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Abstract

MRI-guided prostate needle biopsy requires compensation for organ motion between

target planning and needle placement. Two questions are studied and answered in this

work: is rigid registration sufficient in tracking the targets with a maximum error of

3 mm (smaller than average prostate tumor size) and how many intra-operative slices

are required to obtain this accuracy? We developed rigid and deformable multislice-

to-volume registration algorithms for tracking the biopsy targets within the prostate.

Three orthogonal plus additional transverse intra-operative slices were acquired in

the approximate center of the prostate and registered with a high-resolution target

planning volume. Simulated intra-operative data, phantom data, and MRI-guided

robotic prostate biopsy data were used to assess tracking accuracy. Registration tests

on simulated intra-operative data with 3, 4, and 5 slices were performed to evaluate

the effect on registration error and time. Results: Using three orthogonal slices pro-

vides sufficient accuracy. Convergence test results on phantom images demonstrated

100% success rate for initial misalignment of 5mm. Average registration errors for

the patient data were 2.55mm and 2.05mm for the rigid and deformable algorithms,

respectively. The algorithm was able to capture rigid biopsy target displacements

of maximum 8mm and non-rigid displacements of maximum 1.5mm. Rigid tracking

appears to be promising. Deformable registration does not seem warranted.
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Glossary of Terms

2D 2-dimensional

CC Cross-correlation

CMA-ES Covariance Matrix Adaptation Evolutionary Strategy

Core A sample tissue obtained from a biopsy

CT Computed Tomography

DICOM Digital Imaging and Communications in Medicine is a file format

and a medical directory structure to facilitate access to the images

and related information stored on media that share information.

DOF Degrees of Freedom

DRE Digital Rectal Exam

FEM Finite Element Model

Fiducial See landmark

FRE Final Registration Error

GPU Graphics Processing Unit

Ground Truth A known quantity which can be used against an experimental result

to assess its accuracy
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Intraoperative During operation; in biopsy, immediately after a needle insertion

IRE Initial Registration Error

ITK Insight Segmentation and Registration Toolkit is an open-source

library of C++ classes dedicated to performing image processing

(especially medical image processing). Available at www.itk.org.

Landmark A feature or a set of features that appear in both fixed and moving

images to be registered

MI Statistical Mutual Information

MRI Magnetic Resonance Imaging

OR Operating Room

Phantom A tissue/organ simulating material used for surgical training

Post-needle

Volume

Equivalent of intraoperative volume; see intraoperative

Pre-needle

Volume

Anatomical reference volume; preoperative volume; target planning

volume

Preoperative Before operation

PSA Prostate Specific Antigen

RAS Right-Anterior-Superior anatomical coordinate system

RF Radio-frequency

SDE Surface Distance Error

SNR Signal-to-Noise Ratio is a measure of corruption of a signal by noise,

expressed as a power ratio:

SNR =
Psignal

Pnoise
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SSD Sum of Squared Differences

Tracking

Slices

Intraoperative slices that are used to form the intraoperative sparse

volume

TRUS Transrectal Ultrasound

US Ultrasound

VOI Volume of Interest

Voxel A volume element of a three-dimensional digital image (analogous

to a pixel in a two-dimensional digital image)
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Chapter 1

Introduction

Prostate cancer continues to be a worldwide health problem and the most common

type of cancer among men in the United States. In the year 2009, prostate cancer

accounted for 25% of all the diagnosed cancers. Between the years of 1996 and 2004,

an estimated 91% of newly diagnosed prostate cancer cases were found to be termi-

nal and had average survival of 5 years [1]. There are two commonly used prostate

screening techniques: the Prostate-Specific Antigen (PSA) Test and Digital Rectal

Examination (DRE). The PSA concentration in the blood indicates the probability of

the existence of a tumor in the prostate. In a DRE, the physician checks for problems

with the prostate using a gloved hand to detect abnormalities such as enlargement or

irregularities in the prostate. In the event of finding elevated PSA level and abnormal

DRE result, the physician may recommend a prostate biopsy for a definitive diag-

nosis. In a prostate biopsy, an oncologist extracts tissue samples of the prostate by

driving a biopsy needle into the prostate gland through the rectal wall (transrectal) or

through the perineum (transperineal). The extracted samples are then forwarded to

the pathology department for diagnosis. A biopsy procedure requires image guidance

