Geometric sliding mode control: The linear and linearised theory∗

Ron M. Hirschorn† Andrew D. Lewis†

09/01/2003
Last updated: 16/08/2003

Abstract

The idea of sliding mode control for stabilisation is investigated to determine its geometric features. A geometric definition is provided for a sliding submanifold, and for various properties of a sliding submanifold. Sliding subspaces are considered for linear systems, where a pole placement algorithm is given that complements existing algorithms. Finally, it is shown that at an equilibrium for a nonlinear system with a controllable linearisation, the sliding subspace for a linearisation gives rise to many local sliding submanifolds for the nonlinear system. This theory is exhibited on the standard pendulum/cart system.

Keywords. sliding mode control, linear systems, linearisation

AMS Subject Classifications. 93B12, 93B18, 93B27, 93B55

1. Introduction

In sliding mode control, the idea is that one provides a surface on which the dynamics of the system, when restricted to the surface, have desired properties, e.g., all trajectories asymptotically approach a desired equilibrium point. The surface should also have the property that one can, by a suitable control law, force trajectories to the surface in finite time. In this way, one can ensure that the system eventually behaves as the system on the surface. Sometimes, in applications, the surface is obtained via the use of a linearising algorithm. A rather thorough review of the classical notion of sliding mode control is provided on the surface. Sometimes, in applications, the surface is obtained via the use of a linearising algorithm. The idea of sliding mode control for stabilisation is investigated to determine its geometric features. A geometric definition is provided for a sliding submanifold, and for various properties of a sliding submanifold. Sliding subspaces are considered for linear systems, where a pole placement algorithm is given that complements existing algorithms. Finally, it is shown that at an equilibrium for a nonlinear system with a controllable linearisation, the sliding subspace for a linearisation gives rise to many local sliding submanifolds for the nonlinear system. This theory is exhibited on the standard pendulum/cart system.

1. Introduction

In sliding mode control, the idea is that one provides a surface on which the dynamics of the system, when restricted to the surface, have desired properties, e.g., all trajectories asymptotically approach a desired equilibrium point. The surface should also have the property that one can, by a suitable control law, force trajectories to the surface in finite time. In this way, one can ensure that the system eventually behaves as the system on the surface. Sometimes, in applications, the surface is obtained via the use of a linearising algorithm. A rather thorough review of the classical notion of sliding mode control is provided on the surface. Sometimes, in applications, the surface is obtained via the use of a linearising algorithm. The idea of sliding mode control for stabilisation is investigated to determine its geometric features. A geometric definition is provided for a sliding submanifold, and for various properties of a sliding submanifold. Sliding subspaces are considered for linear systems, where a pole placement algorithm is given that complements existing algorithms. Finally, it is shown that at an equilibrium for a nonlinear system with a controllable linearisation, the sliding subspace for a linearisation gives rise to many local sliding submanifolds for the nonlinear system. This theory is exhibited on the standard pendulum/cart system.

1. Introduction

In sliding mode control, the idea is that one provides a surface on which the dynamics of the system, when restricted to the surface, have desired properties, e.g., all trajectories asymptotically approach a desired equilibrium point. The surface should also have the property that one can, by a suitable control law, force trajectories to the surface in finite time. In this way, one can ensure that the system eventually behaves as the system on the surface. Sometimes, in applications, the surface is obtained via the use of a linearising algorithm. A rather thorough review of the classical notion of sliding mode control is provided on the surface. Sometimes, in applications, the surface is obtained via the use of a linearising algorithm. The idea of sliding mode control for stabilisation is investigated to determine its geometric features. A geometric definition is provided for a sliding submanifold, and for various properties of a sliding submanifold. Sliding subspaces are considered for linear systems, where a pole placement algorithm is given that complements existing algorithms. Finally, it is shown that at an equilibrium for a nonlinear system with a controllable linearisation, the sliding subspace for a linearisation gives rise to many local sliding submanifolds for the nonlinear system. This theory is exhibited on the standard pendulum/cart system.

1. Introduction

In sliding mode control, the idea is that one provides a surface on which the dynamics of the system, when restricted to the surface, have desired properties, e.g., all trajectories asymptotically approach a desired equilibrium point. The surface should also have the property that one can, by a suitable control law, force trajectories to the surface in finite time. In this way, one can ensure that the system eventually behaves as the system on the surface. Sometimes, in applications, the surface is obtained via the use of a linearising algorithm. A rather thorough review of the classical notion of sliding mode control is provided on the surface. Sometimes, in applications, the surface is obtained via the use of a linearising algorithm. The idea of sliding mode control for stabilisation is investigated to determine its geometric features. A geometric definition is provided for a sliding submanifold, and for various properties of a sliding submanifold. Sliding subspaces are considered for linear systems, where a pole placement algorithm is given that complements existing algorithms. Finally, it is shown that at an equilibrium for a nonlinear system with a controllable linearisation, the sliding subspace for a linearisation gives rise to many local sliding submanifolds for the nonlinear system. This theory is exhibited on the standard pendulum/cart system.

1. Introduction

In sliding mode control, the idea is that one provides a surface on which the dynamics of the system, when restricted to the surface, have desired properties, e.g., all trajectories asymptotically approach a desired equilibrium point. The surface should also have the property that one can, by a suitable control law, force trajectories to the surface in finite time. In this way, one can ensure that the system eventually behaves as the system on the surface. Sometimes, in applications, the surface is obtained via the use of a linearising algorithm. A rather thorough review of the classical notion of sliding mode control is provided on the surface. Sometimes, in applications, the surface is obtained via the use of a linearising algorithm. The idea of sliding mode control for stabilisation is investigated to determine its geometric features. A geometric definition is provided for a sliding submanifold, and for various properties of a sliding submanifold. Sliding subspaces are considered for linear systems, where a pole placement algorithm is given that complements existing algorithms. Finally, it is shown that at an equilibrium for a nonlinear system with a controllable linearisation, the sliding subspace for a linearisation gives rise to many local sliding submanifolds for the nonlinear system. This theory is exhibited on the standard pendulum/cart system.
Geometric sliding mode control: The linear and linearised theory

Curves defined on the interval \(I \subset \mathbb{R} \) with \(u \) measurable and which together satisfy the differential equation

\[
\dot{\xi}(t) = f_0(\xi(t)) + \sum_{a=1}^{m} u^a(t)f_a(\xi(t)).
\]

Throughout the paper we make the assumption that the distribution \(\mathcal{F} \) whose fibre at \(x \in M \) is defined by

\[
\mathcal{F}_x = \text{span} \{ f_1(x), \ldots, f_m(x) \}
\]

has constant rank. We do not wish that considerations of the exact nature of the control set get in the way of our geometric constructions, so we ask that \(U = \mathbb{R}^m \), unless we state otherwise. In practice, of course, one typically has only finite control action available. We will consider the consequences of this at various times, but to simplify parts of the general presentation we will take as default the case where control values are unrestricted. If \(\Sigma \subset M \) is an open submanifold then \(\Sigma \times X \) denotes the control-affine system \((X, \mathcal{F} \times U, \Xi)\), where \(\mathcal{F} \times U \) is the collection of vector fields in \(\mathcal{F} \), restricted to \(X \).

2.2. Restrictions of control-affine systems

We wish to have our sliding submanifold have the property that we may restrict the system to it. In cases when the restricted system is unique, the control giving rise to this restriction is called the “equivalent control.” In this section, we formulate this idea of restriction to a submanifold, and of characterising the equivalent control, in a slightly different manner than is the norm. We consider control-affine systems \(\Sigma = (M, \mathcal{F} = \{ f_0, f_1, \ldots, f_m \}, U = \mathbb{R}^m) \) and \(\Sigma = (S, \mathcal{F} = \{ f_0, f_1, \ldots, f_k \}, U = \mathbb{R}^m) \) with the property that \(S \) is a submanifold of \(M \). We shall say that \(\Sigma \) is a restriction of \(\Sigma \) if for every controlled trajectory \((\xi, u) \) for \(\Sigma \) there is a control \(u \) for which \((\xi, u)\) is a controlled trajectory for \(\Sigma \), where \(\xi : S \to M \) is the inclusion. A submanifold \(S \) is \(\Sigma \)-rigid if

1. there is only one control-affine system \(\hat{\Sigma} = (S, \hat{\mathcal{F}}, \hat{U} = \mathbb{R}^m) \) that is a restriction of \(\Sigma \) and if
2. \(\mathcal{F} = \{ f_0 \} \) for some smooth vector field \(f_0 \) on \(S \).

The following result characterises \(\Sigma \)-rigid submanifolds.

2.1 Proposition: For a control-affine system \(\Sigma = (M, \mathcal{F}, U = \mathbb{R}^m) \) a submanifold \(S \subset M \) is \(\Sigma \)-rigid if for each \(x \in S \) we have \(T_x M = T_x S \oplus \mathcal{F}_x \). Conversely, if \(S \) is \(\Sigma \)-rigid then \(T_x S \cap \mathcal{F}_x = \{ 0 \} \).

