i}| \right) |G|,$$

which implies that $|G|^{n-1} = \prod_{i=1}^n |G_{y_i}|$.

By Lemma 2, for each $k = 1, \ldots, n$, we have

$$\prod_{i=1 \atop i \neq k}^n |G_{y_i}| \leq \left| \bigcap_{i=1 \atop i \neq k}^n G_{y_i} \right| |G|^n = |H_k| |G|^{n-2}.$$

Thus

$$|G|^{n-1} = \prod_{i=1}^n |G_{y_i}| = |G_{y_k}| \prod_{i=1 \atop i \neq k}^n |G_{y_i}| \leq |G_{y_k}| |H_k| |G|^{n-2}.$$
APPENDIX A. CHARACTERIZING NAKAJIMA P-GROUPS

So $|G| \leq |G_{y_k}| H_k|$. On the other hand, since $G_{y_k} \cap H_k = \bigcap_{i=1}^{n} G_{y_i} = e$, we have $|G_{y_k}| H_k| = |G_{y_k} H_k| \leq |G|$. Therefore $|G_{y_k}| H_k| = |G|$ for $k = 1, ..., n$.

Now we have

$$|G|^n = \prod_{i=1}^{n} (|G_{y_i}| |H_i|) = \left(\prod_{i=1}^{n} |G_{y_i}| \right) \left(\prod_{i=1}^{n} |H_i| \right) = |G|^{n-1} \left(\prod_{i=1}^{n} |H_i| \right),$$

which implies $|G| = \prod_{i=1}^{n} |H_i|$.

Now we proceed to show $G = H_{\sigma(1)} \cdots H_{\sigma(n)}$ for any permutation σ on $\{1, ..., n\}$.

For $k = 1, ..., n - 1$, we observe that $(H_{\sigma(1)} \cdots H_{\sigma(k)}) \cap H_{\sigma(k+1)} = e$, whence

$$|H_{\sigma(1)} \cdots H_{\sigma(k+1)}| = |H_{\sigma(1)} \cdots H_{\sigma(k)}||H_{\sigma(k+1)}|.$$

Thus it is easy to see that

$$|H_{\sigma(1)} \cdots H_{\sigma(n)}| = |H_{\sigma(1)}| \cdots |H_{\sigma(n)}| = \prod_{i=1}^{n} |H_i| = |G|,$$

which implies $G = H_{\sigma(1)} \cdots H_{\sigma(n)}$.

Next we are going to show that there exists a permutation τ on $\{1, ..., n\}$ such that the group G is upper triangular with respect to the ordered basis $\{y_{\tau(1)}, ..., y_{\tau(n)}\}$.

Since G is a finite p-group acting in characteristic p, we have the following chain

$$0 = V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_m = V,$$

where m is some positive integer and each V_l is a subspace of W defined inductively by

$$V_l := \begin{cases} 0, & \text{if } l = 0; \\
\{w \in V \mid (g - 1)w \in V_{l-1} \text{ for all } g \in G\}, & \text{if } l \geq 1. \end{cases}$$
Now let \(d_l := \dim_\mathbb{F}(V_l) \) for all \(l \). Choose a basis \(\{x_1, ..., x_n\} \) for \(W \) such that \(\{x_1, ..., x_{d_l}\} \) is a basis of \(V_l \) for all \(l \). We note that \(G \) is upper triangular with respect to any basis of \(V \) chosen this way. Since \(\{y_1, ..., y_n\} \) is also a basis of \(V \), we can write

\[
x_i = \sum_{j=1}^{n} \alpha_{ji} y_j \quad \text{for} \quad i = 1, ..., n,
\]

where each \(\alpha_{ji} \) is just a scalar in \(\mathbb{F} \). Now for each \(i \) we define a set \(\mathcal{R}_i := \{y_j \mid \alpha_{ji} \neq 0, \text{ where } 1 \leq j \leq n\} \), which must be nonempty. Now for each \(l = 1, ..., m \), let \(\mathcal{Y}_l := \bigcup_{i=1}^{d_l} \mathcal{R}_i \). Obviously we have

\[
\mathcal{Y}_1 \subset \mathcal{Y}_2 \subset \cdots \subset \mathcal{Y}_m = \{y_1, ..., y_n\}.
\]

We proceed to show \(\text{Span}_\mathbb{F}(\mathcal{Y}_l) = V_l \) for each \(l \). Suppose \(y_k \in \mathcal{Y}_l \) for some \(k \in \{1, ..., n\} \). Then there exists some \(x_t \in V_l \) such that

\[
x_t = \sum_{j=1}^{n} \alpha_{jt} y_j, \quad \text{where } \alpha_{kt} \text{ must be non-zero}.
\]

Now take \(g \in G \). Since \(G = H_k H_1 \cdots H_{k-1} H_{k+1} \cdots H_n \) by what we have proved above, we can write \(g = g_k g_1 \cdots g_{k-1} g_{k+1} \cdots g_n \) with some \(g_i \in H_i \) for \(i = 1, ..., n \). Thus \((g - 1)y_k = (g_k - 1)y_k \). We note \((g_k - 1)x_t = \alpha_{kt}(g_k - 1)y_k \). Since \(x_t \in V_l \), we have \((g - 1)y_k = \alpha_{kt}^{-1}(g_k - 1)x_t \in V_{l-1} \), which implies that \(y_k \in V_l \), and hence \(\mathcal{Y}_l \subset V_l \).

On the other hand, by the construction of \(\mathcal{Y}_l \), since each \(x_i \ (i = 1, ..., d_l) \) is a linear combination of some elements in \(\mathcal{Y}_l \), we see \(\text{Span}_\mathbb{F}(\mathcal{Y}_l) = V_l \). Thus it is not hard to see that there exists a permutation \(\tau \) on \(\{1, ..., n\} \) such that \(\mathcal{Y}_l = \{y_{\tau(1)}, ..., y_{\tau(d_l)}\} \)
for all \(l \). This implies that \(G \) is upper triangular with respect to the ordered basis \(\{y_{\tau(1)}, ..., y_{\tau(n)}\} \). Since \(G = H_{\tau(1)} \cdots H_{\tau(n)} \), it follows that \(G \) is a Nakajima \(p \)-group.

\(\square \)