1



CHAPTER 1. INTRODUCTION 2

in planning and needle placement. Ultrasound (US) guided core needle biopsy is the

current gold standard imaging modality. However, currently practiced procedures use

2D intra-operative US images which make it difficult for the physician to reach the

target due to a lack of a constant visual reference, although volume based tracking

methods have been proposed[2]. Lack of 3D guidance and poor image quality have

resulted in 10-25% false negative biopsies [3]. Magnetic Resonance Imaging (MRI) is

increasingly becoming the modality of choice in prostate biopsy [4] and interventional

imaging due to its high soft-tissue contrast and radiation-free environment. MR imag-

ing of the human prostate is especially of high interest in biopsy planning due to the

clear prostate contour[5] and high sensitivity for detecting prostate tumors[6].

1.1 Motivation

A workflow of the MRI-guided transrectal robotic prostate biopsy currently in clinical

trials is illustrated in Figure 1.1. A diagnostic quality MR volume of the patient’s

pelvis is acquired before the biopsy session, which the physician studies to determine

the biopsy target locations. This volume is referred to as the target planning volume.

In the biopsy session, another MR volume is acquired immediately before each needle

insertion to confirm biopsy locations, known as the pre-needle insertion volume. After

proper needle adjustments are made, the needle is inserted, the core is obtained, and

the needle is retracted. A post-needle insertion MR volume is acquired to verify needle

placement, known as the post-needle insertion volume. Physicians have encountered

a major problem in this procedure: the needle puncture marks in the post-needle

insertion image do not match with the originally planned biopsy positions defined in

the target planning volume. This is due to prostate motion and deformation between
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pre-needle and post-needle insertion. This clinical observation has been quantified by

Xu et al. [7] in a recent longitudinal study of MRI-guided transrectal prostate biopsy

cases accrued over several years. An average biopsy target displacement of 5.4mm was

found. Many of these biopsy inaccuracies, which were realized post-intervention, have

led to repeat biopsy. Repeat biopsies incur extra costs to the health care provider

and increased health complications to the patient. This creates the need for a system

to track the prostate position throughout the biopsy procedure.

Figure 1.1: The clinical workflow of MRI-guided transrectal robitic prostate biopsy

1.2 MRI-based Prostate Tracking Techniques

Multislice-to-volume registration is the concept of registering a volume (often com-

posed of many slices) to several slices of the same or lower resolution. In image-guided

procedures, slices are usually acquired intra-operatively and the volume is acquired

prior to operation. In the context of US, 3D-3D registration methods for prostate

motion compensation have been proposed by Karnik et al. [8] and Baumann et al.

[2]. Unfortunately, this technique cannot be used for MRI because volumetric MR

imaging is a prohibitively long procedure for real-time motion tracking applications.
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Orthogonal 2D-3D registration methods also have been proposed [9], however, due to

the poor visibility of the contour and regions within the prostate gland, identifying

biopsy positions is a difficult task in US images. Due to the noisy nature of the US

modality (such as partial object occlusions and imperfections), intensity-based reg-

istration may not deliver the desired results. In such cases, some groups exploit a

speckle-based registration technique. In US imaging, speckles are patterns formed by

the interference of backscattered echoes produced by ultrasonic scatter of different

mediums. Speckles display a unique pattern in a given region, serving as a suitable

feature for registration. For instance, Song et al. [10] was able to recover myocardium

deformation by speckle-based registration of 3D echocardiography. The assumption

is that as the myocardium moves from one frame to another, the speckles follow the

motion. Using the Rayleigh noise model and a set of coherent motion equations de-

veloped for speckle, registration was performed by finding the maximum similarity of

the speckles rather than intensities. Although speckle-based tracking has proven to

be effective and robust to noise in US [10], speckle is non existent in MR images. For

the higher-end MRI systems (1.5T field strength or more) such as one used in our

clinical trials, the images have a high signal-to-noise ratio (SNR), and intensity-based

registration can be performed on them with reasonable accuracy.

In the context of CT and fluoroscopy, motion tracking algorithms for organs other

than the prostate have been proposed, such as pulmonary lesions in the lung [11].