Proof: First suppose that \(T_x M = T_x S \oplus \mathcal{F}_x \) for each \(x \in S \) and let \((\xi, u)\) be a controlled trajectory for \(\Sigma \) passing through \(x \) at time, say, \(t \in \mathbb{R} \), and having the property that \(\xi(t) \in S \). Then

\[
\dot{\xi}(t) = f_0(x) + \sum_{a=1}^{m} u^a(t)f_a(x) \in T_x S.
\]

This means

\[
f_0(x) + \sum_{a=1}^{m} u^a(t)f_a(x) = 0, \quad x \in S.
\]

Note that for the equivalent control to really be unique, the vector fields \(\{ f_1, \ldots, f_m \} \) should be linearly independent. If this is not true, then one should really say that the vector field \(\sum_{a=1}^{m} a^a f_a \) is unique, even though the coefficients \(a^a \), \(a \in \{1, \ldots, m\} \), are not. In either case, the important thing is that the dynamics on \(S \) are simply prescribed by the vector field \(f_0 \) that is defined by

\[
f_0(x) = \text{pr}_S(f_0(x)), \quad x \in S.
\]

Lies in the subspace \(T_x S \subset T_x M \) as well as lying in the affine subspace

\[
f_0(x) + \mathcal{F}_x = \{ f_0(x) + \sum_{a=1}^{m} u^a f_a(x) \mid u \in \mathbb{R}^m \}.
\]

We claim that since \(T_x M = T_x S \oplus \mathcal{F}_x \) we have \(\{ f_0(x) + \mathcal{F}_x \} \cap T_x S = \{ v_x \} \) for some \(v_x \in T_x M \). Indeed, let \(\{ v_1, \ldots, v_m \} \) be a basis for \(T_x S \) and let \(\{ v_{m+1}, \ldots, v_{m+k} \} \) be a basis for \(\mathcal{F}_x \). The equation

\[
c_1 v_1 + \cdots + c_k v_k + c_{k+1} v_{k+1} + \cdots + c_m v_m = f_0(x)
\]

then has a unique solution for the constants \(c_1, \ldots, c_m \). We also have

\[
T_x S \ni c_1 v_1 + \cdots + c_k v_k = f_0(x) - c_{k+1} v_{k+1} - \cdots - c_m v_m \in f_0(x) + \mathcal{F}_x,
\]

so it follows that \(\{ f_0(x) + \mathcal{F}_x \} \cap T_x S \neq \emptyset \). To show that the intersection consists of a single vector also follows from elementary linear algebra. This shows that \(T_x M = T_x S \oplus \mathcal{F}_x \) implies that \(\{ f_0(x) + \mathcal{F}_x \} \cap T_x S = \{ v_x \} \) for some \(v_x \in T_x M \), thus showing that there is a unique vector \(f_0(x) + f_1(x) \in T_x S \). Thus \(S \) is indeed \(\Sigma \)-rigid by taking \(\mathcal{F} = \{ f_0 + f_1 \} \), thinking of \(f_0 + f_1 \) as being a vector field on \(S \).

Conversely, suppose that \(S \) is \(\Sigma \)-rigid. Then for each \(x \in S \) there exists a unique \(f_1(x) \in \mathcal{F}_x \) with the property that \(f_0(x) + f_1(x) \in T_x S \). Let us abbreviate \(v_x = f_0(x) + f_1(x) \). Thinking of \(f_0(x) \) and \(T_x S \) as submanifolds of \(T_x M \) this means that \(T_x (f_0(x) + \mathcal{F}_x) \cap T_x (T_x S) \) intersect in \(\{ 0 \} \). However, since \(T_x (f_0(x) + \mathcal{F}_x) \simeq T_x S \) this part of the proposition follows.

In the case that \(T_x M = T_x S \oplus \mathcal{F}_x \), let \(\text{pr}_S : TM \to \mathbb{T} \) be the projection onto the tangent bundle of \(S \) and let \(\text{pr}_F : TM \to \mathcal{F} \) be the projection onto the input distribution on \(S \), both defined with respect to the decomposition \(T_x M = T_x S \oplus \mathcal{F}_x \).

2.2 Remark:
In most of the literature on sliding mode control, sliding surfaces are assumed to be rigid. The equivalent control is then often characterised by considering the limits of closed-loop controls off the sliding surface as they approach the sliding surface. It is not perfectly obvious that the equivalent control defined in this way is unique, i.e., does not depend on the control off the surface. The characterisation of Proposition 2.1 makes this clear. Indeed, the equivalent control \(u_S : S \to \mathbb{R}^m \) is defined as satisfying

\[
\text{pr}_S \left(f_0(x) + \sum_{a=1}^{m} a^a f_a(x) \right) = 0, \quad x \in S.
\]
2.3. Sliding submanifolds and their properties. In this section we provide a general characterisation of sliding submanifolds and some of the properties they may possess. If \(S \in M \setminus \{x_0\} \): \(S \rightarrow M \) denotes the inclusion.

2.3 Definition: Let \(\Sigma = (M, \mathcal{F}, U) \) be a \(C^\infty \) control-affine system and let \(x_0 \in M \).

(i) A sliding submanifold for \((\Sigma, x_0) \) is a \(C^\infty \) submanifold of \(M \setminus \{x_0\} \) with the following properties:

(a) \(x_0 \in \text{cl}(S) \);
(b) \(T_x S + T_x \mathcal{F} = T_x M \).

(ii) A sliding submanifold \(S \) for \((\Sigma, x_0) \) is \(C^r \), \(r \in \mathbb{Z}^+ \), if \(S \cup \{x_0\} \) is a \(C^r \) submanifold of \(M \).

(iii) A sliding submanifold \(S \) for \((\Sigma, x_0) \) is rigid if it is \(\Sigma \)-rigid.

(iv) For a sliding submanifold \(S \) for \((\Sigma, x_0) \), let \(\tilde{f}_0 \) be the vector field induced on \(S \). \(S \) is stabilising if there exists a map \(T: S \rightarrow [0, \infty) \) so that the solution to the initial value problem

\[\dot{\xi}(t) = \tilde{f}_0(\xi(t)), \quad \xi(0) = x, \]

is defined on \([0, T(x)] \) and satisfies \(\lim_{t \downarrow T(x)} \xi(t) = x_0 \).

(v) For a sliding submanifold \(S \) for \((\Sigma, x_0) \), let \(\Sigma = (S, \mathcal{F}, \tilde{f}_0, \tilde{f}_1, \ldots, \tilde{f}_n, \tilde{U}) \) be the restriction to \(S \). \(S \) is \(C^r \)-stabilisable, \(r \in \mathbb{Z}^+ \), if there exists a \(C^r \) function \(\tilde{u}: S \rightarrow \tilde{U} \) and a map \(T: S \rightarrow [0, \infty) \) so that the solution to the initial value problem

\[\dot{\xi}(t) = \tilde{f}_0(\xi(t)) + \sum_{a=1}^{n} \tilde{u}^a(\xi(t)) \tilde{f}_a(\xi(t)), \quad \xi(0) = x, \]

is defined on \([0, T(x)] \) and satisfies \(\lim_{t \downarrow T(x)} \xi(t) = x_0 \).

(vi) A sliding submanifold \(S \) is locally attracting if for any \(T_{\max} > 0 \) there exists a neighbourhood \(N \) of \(S \) in \(M \) and a map \(T: N \setminus S \rightarrow [0, T_{\max}] \) with the property that for each \(x \in N \setminus S \) there is a control \(u: [0, T(x)] \rightarrow U \) so that the solution to the initial value problem

\[\dot{\xi}(t) = f_0(\xi(t)) + \sum_{a=1}^{n} u^a(t) f_a(\xi(t)), \quad \xi(0) = x, \]

is defined on \([0, T(x)] \) and \(\lim_{t \downarrow T(x)} \xi(t) \in S \).

(vii) A sliding submanifold \(S \) is smoothly locally attracting if there exists a \(C^\infty \) section \(f_0 \) of the vector bundle \(\mathcal{T}(\mathcal{F}) \) so that for any \(T_{\max} > 0 \) there exists a neighbourhood \(N \) of \(S \) in \(M \) and a map \(T: N \setminus S \rightarrow [0, T_{\max}] \) with the property that for each \(x \in N \setminus S \) \(\xi(t) = f_0(\xi(t)) + f_0(\xi(t)), \quad \xi(0) = x, \)

is defined on \([0, T(x)] \) and \(\lim_{t \downarrow T(x)} \xi(t) \in S \).

(viii) A local sliding submanifold for \((\Sigma, x_0) \) is a sliding submanifold for \((\Sigma \chi, x_0) \) where \(\chi \) is a neighbourhood of \(x_0 \) in \(M \).

\[\square \]

2.4 Remark: 1. We exclude \(x_0 \) from being in \(S \) in order to allow certain examples where it is helpful to be able to design \(S \) to have a singularity at \(x_0 \).

2. In part (v) of the definition, one can allow other forms of stabilisability of the restriction to \(S \), if desired.

2.4. A nonlinear controller for a simple linear system. To give an indication of how one may use the geometric approach, we consider a rather simple example,

\[\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= u,
\end{align*} \]

(2.1)

and we see what it might mean to design a “sliding mode controller” for the system that stabilises \(x_0 = (0,0) \). In terms of the definitions of the preceding section, we shall design a rigid stabilising smoothly locally attracting sliding submanifold \(S \). Let us write (2.1) as a single-input control affine system \(\Sigma = (\mathbb{R}^2, \mathcal{F} = \{f_0, f_1\}, U) \) where

\[f_0(x_1, x_2) = x_2 \frac{\partial}{\partial x_1}, \quad f_1(x_1, x_2) = \frac{\partial}{\partial x_2}. \]

We first choose \(S \) so that it contains \(x_0 \) in its closure. Next we must choose \(S \) so that the system (2.1) restricts to it. By Proposition 2.1 this means that we should choose \(S \) so that, away from \(x_0, T_x S \) is not parallel to the vector \((0,1)\). Another requirement of \(S \) is that the dynamics, when restricted to \(S \) as in Proposition 2.1, should have \(x_0 \) as an asymptotically stable “equilibrium point.” The geometry underlying this second condition is more subtle to understand, but can still be done in an intuitive manner by considering the vector field \(f_0 \), and how it influences the restriction to \(S \). In Figure 1 we show how this produces a vector field \(\tilde{f}_0 \) on \(S \) for \(x_2 > 0 \). We see that when \(x_1 > 0 \) the restricted dynamics on \(S \) renders \(x_0 \) unstable, whereas the behaviour on \(S \) is desirable for \(x_1 < 0 \). Thus we are forced to ask that \(S \) intersect the upper half plane only in the \((-,+) \)-quadrant. Similar arguments demand that \(S \) intersect the lower half plane in the \((+,-) \)-quadrant.

At this point we have a pretty good idea of what a stabilising rigid sliding surface may look like. It must be the graph of a strictly decreasing function that passes through \(x_0 = (0,0) \). The only remaining issue to confront is how it should pass through \(x_0 \). It may
easily be checked that as long as \(S \) does not have a vertical tangency at \(x_0 \), the dynamics on \(S \), and the control giving rise to these dynamics, is well behaved. However, vertical tangencies are also allowed for \(S \) at \(x_0 \), provided that they are not "too vertical." We shall not address this in the present paper, although it will be investigated in a future paper.