In this method, 2D fluoroscopy images of the lung are registered to the preoperative

3D CT volume to recover lesion motion. With the assumption of local rigidity, the

texture-rich region containing the target lesion is used for registration. Although

CT or fluoroscopy cannot be used for tracking the prostate as it does not appear
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in the images, the ideas of local rigidity and texture mapping in this paper formed

the foundation of our proposed tracking method, which will be covered in detail in

section 2.4. In addition to the high SNR, the rich-texture prostate imaging capability

of MRI makes it a suitable modality for intensity-based registration.

MRI-based tracking is a relatively new area of research which has branched into

two potential methods: radio-frequency (RF) signal based tracking and intensity

based tracking. In RF signal based tracking, the subject is scanned using a custom

designed imaging sequence before and after motion. Translational motion information

is then computationally derived from the resulting echo of the RF coil. Hata et. al.

[12] developed an intra-operative MRI registration algorithm using projection profile

matching of the RF echo. The algorithm was reported to be fast and semi-real time.

The drawbacks of this technique are twofold, First, 3D motion compensation has not

been achieved (only 2D motion can be recovered currently). Second, this technique

depends on custom MR sequences and access to the MR machine to control the timing

and pose of tracking scans. Such technologies are not widely available for average

care facilities and cannot be considered as clinically practical. A clinically practical

solution to the prohibitively long volume acquisition time and unavailability of custom

scanning sequences is multislice-to-volume registration. This technique wraps around

the idea of registering intraoperative slice images to the preoperative volume image

to recover subject motion. Intraoperative volume acquisition time is saved by using a

preoperative reference volume acquired prior to the intervention and pre-calibrating

the surgical tool(s) to this volume. In the case of transrectal prostate biopsies, the

surgical tool is the needle placement system (Figure 2.1). Multiple statically set slices

are acquired at the scanner’s isocenter, which eliminate the need for a custom MR
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scanning sequence.

In the context of intensity based prostate tracking in MRI and multislice-to-volume

registration, two works in particular inspired our project: Fei et al. [13] and Gill et

al. [14]. Fei et al. developed a multislice-to-volume registration algorithm with ap-

plication to radio-frequency thermal ablation of prostate cancer, in which 15 actual

intraoperative prostate MRI slices from transverse, sagittal, and coronal orientations

were registered to a preoperative MRI volume, respectively. The slices from each

orientation were independently registered to the preoperative volume, meaning that

three independent registrations were performed and the results were compared. Their

algorithm featured a multi-resolution approach with an automatic restart. The auto-

matic restart applied a random perturbation to the last transformation parameters

found by the registration in order to escape from potential local extrema of the cost

function and re-execute the registration process. This task is performed to increase

chances of finding the global extreme of the cost function, which corresponds to the

best alignment of the prostate in the input images. Random restarts tend to slow

down the registration process.

The problem of local extreme traps and the inefficiency of Fei’s optimization were

addressed by Gill et al.. They eliminated the need for restarting the routine by

performing a multi-resolution registration alone on a volume of interest (VOI), and

incorporated transverse and sagittal slices centered at the prostate, which were formed

into a simulated intraoperative volume. Multi-resolution registration involves a multi-

step registration process in which registration starts at downsampled images and

refines the transformation parameters as the the image resolution is increased. In an

earlier paper [15], we improved on Gill’s performance in a rigid scheme in two ways.
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First, we used three orthogonal intraoperative slices rather than two. Second, we used

the Insight Toolkit (ITK, www.itk.org) for the registration framework as opposed

to MATLAB (MATLAB, wwww.mathworks.com), which offers higher computational

performance by utilizing a more efficient memory allocation scheme. Despite its speed

advantage, like earlier works, our algorithm did not consider deformations.

1.3 Objectives

Our objective is to develop rigid and deformable multislice-to-volume registration

techniques to compensate for patient motion in MRI-guided transrectal biopsy pro-

cedure. Six degree-of-freedom motion (translations along and rotations about x,

y and z axes) as well as deformable displacement field must be recovered. In the

scope of prostatic needle placement, a registration error less than 3 mm is considered

to be sufficiently accurate as it is comparable to the diameter of a standard biopsy

needle and smaller than the diameter of the clinically significant tumor which is about

4 mm [16]. The objective of tracking is to ascertain current prostate position prior to

insertion of the biopsy needle. Tracking is requested by the physician and executed

by the operator through the console, so the requirement for speed is timely response

to the physician’s requests. This timely response may be allowed up to 1 minute.