Now that we have a sliding surface on which the dynamics behave in a satisfactory manner we should set about forcing the system trajectories near \(S \) to reach the sliding surface in finite time. In fact, in this example one can easily design bounded controls that steer the system to \(S \) in finite time. In fact, in this example one can easily be checked that as long as \(S \) is the sliding submanifold is that the control required to stay on \(S \) and having chosen a constant control (of magnitude 5 in this case) away from \(S \), we show the closed-loop phase portrait for the system having chosen \(\xi = \xi(t) + Bu(t) \).

\[
\tilde{x}(t) = A\xi(t) + B u(t).
\]

We will assume without loss of generality that \(A \) is a linear system is also a control-affine system, so all the definitions of Section 3.1 apply. As usual the equations governing the linear system \(A \) are

\[
\dot{\xi}(t) = A\xi(t) + B u(t).
\]

We will assume without loss of generality that \(B \) is injective. If \((\xi, u) \) is a controlled trajectory for \((A, B) \) then \((\xi, u + B(\xi)) \) is a controlled trajectory for \((A, B) \). A sliding submanifold for \((A, B) \) is a rigid sliding subspace.

Our objective in this section is to consider a systematic method for producing sliding subspaces on which the dynamics have a prescribed characteristic polynomial. This is done in Section 3.1. In Section 3.2 we consider the problem of steering the system to the sliding subspace in a systematic way. In doing so, we provide a geometric characterisation of the standard output-based sliding mode control law. Our characterisation does not rely on the presence of an output (typically denoted "s" in the sliding mode control literature).

3.1 Sliding subspaces for linear systems. If \(S \) is a rigid sliding subspace for \(\Lambda = (A, B) \) then we must have \(V = S \oplus \text{image}(B) \). Denote \(\text{pr}_B : V \to \text{image}(B) \) and \(\text{pr}_S : V \to S \) the projections relative to the direct sum decomposition in this case. The inclusions we denote \(\iota_2 : \text{image}(B) \to V \) and \(\iota_2 : S \to V \). The vector field on \(S \) obtained by restriction of the system (3.1) will be obtained by projecting \(A(x) \) to \(S \) for \(x \in \hat{S} \). The control at \(x \in \hat{S} \) will then be the unique (since \(B \) is assumed injective) \(u \) in \(\hat{U} \) satisfying \(B(u) = -\text{pr}_B(A(x)) \).

The following result provides the essential feature of the preceding constructions. If \(L \in \mathbb{L}(W, V) \) then \(\text{spec}(L) \subset \mathbb{C} \) denotes the eigenvalues of \(L \) and if \(P \in \mathbb{R}[\lambda] \) then \(\text{spec}(P) \subset \mathbb{C} \) denotes the roots of \(P \).

3.1 Theorem: Let \(V \) and \(U \) be \(\mathbb{R} \)-vector spaces of dimension \(m \) and \(n \), respectively, and let \(A \in L(V, V) \) and \(B \in L(U; V) \) be linear maps with the property that \((A, B) \) is controllable. If \(P \in \mathbb{R}[\lambda] \) is a monic polynomial of degree \(n - m \) then there exists a subspace \(S \) with the following properties:

(i) \(V = \text{image}(B) \oplus S \);

(ii) \(\text{spec}(A_S) = \text{spec}(P) \) where \(A_S = \text{pr}_S \circ A \circ \iota_2 \).

Proof: Let us choose a linear map \(F_0 \in L(U; l) \) for which there exists bases \(\{v_1, \ldots, v_m\} \) for \(V \) and \(\{u_1, \ldots, u_n\} \) for \(U \) having the property that the representations of \(A + B + F_0 \) and \(B \) in these bases are in Brunovsky form. Thus, letting the matrix representation of \(A + B + F_0 \) be denoted \(A \in \mathbb{R}^{n \times m} \) and the matrix representation of \(B \) be denoted \(B \in \mathbb{R}^{n \times m} \) we have

\[
\begin{pmatrix}
J_{n_1} & 0 & \cdots & 0 \\
0 & \ddots & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & J_{n_m}
\end{pmatrix} \quad \text{and} \quad
\begin{pmatrix}
e_{n_1} & 0 & \cdots & 0 \\
0 & e_{n_2} & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & e_{n_m}
\end{pmatrix}.
\]
That is to say, if side of the above equation, and by where and where $\kappa = (\kappa_1, \ldots, \kappa_m)$ are the controllability indices. Now consider an arbitrary $F \in \mathbb{R}^{m \times n}$ and write it as

$$F = \begin{bmatrix}
 f_{j1} & f_{j2} & \cdots & f_{jm} \\
 f_{k1} & f_{k2} & \cdots & f_{km} \\
 \vdots & \vdots & \ddots & \vdots \\
 f_{m1} & f_{m2} & \cdots & f_{mm}
\end{bmatrix},$$

for $f_{jk} \in \mathbb{R}^{1 \times n}$, $j,k \in \{1, \ldots, m\}$. Let us write f_{jk} as

$$f_{jk} = [f_{j,k_1} f_{j,k_2} \cdots f_{j,k_n}].$$

We shall decompose $\mathbb{R}^{m \times n}$ as $\mathbb{R}^{(m-1) \times n} \oplus \mathbb{R}^{1 \times n}$ by writing $F \in \mathbb{R}^{m \times n}$ as

$$F = \begin{bmatrix}
 f_1 & 0 & \cdots & 0 \\
 f_{m-1} & 0 & \cdots & 0 \\
 0 & 0 & \cdots & 0 \\
 f_m
\end{bmatrix},$$

(3.2)

where $f_j \in \mathbb{R}^{1 \times n}$, $j \in \{1, \ldots, m\}$. We denote by $\pi_1(F)$ the first term on the right-hand side of the above equation, and by $\pi_2(F)$ the second term.

We now consider the single input $b_m = (0, \ldots, 0, 1)$. We claim that the determinant of the controllability matrix for the single-input system $(A + BF_m b_m)$ depends only on $\pi_1(F)$. That is to say, if $F_1, F_2 \in \mathbb{R}^{m \times n}$ have the property that $\pi_1(F_1 - F_2) = 0$, then

$$\det \left[b_m \begin{bmatrix} (A + BF_1)b_m & \cdots & (A + BF_m b_m) \end{bmatrix} \cdots \begin{bmatrix} (A + BF_2)b_m & \cdots & (A + BF_m b_m) \end{bmatrix} \right] = 0.$$

Indeed, if $\pi_1(F_1 - F_2) = 0$ then there exists $f \in \mathbb{R}^{1 \times n}$ so that

$$F_2 = F_1 + b_m f.$$

In this case we have

$$BF_2 = BF_1 + b_m f,$$

and one easily shows by induction that

$$\begin{bmatrix} b_m \mid (A + BF_2)b_m \mid \ldots \mid (A + BF_m b_m) \end{bmatrix} = \begin{bmatrix} b_m \mid (A + BF_1)b_m \mid \ldots \mid (A + BF_m b_m) \end{bmatrix} + \begin{bmatrix} 0 \mid \lambda (b_m) \mid \ldots \mid \lambda (b_m) \end{bmatrix},$$

where $\lambda(v_1, \ldots, v_k)$ stands for some linear combination of the vectors v_1, \ldots, v_k. By performing determinant preserving column operations we may reduce the expression on the right-hand side to that on the left-hand side, thus proving our claim.

The dependence of the controllability matrix for $(A + BF_m b_m)$ only on $\pi_1(F)$ allows us to assert that there is an open, dense subset $\mathcal{O}_m \subseteq \mathbb{R}^{(m-1) \times n}$ with the property that $(A + BF_m b_m)$ is controllable if and only if $\pi_1(F) \in \mathcal{O}_m$. Let us write $F = F_1 \oplus F_2$. We denote by $\pi_1(F)$ the first term on the right-hand side of the above equation, and by $\pi_2(F)$ the second term.

We claim that the determinant of the controllability matrix for $(A + BF_1 + b_m F_2)$ only on $\pi_1(F_1)$ allows us to assert that there is an open, dense subset $\mathcal{O}_m \subseteq \mathbb{R}^{(m-1) \times n}$ with the property that $(A + BF_m b_m)$ is controllable if and only if $\pi_1(F_1) \in \mathcal{O}_m$. Let $F_1 \in \mathcal{O}_m$ be such that $\det(\Pi_m(M)) \neq 0$.

By virtue of our choosing Q coprime to P, for every $F \in \mathcal{A}_{P,F}$ we have a decomposition $\mathbb{R}^n = \mathcal{P}_F \oplus \mathcal{Q}_F$ into $(A + BF)$-invariant subspaces with the characteristic polynomial of $(A + BF)\mid\mathcal{P}_F$ being P, and the characteristic polynomial of $(A + BF)\mid\mathcal{Q}_F$ being Q. Furthermore, again since Q and P are coprime, the Cayley-Hamilton theorem (essentially) asserts that $\mathcal{P}_F = \ker(P(A + BF))$. We will now show that it is possible to choose $F \in \mathcal{A}_{P,F}$ so that $\mathcal{P}_F \cap \operatorname{image}(B) = \{0\}$. Since $\mathcal{P}_F = \ker(P(A + BF))$, $\mathcal{P}_F \cap \operatorname{image}(B) = \{0\}$ if and only if for every $b \in \operatorname{image}(B) \setminus \{0\}$ we have $P(A + BF)b \neq 0$. Equivalently, for every $u \in \mathbb{R}^m \setminus \{0\}$, we should have $P(A + BF)Bu \neq 0$. This means that $P(A + BF)B$ should be injective. We let $\Pi_m : \mathbb{R}^{n \times m} \rightarrow \mathbb{R}^{m \times m}$ be the map that extracts from an $n \times m$ matrix its top m rows. A matrix $M \in \mathbb{R}^{m \times m}$ will be injective if (but not only if) $\det(\Pi_m(M)) \neq 0$.

Geometric sliding mode control: The linear and linearised theory

9

R. M. Hirschorn and A. D. Lewis

10
Thus, to show that we may choose $F \in \mathcal{A}_{PQ}$ so that $\mathcal{T}_F \cap \text{image}(B) = \{0\}$ it suffices to show that the function
\[
\det(\Pi_m(P(A + BF)B))
\]
thought of as a function on \mathcal{A}_{PQ}, is not identically zero. The following technical lemma is devoted to proving this fact.

1 Lemma: There exists a curve $\alpha \rightarrow F_\alpha$ in \mathcal{A}_{PQ} with the property that
\[
\alpha \rightarrow \det(\Pi_m\{P(A + BF_\alpha)B\})
\]
is a nontrivial polynomial in α.

Proof: We take
\[
F_\alpha = \begin{bmatrix}
0 & \cdots & \alpha & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
0 & \cdots & 0 & \cdots & \alpha & \cdots & 0 & \cdots & 0 \\
0 & \cdots & 0 & \cdots & 0 & \cdots & \alpha & \cdots & 0 \\
\vdots & \ddots & \vdots & \cdots & \vdots & \ddots & \vdots & \cdots & \vdots \\
f_1 & \cdots & f_{p_1} & \cdots & f_{p_2} & \cdots & f_{\rho_0} & \cdots & f_{\rho_0 + 1} \\
\end{bmatrix}
\]
where $\rho_0 = \sum_{i=1}^m \kappa_i$, and where the last row of F_α is chosen so that $A_\alpha \triangleq A + BF_\alpha$ has characteristic polynomial $P(\lambda)Q(\lambda)$.

For $i \in \{1, \ldots, m\}$ define integers ℓ_i by
\[
\ell_i = m_i - 1, \quad \ell_2 = \ell_1 + m_1 - 1, \ldots, \ell_m = m_{m-1} + \kappa_1 - 1.
\]
For $k \in \{0, 1, \ldots, n - m\}$ define integers $r_i(k), i \in \{1, \ldots, m\}$, as follows. For $k = 0$ we let
\[
r_i(0) = \sum_{j=1}^m \kappa_j, \quad i \in \{1, \ldots, m\}.
\]
For $k \in \{1, \ldots, \ell_1\}$ we let
\[
r_i(k) = \kappa_1 + \cdots + \kappa_i, \quad i \in \{1, \ldots, m - 1\}
\]
\[
r_m(k) = n - k.
\]
Generally, for $k \in \{\ell_1 + 1, \ldots, \ell_{p_2} + 1\}$ define
\[
r_i(k) = \kappa_1 + \cdots + \kappa_i, \quad i \in \{1, \ldots, m - j - 1\}
\]
\[
r_{m-1}(k) = n - k - j
\]
\[
\vdots
\]
\[
r_m(k) = n - k.
\]
If
\[
P(\lambda) = \lambda^{n-m} + p_{n-m-1}\lambda^{n-m-1} + \cdots + p_1\lambda + p_0,
\]
for $k \in \{0, 1, \ldots, n - m\}$ we denote by P_K the polynomial
\[
P_K(\lambda) = \lambda^k + p_{n-m-1}\lambda^{k-1} + \cdots + p_k\lambda + p_{n-k-1},
\]
With this notation, we let $M_\alpha(k), k \in \{0, 1, \ldots, n - m\}$, be the $m \times m$ matrix whose ith row is the $r_i(k)$th row of $F_\alpha(A_\alpha)B$. Since $r_i(n - m) = i, i \in \{1, \ldots, m\}$, $M_\alpha(n - m) = \Pi_m(P(A_\alpha)B)$. A messy iterative computation shows that $\det(M_\alpha(k))$ is a monic polynomial in α of degree $\ell_1 + \cdots + \ell_m$ if $k \notin \{\ell_1, \ldots, \ell_{p_2} + 1\}$. In particular, this calculation shows that $\det(\Pi_m(P(A_\alpha)B))$ is a monic polynomial of degree $\ell_1 + \cdots + \ell_m$, and from this the lemma follows. ▽

Continuing with the proof, since $\dim(\mathcal{T}_F) = n - m$ and since $\mathcal{T}_F \cap \text{image}(B) = \{0\}$, we now have $\mathbb{R}^n = \mathcal{T}_F \oplus \text{image}(B)$. Going back now to the basis independent setting of \mathcal{V} and \mathcal{U} we have shown the existence of $F_1 \in L(\mathcal{V}; \mathcal{U})$ so that the linear map $A + B + F = F_1 + F_2$, has the following properties:

1. there exists a decomposition $\mathcal{V} = \mathcal{T}_F \oplus \mathcal{Q} F$ of $(A + B + F)$-invariant subspaces so that the characteristic polynomial of $(A + B + F)/\mathcal{T}_F$ is P and the characteristic polynomial of $(A + B + F)/\mathcal{Q} F$ is Q;

2. \mathcal{T}_F forms a complement to $\text{image}(B)$ in \mathcal{V}.

We now claim that $\mathcal{S} = \mathcal{T}_F$ has property (ii) in the statement of the theorem. Let $v \in \mathcal{S}$. Since \mathcal{S} is $(A + B + F)$-invariant, $(A + B + F)_v + i_\mathcal{S}(v) \in \mathcal{S}$. Also, since $pr_S * B = 0$ we have
\[
(A + B + F)_v * i_\mathcal{S}(v) = pr_S((A + B + F)_v) + i_\mathcal{S}(v) = pr_S(A + i_\mathcal{S}(v)).
\]
Thus the characteristic polynomial of $pr_S * A + i_\mathcal{S}$ is the same as that of $(A + B + F)_\mathcal{S}$, giving the result.

The proof of the theorem suggests that it is actually quite easy to find the desired subspace \mathcal{S}. Indeed, the first part of the following result follows directly from the proof of the theorem.

3.2 Proposition: Let $\mathcal{V}, \mathcal{U}, A, B, P$ and P as in Theorem 3.1.

Let $b \in L(\mathcal{V}; \text{image}(B))$ be nonzero and let $Q \in \mathbb{R}[\lambda]$ be a monic polynomial of degree m coprime with P. Denote by $L(\mathcal{V}; \mathcal{U})_b$ the open dense subset of $L(\mathcal{V}; \mathcal{U})$ with the property that if $F \in L(\mathcal{V}; \mathcal{U})_b$ then $(A + B + F)_v + b$ is controllable.

Consider the algorithm taking $F_0 \in L(\mathcal{V}; \mathcal{U})_b$ and producing a subspace $\mathcal{S}(F_0)$ as follows:

(i) choose (by, say, Ackermann's formula) the unique $F_0 \in L(\mathcal{V}; \mathcal{B})$ so that
\[
\text{spec}(A + B + F_0 + b \cdot f_{\mathcal{S}}) = \text{spec}(P) \cup \text{spec}(Q);
\]
(ii) define $F_0 \in L(\mathcal{V}; \mathcal{U})$ by $F_0(v) = F_0(v) + f_{\mathcal{S}}(v)(b)$;
(iii) define $\mathcal{S}(F_0) = \ker(P(A + B + F_0))$.

Then, \mathcal{S} satisfies conditions (i) and (ii) of Theorem 3.1 for all choice of F_0, except for a subset that is locally the intersection of zeros of a finite collection of analytic functions.

Conversely, if \mathcal{S} is a rigid sliding subspace for which the characteristic polynomial of $A_\mathcal{S}$ is P, then there exists a monic degree m polynomial $Q \in \mathbb{R}[\lambda]$ coprime with P, a nonzero $b \in L(\mathbb{R}; \text{image}(B))$, and $F_0 \in L(\mathcal{V}; \mathcal{U})_b$ so that $\mathcal{S} = \mathcal{S}(F_0)$.
3.2. Steering to the sliding subspace. To show that L is of range B further let $Q \in \mathbb{R}[\lambda]$ be monic, degree m and coprime with P. We claim that this implies that L is an invariant subspace for $A + B + F$ for some $F \in L(\mathbb{R}; \mathcal{V})$, and that furthermore F may be chosen so that $\text{spec}(A + B + F) = \text{spec}(P) \cup \text{spec}(Q)$. To see this, note that relative to the decomposition $\mathcal{V} = \mathbb{R}[\lambda]$ we may write

$$A = \begin{bmatrix} A_S & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ B_2 \end{bmatrix},$$

where B_2 is invertible by our assumption that B is injective. Taking

$$F = [-B_2^{-1} A_{21}, F_2]$$

gives

$$A + B + F = \begin{bmatrix} A_S & A_{12} \\ A_{21} + B_2 F_2 & A_{22} + B_2 + F_2 \end{bmatrix}.$$

Note that (A_{22}, B_2) is controllable, so our claim follows by taking $F_2 \in L(\text{image}(B); \text{image}(B))$ so that $A_{22} + B_2 F_2$ has characteristic polynomial Q. It remains to show that $F \in L(\mathbb{R}; \mathcal{V})$ for some nonzero $b \in L(\mathbb{R}; \text{image}(B))$. This, however, follows since $(A + B + F, B)$ is controllable, and so there is some vector $v \in \text{image}(B)$ for which $A + B + F$ is cyclic on v.

3.2. Steering to the sliding subspace. Since S as constructed in Proposition 3.2 is transversal to $\text{image}(B)$ it follows immediately that it is possible to find a control law around S that renders S attractive in finite time. In this section we explicitly indicate how to do this in two ways. Of course, there are many ways to design a controller that renders S attracting, at least near 0. Our intent is to design a specific control law in a manner that benefits from our geometric way of thinking of things. One of our controllers is designed to locally attract to S using bounded controls. The other gives a geometric interpretation of the “usual” sliding mode control law.

First let us provide a locally valid controller that attracts trajectories near 0 to S in finite time. To make clear the geometry behind our construction we endow the input space U with an inner product (\cdot, \cdot) and we denote by $\| \cdot \|$ the norm defined by this inner product. Since B defines an isomorphism of U with (\cdot, \cdot) and $\| \cdot \|$ for the inner product and norm on both U and $\text{image}(B)$. For $K > 0$ we define $u_{\text{loc}, S}(x) \in U$ by asking that $B(u_{\text{loc}, S}(x))$ be given by

$$B(u_{\text{loc}, S}(x)) = -K \frac{\text{pr}_B(x)}{\|\text{pr}_B(x)\|}.$$

Thus $B(u_{\text{loc}, S}(x))$ should be thought of as a tangent vector of length K at $T_s \mathcal{V}$ and pointing along $\text{image}(B)$ towards the point $\text{pr}_B(x) \in S$. Note that on $\mathcal{V} \setminus S$ the dynamical system

$$\dot{\xi}(t) = A(\xi(t)) + B(u_{\text{loc}, S}(\xi(t)))$$

is C^∞ and so it possesses maximal integral curves in the usual sense. When we refer to maximal integral curves for this equation below, we mean for the system on the open subset $\mathcal{V} \setminus S$.