We propose to position the prostate in the scanner’s isocenter and acquire multiple

statically set slices in this position. It is hypothesized that full six degree-of-freedom

(DOF) motion of the prostate can be recovered through the registration of a target

planning MR volume and multiple MR slices acquired immediately before and after

needle insertion. The tracking slices are acquired with ordinary anatomical imaging
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sequences through the scanner’s console. This approach is affordable, as slice ac-

quisition takes only a few seconds and is available on any commercial MRI scanner

without restriction.

1.4 Contributions

Our present contributions are threefold:

• Development of deformable prostate tracking scheme using preoperative volume

MRI and intraoperative slice MRI. To the knowledge of the author, advisor, and

collaborators, this approach with the mentioned specifications has not been

attempted before, though volume-to-volume approaches have been proposed

[17].

• Elimination of the need for random restarting and multi-resolution scheme that

hampered earlier works [13][14]. As previously mentioned, random restarts and

multi-resolution registration reduce temporal performance. We took advantage

of decoupled optimization which improved temporal performance. Decoupled

optimization is a technique whereby translations are first optimized and then

the results are used as initial center of rotation to optimize rotations. More

about decoupled optimization will be covered in section 2.5.

• Analysis of the performance on simulated intraoperative MRI, phantom MRI,

and clinical MRI-guided prostate biopsy data. Earlier groups reported valida-

tion only on simulated or patient data, and lacked phantom study [13][14].

As we quoted in our recent paper [18], “The straightforwardness of our approach must

not belie the investment of creative efforts needed to make it a workable clinical tool,
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despite the availability of several underlying algorithmic components developed by

others in synergistic problems. We constructed an intuitive, practical, and inexpensive

solution for a pressing clinical problem. Our solution blends seamlessly with the

current MRI scanner install base and workflow, so it could be translated to patient

care in a reasonable timeframe with minimal cost.”

1.5 Organization of Thesis

We have introduced the various motion tracking techniques used in MRI-guided inter-

ventions in this chapter, in which the shortcomings of the current technologies have

been described, and presented our motivation and contribution which overcome these

shortcomings. In chapter 2: Methodology, we will describe the image preprocessing

and workflow of the tracking algorithm, feature selection for accuracy evaluation,

registration components, biopsy targets, and data used for the experiments. In chap-

ter 3, rigid and deformable registration errors found from the simulation, phantom,

and retrospective clinical studies are presented along with their registration time.

Concluding remarks and future work are discussed at the end.



Chapter 2

Methods

2.1 Workflow

The goal is to develop a rapid and accurate registration of a high-resolution target

planning MR volume with static MR slices acquired immediately before and after

needle insertion. The clinical setup we consider is such that the patient is in prone

position, a transrectal robotic probe is inserted into the rectum, and the patient is

sent into the bore. An initial survey MRI is performed in order to check the position

of the probe relative to the prostate. If necessary, the probe is repositioned and the

patient is sent back into the bore. Once the desired position of the probe has been

confirmed with survey MRI, a set of high-resolution transverse MR slices are acquired

and compounded into a volume for target planning. This target planning “pre-needle

volume” serves as anatomical reference for the subsequent slice registrations. A side

view of the MRI-compatible needle placement robot developed by Krieger et al. [19]

is shown in Figure 2.1. Patient MRI data for our registration tests were obtained

from clinical trials conducted using this device.

10
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Figure 2.1: Side view of the MRI-compatible needle placement robot developed by
Krieger et al.

Our tracking algorithm was validated on three types of data - simulated patient,

phantom, and retrospective patient data. Detailed explanation of these data groups

will be covered in section 2.7. The input formatting pipelines for the three data types

are illustrated in Figures 2.2, 2.3, and 2.4. The pre-processing stage of our algorithm

must place the slices in the correct position and orientation in a sparse volume. The

slice origin and direction cosines read from the DICOM tags are used to resample

the slices into a sparse volume. The bounding box of the prostate is defined as the

volume of interest in the sparse volume. To form the simulated data, initial random

deformation field followed by rigid perturbation were computationally applied to the

pre-needle patient volume to form a simulated post-needle volume, as shown in Figure

2.2. Detailed explanation of how the deformation field and rigid perturbations were

created are provided in section 2.7.1.