The control law $u_{\text{loc}, S}$ is sufficient to locally attract to S no matter the nature of A. What’s more, the time to reach S can be uniformly bounded for points near 0.

3.3 PROPOSITION: Let $S \subset \mathcal{V}$ be a rigid sliding subspace for $A = (A, B)$. For any $K, T_{\text{max}} > 0$ and for any neighbourhood \mathcal{X}_1 of 0 in \mathcal{V}, we may find a neighbourhood $S_0(K, T_{\text{max}}, \mathcal{X}_1)$ of 0 in \mathcal{V} with the property that if $\xi : [0, T(x)] \to \mathcal{V} \setminus S$ is the maximal integral curve for the initial value problem

$$\dot{\xi}(t) = A(\xi(t)) + B(u_{\text{loc}, S}(\xi(t))), \quad \xi(0) = x \in S_0(K, T_{\text{max}}, \mathcal{X}_1) \setminus S,$$

then

(i) $T(x) \leq T_{\text{max}}$.
(ii) $\xi(t) \in \mathcal{X}_1$ for $t \in [0, T(x)]$, and
(iii) $\lim_{t \to T(x)} \xi(t) \in S$.

Proof: For the proof let us extend the inner product (\cdot, \cdot) on $\text{image}(B)$ to all of \mathcal{V}, and do so in such a way that S is orthogonal to $\text{image}(B)$. The extended inner product and norm we still denote by (\cdot, \cdot) and $\|\cdot\|$, respectively. The induced norm on $L(\mathcal{V}; \mathcal{V})$ we denote by $\|\cdot\|_\mathcal{V}$. Denote by $B_S(x)$ the open ball of radius R centred at x.

Let us first obtain an estimate on the growth of $\xi(t)$. We let $\psi(x) = \frac{1}{2} \|x\|^2$ and compute

$$\frac{d\psi}{dt}(\xi(t)) = \langle A(\xi(t)), \xi(t) \rangle - \frac{K}{\|\text{pr}_B(\xi(t))\|^2} \|\text{pr}_B(\xi(t))\| \|\text{pr}_B(\xi(t))\|$$

$$\leq \|A\| \|\xi(t)\|^2 = 2 \|A\| \psi(\xi(t)),$$

where we have used the Cauchy-Bunyakovsky-Schwarz inequality. By Gronwall’s lemma it now follows that

$$\psi(t) \leq \psi(0)e^{2\|A\|t},$$

$$\|\xi(t)\| \leq \|\xi(0)\| e^{2\|A\|t}.$$

(3.4)

Now let us obtain an estimate governing the behaviour of the distance of $\xi(t)$ from S. Define $\phi : \mathcal{V} \to \mathbb{R}$ by $\phi(x) = \frac{1}{2} \|\text{pr}_B(x)\|^2$. We then have

$$\frac{d\phi}{dt}(\xi(t)) = \langle \text{pr}_B(\xi(t)), \text{pr}_B(\xi(t)) \rangle - K \|\text{pr}_B(\xi(t))\|$$

$$\leq \|\text{pr}_B(\xi(t))\|^2 \|\text{pr}_B(\xi(t))\| - K \|\text{pr}_B(\xi(t))\|$$

$$\leq \left(\|\text{pr}_B(\xi(t))\|^2 - K\right)\sqrt{\phi(\xi(t))}$$

$$\leq \left(\|\text{pr}_B(\xi(0))\|^2 - K\right)\sqrt{\phi(\xi(t))}.$$
where we have used the Cauchy-Bunyakovsky-Schwarz inequality along with (3.4). Applying Gronwall’s lemma to the last inequality gives
\[\phi(\xi(t)) \leq \frac{(C_1 \|\xi(0)\| (e^{C_2 t} - 1) + C_2(2\sqrt{2}\|\xi(0)\| - Kt))^2}{4C_2^2} \]
\[\leq \frac{(C_1 \|\xi(0)\| (e^{C_2 t} - 1) + C_2(\sqrt{2}\|\xi(0)\| - Kt))^2}{4C_2^2}, \]
where
\[C_1 = \|[pr_B \circ A]\|, \quad C_2 = \|[A]\|. \]

We define \(f_a : \mathbb{R} \to \mathbb{R} \) by
\[f_a(t) = C_1\alpha(e^{C_2 t} - 1) + C_2(\sqrt{2}\alpha - K)t. \]
We now show that for fixed positive constants \(C_1 \) and \(C_2 \), for any \(\epsilon > 0 \) it is possible to choose \(\alpha \) so that \(f_a \) has a root in \([0, \epsilon]\). To show this note that for \(t \in [0, \epsilon] \) we have
\[f_a(t) \leq f_{a, \epsilon}(t) \equiv C_1\alpha(e^{C_2 t} - 1) + C_2(\sqrt{2}\alpha - K)t. \]
Thus it suffices to show that we may choose \(\alpha \) sufficiently small that \(f_{a, \epsilon} \) has a root in \([0, \epsilon]\).

This, however, is clear. Indeed, \(f_{a, \epsilon} \) is a linear function of \(t \) satisfying
\[f_{a, \epsilon}(0) = \alpha(C_1(e^{C_2 \epsilon} - 1) + \sqrt{2}C_2), \quad f_{a, \epsilon}(\epsilon) = -KC_2. \]

By choosing \(\alpha \) sufficiently small, \(f_{a, \epsilon} \) can be made to have a positive root as small as one likes.

To complete the proof, let \(R_1 > 0 \) have the property that \(B_{R_1} \cap \{x_1 \mid x_1 \geq 1\} \) and let \(R_2 > 0 \) have the property that \(f_{R_2} \) has a root in \([0, T_{\text{max}}]\). Define \(R = \min\{R_1, R_2\} \). Taking \(X_0(T_{\text{max}}, X_1) = B_R(0) \) gives the result.

3.4 Remark: If \(A \) is Hurwitz, then the condition that the time to reach \(S \) be uniformly bounded can be relaxed (i.e., take \(T_{\text{max}} = \infty \)) with the ensuing advantage of being able to take \(X_0(T_{\text{max}}) = V \). On the other hand if one demands at least of the following properties of the control law:

(i) the time to reach \(S \) be bounded uniformly in \(x \) by \(T_{\text{max}}; \)

(ii) \(A \) be allowed to be non-Hurwitz;

then \(X_0(T_{\text{max}}) \) will have to be contained in a compact subset containing 0.

Now let us define a global control law, again in a geometric manner. For \(x \in \mathbb{V} \setminus S \) we define \(u_{\text{glob}, K}(x) \in \mathbb{U} \) by
\[B(u_{\text{glob}, K}(x)) = u_{\text{loc}, K}(x) \circ [pr_B \circ A](x). \]
The idea here is simply that we augment our local control law with a “cancellation of as much of the uncontrolled dynamics as possible.” Such interpretations aside, let us show that this control law does in fact globally attract trajectories to \(S \).

3.5 Proposition: Let \(S \subset \mathbb{V} \) be a rigid sliding subspace for \(A = (A, B) \). For each \(x \in \mathbb{V} \setminus S \) there exists \(T(x) > 0 \) so that the maximal integral curve for the initial value problem
\[\dot{\xi}(t) = A(\xi(t)) + B(u_{\text{glob}, K}(\xi(t))), \quad \xi(0) = x \]
is defined on \([0, T(x)]\) so that \(\lim_{t \to T(x)} \phi(\xi(t)) \in S \).

Proof: As in the proof of Proposition 3.3, we extend the inner product on \(\mathbb{image}(B) \) to all of \(\mathbb{V} \) so that \(S \) is orthogonal to \(\mathbb{image}(B) \), and we adopt the notation introduced in that proof. We again define \(\psi(x) = \frac{1}{2} \|x\|^2 \) and a similar estimate to that performed in the proof of Proposition 3.3 gives
\[\|\phi(\xi(t))\| \leq C_1 \|\xi(0)\| e^{C_2 t} \]
for some \(C > 0 \). Thus trajectories do not blow up in finite time. Also again defining \(\phi(x) = \frac{1}{2} \|pr_B(2x)\|^2 \) we have
\[\frac{d\phi}{dt}(\xi(t)) = \langle pr_B \circ A(\xi(t)), pr_B(\xi(t)) \rangle - K \|pr_B(\xi(t))\| - \langle pr_B \circ A(\xi(t)), pr_B(\xi(t)) \rangle \]
\[= -K \|pr_B(\xi(t))\| = -K \sqrt{\phi(\xi(t))}. \]
This gives
\[\phi(\xi(t)) = \frac{1}{2}(K - 2\sqrt{\phi(\xi(0))})^2, \]
and from this the result follows immediately.

3.3. An example. Let’s look first at a simple example that we treat in some detail to aid in providing some intuition behind the constructions of Sections 3.1 and 3.2. We take \(\mathbb{V} = \mathbb{R}^2 \) and \(\mathbb{U} = \mathbb{R} \) and consider
\[\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u. \]

For this system we wish to find a codimension one subspace \(S \) to serve as a rigid sliding subspace. Rigidity demands that \(S = S_a = \text{span} \langle (1, a) \rangle \) for some \(a \in \mathbb{R} \). Let us denote \(c_0 = (1, a) \) so that
\[A_{S_a}(c_0) = pr_R \circ A \circ [pr_B] \circ c_0 = (1 + a) c_0. \]
Therefore \(S_a \) is a stabilising sliding subspace provided that \(a < -1 \). In Figure 3 we show the phase portrait for the system \(\dot{x} = A(x) \) and the subspaces \(S_{a_1} \) and \(S_{a_2} \). Stabilising rigid sliding subspaces lie within the shaded region in the figure. Note that there is a simple interpretation one can make here that really illustrates what one does in choosing a stabilising rigid sliding subspace. At each tangent space one makes the decomposition into the input direction and the tangent space to the sliding subspace. The sliding subspace will be stabilising when the drift vector field, projected onto the sliding subspace, has the origin as an asymptotically stable equilibrium point. In this example, this amounts to the projection pointing towards the origin. The control exerted to maintain a trajectory on \(S_a \) is readily verified to be \(u_2(x) = a(a - 1)x_1 \).