An intensity-based registration method was used to compensate for prostate mo-

tion. The algorithm was implemented from the registration framework of ITK, which
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Figure 2.2: Preprocessing pipeline for simulated data

Figure 2.3: Preprocessing pipeline for phantom data

Figure 2.4: Preprocessing pipeline for clinical data
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Figure 2.5: Program workflow

interconnects the registration components (selected by the programmer) and performs

an iterative cost function optimization. The main registration components include

fixed and moving images (inputs), metric, interpolator, transform, and optimizer.

The functions of the registration components are described in sections 2.3, 2.4, and

2.5. The algorithmic concept behind the method is to find an optimum transforma-

tion matrix which best aligns the target image to the source image so as to obtain

maximum overlap of a certain feature of interest. In our case, the feature of interest is

the prostate. This method is referred to as intensity-based because the cost function

to be optimized is a similarity metric, which attempts to find the highest match of

intensities of the input images. The metric used in our case is mutual information

(MI). Figure 2.5 shows the flow of the registration algorithm. The registration is

performed in two stages: A rigid registration is first performed to obtain an initial
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pose of the pre-needle volume, which is then non-rigidly registered to the fixed, rigid

post-needle sparse volume.

2.2 Landmark Selection

Landmark selection is a difficult and sometimes impossible task in prostate registra-

tion problems. Depending on the imaging modality and the quality of the image,

certain features can be detected. For instance, Karnik et. al [8] used calcifications

in the ultrasound images of the prostate as fiducials for registration evaluation, as

shown in Figure 2.6 (a). Fei et al. [20] used bony landmarks in the MRI prostate

images (Figure 2.6(b)). However, not all images contain visible landmarks, and in

most cases images that have visible landmarks are of diagnostic quality which are not

available in intraoperative imaging, as was the case for [20]. In the case of [8], the

calcifications, used as registration landmarks, are intrinsic fiducials which appear only

in some patients. Thus, the registration experiments were limited only to patients

who had calcifications. One way to evaluate registration error in the absence of land-

marks is to segment the organ/tissue of interest out of the image and compute the

surface distance error before and after registration. This method was chosen for the

evaluation of our registration since no anatomical or external landmarks were present

or detectable in our images (Figure 2.6(c)).
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Figure 2.6: Registration features

2.3 Metric

In motion tracking applications where a low-resolution MRI is registered to high-

resolution MRI, cross-correlation (CC) and MI are commonly used as the similarity

metrics in a multi-resolution approach[13][14]. Since our algorithm performs regis-

tration at single full resolution, one similarity metric must be chosen. In order to

determine which metric provides optimal results, we tested three metrics , sum of

squared differences (SSD), CC, and MI by plotting each metric against the six rigid

motion parameters. A sample group of plots (SSD, CC and MI) for patient 1 are

shown in Figures 2.7,2.8, and 2.9. The experiment was set up such that one motion

parameter was varied while keeping other parameters at the optimal position. The

optimal position for patient 1 was (rx, ry, rz, tx, ty, tz) = (-0.082, 0.010, -0.011, -2.95,

-9.53, -2.42). For the rotation parameters, 140 points were plotted with the origin
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at the optimal value, in the range of ±0.35rad (20 degrees). For the translation pa-

rameters, 100 points were plotted in the range of ±10mm. The optimal position was

found by manual registration of the volumes. For the MI metric, highest similarity

corresponds to the global maximum of the cost function while for the CC and SSD

metrics, highest similarity corresponds to the global minimum of the cost function.

Among the three metrics that were plotted, MI produced maxima which were closest

to the optimal parameters.
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Figure 2.7: Plot of SSD metric against rotations (rx,ry,rz) and translations (tx,ty,tz)
for patient 1. The metric was computed was the pre-needle volume was
moved away from the optimal position relative to the fixed post-needle
volume.
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Figure 2.8: Plot of CC metric against rotations (rx,ry,rz) and translations (tx,ty,tz)
for patient 1. The metric was computed was the pre-needle volume was
moved away from the optimal position relative to the fixed post-needle
volume.
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Figure 2.9: Plot of MI metric against rotations (rx,ry,rz) and translations (tx,ty,tz)
for patient 1. The metric was computed was the pre-needle volume was
moved away from the optimal position relative to the fixed post-needle
volume.

2.4 Filtering and Volume-of-Interest

A VOI was defined to constrain motion to the prostate region. The rigid registration

scheme assumes that the VOI undergoes rigid motion from one frame to another,

meaning that the prostate is assumed to be rigid. The deformable registration scheme

used the same VOI, but did not assume rigidity, to save computation time.