Now that we have a stabilising rigid sliding subspace for the linear system on which the restricted dynamics can be specified to be stable, let us look into the control laws \(u_{\text{loc}, K} \).
and $u_{\text{glob},K}$ defined in Section 3.2. We take as inner product on the input space the usual Euclidean inner product. One then verifies that

$$u_{\text{loc},K}(x_1, x_2) = K \frac{ax_1 - x_2}{|ax_1 - x_2|}.$$

This is then a control of magnitude K that points “down” when we are “above” S_a and that points “up” when we are “below” S_a, these notions making sense provided that $a < -1$, as required for stability. In Figure 4 we show the closed-loop phase portrait off S_a with the local controller. Note that with the chosen gain for the controller off S_a, the basin of attraction is a region shaped as shown in Figure 5. In particular, we see that with bounded controls, our local controller is not able to globally stabilise x_0. The closed-loop phase portrait for the global controller is shown in Figure 6.

4. Output stabilisation using the sliding mode philosophy

Sliding mode control is often presented in the context of output tracking, and the sliding surface is then one on which the dynamics can at least partially be prescribed. In this section we investigate this for SISO linear systems, and compare what comes out of this approach with what comes out of Theorem 3.1.

We consider a system with state space V, an n-dimensional \mathbb{R} vector space, and with

Figure 3. The uncontrolled phase portrait (in blue), the subspaces S_{-1} and $S_{-\infty}$ (in red), and the region occupied by stabilising sliding subspaces (shaded)

Figure 4. The closed-loop phase portrait on $V \setminus S_a$ for $u_{\text{loc},K}$ with $a = -2$ and $K = 5$

Figure 5. The domain of attraction for the local controller
The definition of relative degree ensures both that \(\text{dim}(\text{degree}) = 0 \) for the system, and we exclude this possibility. We then choose a monic, \(S \) and define a sliding subspace using these dynamics.

As a first step in doing this, we recall that a subspace is indeed a rigid sliding subspace for the system \(\Lambda = (A,b) \). As such, the dynamics on \(S_P \) are uniquely determined by Proposition 2.1. Our wish is to characterise these dynamics.

As a first step in doing this, we recall that a subspace \(W \subset V \) is \((A,b)\)-invariant if there exists \(f \in V^* \) so that \(W \) is an invariant subspace for \(A + b \cdot f \). We denote by \(Z_{(A,b,c)} \) the largest \((A,b)\)-invariant subspace contained in \(\ker(c) \). The following description of \(Z_{(A,b,c)} \) will be useful to us, and does not seem to follow immediately from existing characterisations in the literature, as far as we know.

Lemma: \(Z_{(A,b,c)} = \ker(c) \cap \ker(c \cdot A) \cap \cdots \cap \ker(c \cdot A^{r-1}) \).

Proof: Let \(S = \ker(c) \cap \ker(c \cdot A) \cap \cdots \cap \ker(c \cdot A^{r-1}) \).

Clearly \(S \subset \ker(c) \). Let us define

\[
f = \frac{1}{c \cdot A^{r-1}(b)} c \cdot A^r \in V^*.
\]

We claim that \(S \) is an invariant subspace for \(A + b \cdot f \). Indeed, let \(v \in S \) and compute

\[
c \cdot (A + b \cdot f)(v) = c \cdot A(v) - \frac{c(b)}{c \cdot A^{r-1}(b)} c \cdot A^r(v) = 0,
\]

where we have used the definition of relative degree and the fact that \(v \in S \). In like manner we compute

\[
c \cdot A^k \cdot (A + b \cdot f)(v) = 0, \quad v \in S, \ k \in \{1, \ldots, r - 2\}.
\]

We finally compute

\[
c \cdot A^{r-1} \cdot (A + b \cdot f)(v) = c \cdot A^r(v) - \frac{c(b)}{c \cdot A^{r-1}(b)} c \cdot A^r(v) = 0,
\]

thus showing that \(S \) is \((A,b)\)-invariant. This means that \(S \subset Z_{(A,b,c)} \). To show that \(S = Z_{(A,b,c)} \) we recall that \(\dim(Z_{(A,b,c)}) = n - r = \dim(\delta) \), with the assumption that \((A,b)\) is controllable and \((A,c)\) is observable.

If

\[
\mathcal{F}_{(A,b,c)} = \{ f \in V^* \mid (A + b \cdot f)|_{Z_{(A,b,c)}} \subset Z_{(A,b,c)} \},
\]

one may show that \(\text{spec}((A + b \cdot f)|_{Z_{(A,b,c)}}) \) is independent of \(f \in \mathcal{F}_{(A,b,c)} \). We denote this spectrum by \(\mathcal{Z}_{(A,b,c)} \) (this is the spectrum of the zero dynamics). The following theorem now provides the spectrum for the dynamics on \(S_P \).

Theorem: With \(S_P \) constructed as above we have

\[
\text{spec}(A_P) = \text{spec}(P) \cup \mathcal{Z}_{(A,b,c)},
\]

where \(A_P = \text{pr}_{S_P} \cdot A |_{S_P} \).

Proof: First let us find \(f \in V^* \) so that \(A + b \cdot f \) has \(S_P \) as an invariant subspace. We claim that

\[
f = -\frac{1}{c \cdot P(A)(b)} c \cdot P(A) \cdot A
\]

does the job. To see this, let \(v \in S_P \) and compute

\[
c \cdot P(A) \cdot (A + b \cdot f)(v) = c \cdot P(A) \cdot A(v) - \frac{c \cdot P(A)(b)}{c \cdot P(A)(b)} c \cdot P(A) \cdot A(v) = 0.
\]
We also claim that \(f \in \mathcal{F}(A,b,c) \). Indeed, for \(v \in \mathcal{Z}(A,b,c) \) we compute

\[
c \cdot (A + b \circ f)(v) = c \cdot A(v) - \frac{c(b)}{c \cdot P(A)(b)} c \cdot P(A)(v) = c \cdot A(v) = 0,
\]

by Lemma 4.1 and the definition of relative degree. In like manner we compute

\[
c \cdot A^k \circ (A + b \circ f)(v) = 0, \quad v \in \mathcal{Z}(A,b,c), \quad k \in \{1, \ldots, r - 2\}.
\]

We further compute

\[
c \cdot A^{r-1} \circ (A + b \circ f)(v) = c \cdot A^r(v) - \frac{c \cdot A^{r-1}(b)}{c \cdot P(A)(b)} c \cdot P(A) \circ A(v).
\]

Now we note that \(c \cdot P(A)(b) = c \cdot A^{r-1}(b) \) by definition of relative degree, and we compute

\[
c \cdot P(A) = c \cdot A \circ (A + b \circ f)(v) \text{ by Lemma 4.1. Thus } c \cdot A^{r-1}(A(P)(v)) = 0 \text{ if } v \in \mathcal{Z}(A,b,c). \text{ This, along with (4.3), shows that } A(P)(v) \in \mathcal{Z}(A,b,c) \text{ whenever } v \in \mathcal{Z}(A,b,c). \text{ Thus } A_P \text{ restricts to } \mathcal{Z}(A,b,c), \text{ and the spectrum of the restriction is exactly } \zeta(A,b,c).
\]

Let us denote by \(A_P \in L(\mathcal{S}_P/\mathcal{Z}(A,b,c); \mathcal{S}_P/\mathcal{Z}(A,b,c)) \) the linear map induced by \(A_P \). We claim that \(\text{spec}(A_P) = \text{spec}(P) \). To look at this we define a basis for \(V' \) by \(\{v_0, \ldots, v^{r-2}, v^1, v_1, \ldots, v^{r-1}\} \) where \(v^k = c \cdot A^k \). Also let \(\{v_0, v_1, \ldots, v_{r-1}, w_1, \ldots, w_{r-1}\} \) be the basis for \(V \) dual to the given basis for \(V' \). Note that with respect to this basis, \(\mathcal{S}_P \) is defined by those vectors whose components satisfy the relation

\[
v_r - 1 + p_r v_{r-2} + \cdots + p_1 v_1 + p_0 v_0 = 0.
\]

We claim that \(\omega^0, \ldots, \omega^{r-2} \) are linearly independent on \(\mathcal{S}_P \). Indeed, suppose that there are \(a_0, \ldots, a_{r-2} \in \mathbb{R} \) so that

\[
\sum_{j=0}^{r-2} a_j \omega^j(v) = 0, \quad v \in \mathcal{S}_P.
\]

Note that \(v_j = p_j v_{r-1} + v_j, \quad j \in \{0, 1, \ldots, r - 2\} \), lies in \(\mathcal{S}_P \) by (4.4). But we also have

\[
\sum_{k=0}^{r-2} a_k \omega^k(v_j) = \alpha_j = 0,
\]

thus showing linear independence of \(\{v_0, \ldots, v_{r-2}\} \) restricted to \(\mathcal{S}_P \). Now note that \(\omega^0, \omega^1, \ldots, \omega^{r-2} \in \text{ann}(\mathcal{Z}(A,b,c)) \), and so naturally form a basis for \((\mathcal{S}_P/\mathcal{Z}(A,b,c))^* \), where \(\text{ann}(\cdot) \) denotes the annihilator. We denote by \(\{y_0, y_1, \ldots, y_{r-2}\} \) the dual basis for \(\mathcal{S}_P/\mathcal{Z}(A,b,c) \). First let us determine the representation for \(A_P \) in the basis \(\{v_0, v^1, \ldots, v^{r-2}\} \). Thinking of these as elements of \(V' \) we have

\[
(A + b \circ f)^0 \omega = \omega^0 \circ (A + b \circ f) = \omega^1
\]

\[
(A + b \circ f)^1 \omega^1 = \omega^1 \circ (A + b \circ f) = \omega^2
\]

\[
\vdots
\]

\[
(A + b \circ f)^{r-2} \omega^{r-2} = \omega^{r-2} \circ (A + b \circ f) = \omega^{r-1},
\]

using the fact that \(c \cdot A^k(b) = 0, \quad k \in \{0, \ldots, r - 2\} \). Restriction to \(\mathcal{S}_P \) gives

\[
\omega^{r-1} = -p_0 \omega^0 - p_1 \omega^1 - \cdots - p_{r-2} \omega^{r-2}.
\]

Therefore the matrix representative of \(A_P \) is given by

\[
\begin{bmatrix}
0 & 0 & 0 & \cdots & -p_0 \\
1 & 0 & 0 & \cdots & -p_1 \\
0 & 1 & 0 & \cdots & -p_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -p_{r-3} \\
0 & 0 & 0 & \cdots & 1 - p_{r-2}
\end{bmatrix}
\]

From this we immediately see that the characteristic polynomial of \(A_P \), and therefore that of \(A_P \), is \(P \), as desired. \(\square \)

5. Sliding submanifolds for systems with controllable linearisations

As one might expect, the linear results from the preceding section can be applied locally around an equilibrium point with a controllable linearisation. In this section we address this matter explicitly and indicate some of the relevant issues involved.

We consider control-affine system \(\Sigma = (M, \mathcal{F}, U) \) as in Section 2.1. An equilibrium point for \(\Sigma \) is a pair \((x_0, u_0) \in M \times U \) for which

\[
\text{fo}(x_0) + \sum_{a=1}^{m} u_a f_a(x_0) = 0_{x_0},
\]

where \(0_{x_0} \) denotes the zero vector in \(T_{x_0}M \). The linearisation of \(\Sigma \) at an equilibrium point \((x_0, u_0) \) is defined by \(A \Sigma(x_0) \in L(T_{x_0}M; T_{x_0}M) \) and \(B \Sigma(x_0) \in L(\mathbb{R}^n; T_{x_0}M) \) where

\[
A \Sigma(x_0)(v) = f_0^T(v) + \sum_{a=1}^{m} u_a^T f_a^T(v), \quad B \Sigma(x_0)(u) = \sum_{a=1}^{m} u^a f_a(x_0),
\]

and where \(X^T \) denotes the complete lift to \(TM \) of a vector field \(X \) on \(M \). In natural coordinates \((r, v) \) for \(TM \) we have

\[
X^T = X^r \frac{\partial}{\partial r} + X^v \frac{\partial}{\partial v}.
\]

so this reduces to the usual notion of linearisation in coordinates where one uses the Jacobian. We assume that \(U \) is convex and contains \(u_0 \) in its interior. Thus one has some control "left over" once one has established the equilibrium.

5.1. From linear to local. We wish to use a sliding mode control law for the linearisation at an equilibrium to control the nonlinear system in a neighbourhood of the equilibrium point. This requires a means of "transferring" the control law from the tangent space to the state manifold. In practice, this is done naturally when one chooses coordinates. Here
we briefly describe what is going on geometrically when one does this. Although this is simple, we could not find this procedure described explicitly in the literature.

We consider a manifold M of dimension n and fix a point $x_0 \in M$. If $\phi: M \to N$ is a smooth mapping between manifolds, $T\phi: T_xM \to T_{\phi(x)}N$ denotes the derivative at $x \in M$.

5.1 Definition: A near identity diffeomorphism at x_0

(i) $X_0 \subset T_{x_0}M$ is a neighbourhood of 0_{x_0},

(ii) $X_1 \subset M$ is a neighbourhood of x_0, and

(iii) $\phi: X_0 \to X_1$ is a diffeomorphism satisfying

(a) $\phi(0_{x_0}) = x_0$ and

(b) $T\phi_0 \circ \phi = \text{id}_{T_{x_0}M}$ (where we make the natural identification of $T_{x_0}(T_{x_0}M)$ with $T_{x_0}M$).

In practice, a near identity diffeomorphism arises from a coordinate chart as described by the following lemma. The lemma also tells us that this is the most general way to obtain such a diffeomorphism.

5.2 Lemma: Let (A, χ) be a coordinate chart for M satisfying $\chi(x_0) = 0 \in \mathbb{R}^n$. Then the triple $(\phi = \chi^{-1} \circ T\chi|_{x_0}, X_0 = \phi(A), X_1 = A)$ is a near identity diffeomorphism at x_0.

Conversely, let (ϕ, X_0, X_1) be a near identity diffeomorphism at x_0 and let $L: T_{x_0}M \to \mathbb{R}^n$ be an isomorphism. Then $(A = X_1, \chi = L \circ \phi^{-1})$ is a coordinate chart for M satisfying $\chi(x_0) = 0 \in \mathbb{R}^n$ and $\phi = \chi^{-1} \circ T\chi|_{x_0}$.

Proof: With (ϕ, X_0, X_1) as defined in the first part of the lemma we compute $\phi(0_{x_0}) = \chi^{-1} \circ T\chi(0_{x_0}) = \chi^{-1}(0) = x_0$

and, using the chain rule,

$$T\phi_0 \phi(v) = T\phi_0(\chi^{-1} \circ T\chi)(v)\big|_{0_{x_0}} = T\phi_0(\chi^{-1} \circ T\chi)(v) = T\phi_0(X_0) \chi^{-1} \circ T\phi_0(T\chi)(v) = T\phi_0(\chi^{-1} \circ T\chi)(v) = T\phi_0(\chi^{-1} \circ \chi)(v) = v,$$

showing that (ϕ, X_0, X_1) is indeed a near identity diffeomorphism at x_0.

Now let (χ, A) be as defined in the second part of the lemma. We then have

$$\chi(x_0) = L \circ \phi^{-1}(x_0) = L(0_{x_0}) = 0$$

and

$$\chi^{-1} \circ T\chi = \phi \circ L^{-1} \circ T_{x_0}(L \circ \phi) = \phi \circ L^{-1} \circ T\phi(x_0) L \circ T\phi = \phi,$$

thus giving the desired assertion.

5.3 Theorem: Consider a control-affine system $\Sigma = (M, F, U)$ with a controllable linearisation at $(x_0, u_0) \in M \times U$ defined by $L\chi(x_0)$ and $L\phi(x_0)$. If $S_{x_0} \subset T_{x_0}M$ is a rigid sliding subspace for the linearisation, and if $S \subset M$ is a C^∞ manifold passing through x_0 and having the property that $T_{x_0}S = S_{x_0}$, then there exists a neighbourhood χ of x_0 for which $\chi \cap S = \chi \cap S_{x_0}$, provided that $S \cap \chi$ is transverse to S_{x_0}.

Furthermore, suppose that (ϕ, X_0, χ) is a near identity diffeomorphism at x_0. Then, for any $K, T_{\max} > 0$ and for any neighbourhood χ of $x_0 \subset X_1$, we may find a neighbourhood $\chi_0(K, T_{\max}, X_1)$ of $x_0 \subset X_1$ with the property that if $\xi: [0, T(x)] \to \chi \setminus S$ is the maximal integral curve for the initial value problem

$$\dot{\xi}(t) = f_0(\xi(t)) + \sum_{a=1}^{m} (a^a + a^s\chi_0(\phi^{-1}(\xi(t)))) f_a(\xi(t)), \quad \xi(0) = x \in \chi_0(K, T_{\max}, X_1)$$

then

(i) $T(x) \leq T_{\max}$,

(ii) $\xi(t) \in X_1$ for $t \in [0, T(x)]$, and

(iii) $\lim_{t \to T(x)} \xi(t) \in S$.

Proof: If S is a submanifold of M for which $T_{x_0}S = S_{x_0}$ then it is clear that it $T_{x_0}S$ is transverse to $T_{x_0}X_x$ (as will be the case if S_{x_0} is a rigid sliding subspace for the linearisation), then T_xS is transverse to $\overline{T_xX_x}$ for x in a neighbourhood X of x_0. This is the first part of the first assertion.

Let $p_{x_0}: TM|(S \cap X) \to TS|(S \cap X)$ be the projection onto the tangent bundle of S and let $p_{x_0}: TM|(S \cap X) \to TS|(S \cap X)$, both defined with respect to the decomposition $T_xM = T_xS \oplus T_xX_x$ for $x \in X$. Let f_0 be the vector field induced by Σ on $S \cap X$ by rigidity of S, as in Proposition 2.1. Let $\chi_0: S \cap X \to U$ be the control with the property that

$$\hat{f}_0(v) = f_0(v) + \sum_{a=1}^{m} u_0^a \phi_0^a(v) f_a(x).$$

Let us extend the controls u_0 to a neighbourhood of S in an arbitrary way so that we may use (5.1) to define a vector field in a neighbourhood of S. By rigidity we must have $u_0(x_0) = u_0$. Therefore, x_0 is an equilibrium point for \hat{f}_0. What’s more, for $v \in S_{x_0}$ we may compute

$$\hat{f}_0^a(v) = \text{pr}_S \left(\hat{f}_0^a(v) + \sum_{a=1}^{m} u_0^a \phi_0^a(v) + \sum_{a=1}^{m} \phi_0^a(v) f_a(x_0) \right)$$

$$= \text{pr}_S \left(\hat{f}_0^a(v) + \sum_{a=1}^{m} u_0^a \phi_0^a(v) \right).$$
Thus the linearisation of f_0 at x_0 is the restriction of $A_{25}(x_0)$ to S_{25}. Since this restriction is Hurwitz provided S_{25} is stabilising, x_0 is an asymptotically stable equilibrium point for f_0, meaning that S_{25} is stabilising for a sufficiently small neighbourhood X of x_0.

Now we show that we may choose $X_0(K, T_{\max}, X)$ sufficiently small that trajectories with initial conditions in the set will reach S in finite time. To do this, choose a chart (M, χ) about x_0 with coordinates (x^1, \ldots, x^n) having the following properties:

1. χ takes values in $\mathbb{R}^{n-m} \times \mathbb{R}^m$;
2. $\chi(S \cap M) = \chi(M) \cap (\mathbb{R}^{n-m} \times \{0\})$;
3. $\chi(x_0) = (0, 0)$;
4. span$_{\mathbb{R}}\{\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x_m}\} = \mathcal{J}_{x_0}$;
5. the inner product on \mathcal{J}_{x_0} induced by the inner product on the control space \mathbb{R}^m is exactly the standard inner product in the coordinates (x^{n-m+1}, \ldots, x^n).

With these coordinates, let us now agree to identify M with $\chi(M)$. Thus we write a point in M as x. We let A and B be the matrix representations for the linearisation. Let $\text{pr}_1: \mathbb{R}^m \to \mathbb{R}^{n-m} \times \{0\}$ and $\text{pr}_2: \mathbb{R}^n \to \{0\} \times \mathbb{R}^m$ be the projections. Now write

$$f_0(x) + \sum_{a=1}^{m} u_a f_a(x) = Ax + \bar{f}(x),$$

so defining $\bar{f}(x)$. Similarly write

$$\sum_{a=1}^{m} u_a f_a(x) = -K\frac{\text{pr}_2(x)}{||\text{pr}_2(x)||} + \bar{g}(x),$$

so defining $\bar{g}(x)$. Note that with \bar{f} and \bar{g} defined in this way we have $\bar{f}(0) = \bar{g}(x) = 0$. Therefore, there exists $R_1 > 0$ so that

$$||\bar{f}(x) + \bar{g}(x)|| \leq M||x||, \quad x \in BR_1(0).$$

Define $\psi(x) = \frac{1}{2}||x||^2$ and compute

$$\frac{d\psi}{dt}(x(t)) = \langle A(x(t)), x(t) \rangle - K\frac{\text{pr}_2(x(t))}{||\text{pr}_2(x(t))||} \langle \text{pr}_2(x(t)), x(t) \rangle + \langle \bar{f}(x(t)) + \bar{g}(x(t)), \text{pr}_2(x(t)) \rangle$$

$$= \langle A(x(t)), x(t) \rangle - K||\text{pr}_2(x(t))|| \langle \bar{f}(x(t)) + \bar{g}(x(t)), \text{pr}_2(x(t)) \rangle$$

$$\leq ||A||||x(t)||^2 + M||x(t)||||\text{pr}_2(x(t))||$$

$$\leq (||A|| + M)||x(t)||^2 = 2(||A|| + M)\psi(x(t)),$$

where we have twice used the Cauchy-Bunyakovsky-Schwarz inequality. Gronwall’s lemma then gives

$$||x(t)|| \leq ||x(0)|| e^{(||A|| + M)t}. \quad (5.2)$$

Now we define $\phi(x) = \frac{1}{2}||\text{pr}_2(x)||^2$ and compute

$$\frac{d\phi}{dt}(x(t)) = \langle \text{pr}_2(A(x(t))), \text{pr}_2(x(t)) \rangle - K||\text{pr}_2(x(t))||^2 + \langle \text{pr}_2(f(x(t)) + \bar{g}(x(t))), \text{pr}_2(x(t)) \rangle$$

$$\leq ||\text{pr}_2(A(x(t)))||||\text{pr}_2(x(t))|| - K||\text{pr}_2(x(t))||^2 + M||x(t)||||\text{pr}_2(x(t))||$$

$$\leq (((||\text{pr}_2A|| + M)||x(t)|| - K)\sqrt{\phi(x(t))}$$

again using the Cauchy-Bunyakovsky-Schwarz inequality several times. The result now follows from a repetition of the calculations at the end of the proof of Proposition 3.3. ■

6. An example

We consider in this section the pendulum/cart problem as depicted in Figure 7, where

the pendulum is assumed to be a rod of uniform mass density. The state space for the system is $M = T(\mathbb{R} \times S^1)$, the tangent bundle of the cylinder. We use coordinates (x, θ) for the cylinder as shown in Figure 7, and use as coordinates for M the induced natural coordinates (x, θ, x_v, v_v). The input to the system is a force u pushing the cart. In these coordinates, the Euler-Lagrange equations are

$$\ddot{x} = \frac{6mg \cos \theta \sin \theta - mL \sin \theta \dot{\theta}^2}{2m + 5M + 3M \cos(2\theta)} + \frac{5 + 3 \cos(2\theta)}{2m + 5M + 3M \cos(2\theta)^2}$$

$$\dot{\theta} = \frac{12(M + m)g \sin \theta + 3M \ell \sin(2\theta) \dot{\theta}^2}{(2m + 5M + 3M \cos(2\theta))} + \frac{12 \cos \theta}{(2m + 5M + 3M \cos(2\theta)^2)}.$$

where

- M mass of cart
- m mass of pendulum
- ℓ length of pendulum arm
- g acceleration due to gravity.
The equilibrium state we consider is that corresponding to the pendulum pointing straight up with no force exerted. The linearisation at this equilibrium is

\[
A = \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & \frac{2g}{M} & 0 & 0 \\
0 & \frac{2mg}{M} & 0 & 0
\end{bmatrix}, \quad B = \begin{bmatrix}
0 \\
0 \\
\frac{2m}{M} \\
\frac{2mg}{M}
\end{bmatrix}
\]

We think of the matrices \(A\) and \(B\) as being the representatives of respective linear maps relative to the basis \(\left(\frac{\partial}{\partial x_0}, \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3}\right)\) for the tangent space at the equilibrium position.

6.1. Output stabilisation

We shall consider a large class of outputs, and consider the nature of the output stabilisation problem by determining the relative degree and the character of the zero dynamics. Thus we take as output

\[\mathbf{e} = [c_x \quad c_\theta \quad 0 \quad 0]\]

where \(c_x^2 + c_\theta^2 \neq 0\). Thus we take as output a linear function of the positions of the system.

We compute

\[
\begin{align*}
\mathbf{cb} &= 0 \\
\mathbf{cAb} &= \frac{6c_\theta + 4bc_x}{(4M + m)t} \\
\mathbf{cA^2b} &= 0 \\
\mathbf{cA^3b} &= \frac{18g(mf_{cx} + 2(M + m)c_\theta)}{(4M + m)^2t^2}.
\end{align*}
\]

If \(\mathbf{cAb} = 0\) then one can verify that \(\mathbf{cA^3b} \neq 0\), so the system has relative degree 4. In this case, the spectrum of the zero dynamics is empty, and all dynamics on the sliding subspace \(S_p\) are determined by the roots of the degree 3 monic polynomial \(P\). Thus the more interesting case is the generic one, where \(\mathbf{cAb} \neq 0\). Here one determines that

\[\mathcal{Z}_{(A,b,c)} = \text{span}_\mathbb{R}\{(c_\theta, -c_x, 0, 0), (0, 0, c_\theta, -c_x)\}.\]

Using the two vectors in the above expression as a basis for \(\mathcal{Z}_{(A,b,c)}\) we ascertain that using (4.1) we have the matrix for \((A + b\cdot f)\mathcal{Z}_{(A,b,c)}\) given by

\[
\begin{bmatrix}
0 & 3c_\theta \\
3c_\theta + 2bc_x & 1
\end{bmatrix}.
\]

Since this matrix always has a positive real eigenvalue, this means that the only choice of output involving only configurations of the system, and that will stabilise the state along with the output, is the special one that renders \(\mathbf{cAb} = 0\).

6.2. Stabilisation using linearisation

In this section we illustrate an implementation of the ideas behind Theorem 5.3 when applied to the inverted pendulum example. Thus we work with the linearisation of the system, doing pole placement on the sliding subspace via Theorem 3.1. To implement the linear controller for the nonlinear system, we use the near identity diffeomorphism of the first part of Lemma 5.2 corresponding to the coordinate chart for \(\mathbb{T}(\mathbb{R} \times \mathbb{S}^1)\) chosen above (thus we implement the linear controller for the nonlinear system in the “obvious” way). To make the resulting simulations interesting, we choose the sliding subspace for the linearisation by first selecting poles using LQR. These poles turn out to have the form \((-\lambda_1, -\lambda_2, -\sigma \pm i\omega\) for \(\lambda_1, \lambda_2, \sigma, \omega > 0\) and \(\lambda_1 > \lambda_1\). The sliding subspace for the linearised system is then chosen to be the eigenspace for the closed-loop system corresponding to the eigenvalues \((-\lambda_2, -\sigma \pm i\omega\). This allows us to make a meaningful comparison with the LQR controller for the system. In Figures 8 and 9 we show the resulting simulations for two different initial conditions and for the parameters \(M = 2, m = 1, f = \frac{1}{2}, g = 9.81\). The sliding mode controller uses the local control law of Section 3.2 with \(K = 50\). This value of \(K\) was chosen so that the maximum value of the sliding mode control law and the LQR control were roughly the same for the set of initial conditions.
In this paper we have provided a viewpoint for sliding mode control that emphasises structural aspects of the method different from those commonly emphasised. We saw in Section 2 that this leads to a simplification of the notion of what is accomplished by the equivalent control. Also, we saw in Section 2.4 that our way of looking at sliding mode control allowed a simple characterisation of all sliding mode controllers for a simple example. In Section 3 we considered the linear case, providing a characterisation of known results in our geometric setting. The matter of locally extending the linearisation methods to a neighbourhood of a linearly controllable equilibrium were systematically explored in Section 5. In future work, we will further illustrate the utility of our geometric approach by investigating approaches to extend local sliding submanifolds obtained by linearisation as in Section 5 to more global sliding submanifolds. We will also look at systems for which it is not possible to design a sliding submanifold using the linearisation as a starting point.

7. Summary

In this paper we have provided a viewpoint for sliding mode control that emphasises structural aspects of the method different from those commonly emphasised. We saw in Section 2 that this leads to a simplification of the notion of what is accomplished by the equivalent control. Also, we saw in Section 2.4 that our way of looking at sliding mode control allowed a simple characterisation of all sliding mode controllers for a simple example. In Section 3 we considered the linear case, providing a characterisation of known results in our geometric setting. The matter of locally extending the linearisation methods to a neighbourhood of a linearly controllable equilibrium were systematically explored in Section 5. In future work, we will further illustrate the utility of our geometric approach by investigating approaches to extend local sliding submanifolds obtained by linearisation as in Section 5 to more global sliding submanifolds. We will also look at systems for which it is not possible to design a sliding submanifold using the linearisation as a starting point.

References