Once the VOI was defined, two spatial filters were applied to the VOI to enhance

the prostate image. A histogram matching filter was first applied to the moving

image to match the intensities of the fixed image. The moving and fixed images
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were then passed through a Gaussian smoothing filter in order to obtain smooth

intensity estimates for our mutual information similarity metric. Random intensity

samples were drawn from the fixed image to calculate the joint probability distribution

function. The size of the intensity sample population was set to 10% of the total

voxel size of the fixed image. The choice of the values of the metric parameters,

including smoother variance and population size, was based on trial and error. The

smoother variance value was chosen as the optimal balance between smoothness of

the density function (low variance) and loss of intensity modes (high variance). The

population size was chosen based on the optimal balance between computational

speed and accuracy of the joint probability distribution function.

2.5 Interpolations, Transformations, and Optimiza-

tions

The interpolator component of registration is responsible for finding the mapping of a

point from the fixed image space to the moving image space at non-grid positions. In

our application, linear interpolation was performed, which assumed that intensities

vary linearly between non-grid positions.

Rigid transformation optimization proceeds in a cascade model, in which the trans-

lation parameters are optimized using the CMA Evolutionary Strategy (CMA-ES)

[21]. The CMA-ES is an evolutionary algorithm for difficult non-linear non-convex

optimization problems in continuous domain. The CMA-ES has several invariance

properties. Two of them, inherited from the plain evolution strategy, are (i) invari-

ance to order preserving (i.e. strictly monotonic) transformations of the objective
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function value and (ii) invariance to angle preserving (rigid) transformations of the

search space (including rotation, reflection, and translation), if the initial search point

is transformed accordingly. The CMA-ES does not require a tedious parameter tun-

ing for its application. The user is not required to tune internal parameters except

the population size. Following translation, rotation is optimized by gradient descent

optimization. For our application, the CMA-ES was not able to optimize a 6-DOF

search space as it diverged on rotations regardless of scaling. Thus, we decoupled

the translation and rotation optimizations and used the CMAES for the parameters

that varied the most, i.e. the translation. The gradient descent optimizer converges

quickly and accurately for parameters that have a smaller variation range, i.e. the

rotations in our case. The order of optimization is key here; translation must be

optimized first in order to align the center of rotation of the moving image with the

geometric center of the fixed image. In cases where the prostate’s center of mass is

not aligned in the images, optimizing for rotation first results in further divergence

from the solution.

We feed the rigidly registered pre-needle volume to a deformable registration al-

gorithm, which runs through a two level registration pyramid using coarse B-Spline

grid (5 x 5) followed by a finer grid (15 x 15). Using a gradient descent optimizer,

we search the parameter space of the B-Spline grid for the parameters that maximize

the MI value.
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2.6 Biopsy Targets

All patients underwent a sextant biopsy, in which three cores were extracted from the

peripheral zone of the base, mid, and apex of the right part, and three mirrored cores

on the left part of the prostate. A visualization of the RAS location of the planned

biopsy targets are shown in Figure 2.10. Our algorithm must successfully track the

positions of each of these targets in patient data set.

Figure 2.10: Biopsy target locations shown in isometric view (a), SR plane of view
(b), SA plane of view (c), and RA plane of view (d)

2.7 Experimental Data

2.7.1 Simulated Data

In order to explore the robustness, capture range and temporal performance of our

tracking algorithm on actual clinical data, we created simulated post-needle volumes

using finite element (FE) modeling and rigid 6-DOF perturbation to generate realistic

deformations and rigid body motions, respectively. Using a finite element analysis

software application developed by Lasso et al. [22], we generated 20 simulated patient

MR images containing the deformed prostate due to patient motion. To generate the
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Figure 2.11: Sample geometry of the prostate (solid surface in the middle) and the
body object (wireframe sphere around the prostate). Force is applied on
body mesh nodes that lie within the cylindrical shape of the endorectal
probe. Position of the anterior side of the body object (at the top,
intersection with the solid sphere part) is fixed. Image source: Lasso et

al.

deformable FE model of the prostate, the prostate volume was segmented out of one

of the clinical patient images, from which a tetrahedral volume mesh was constructed

and placed inside a spherical mesh, as shown in Figure 2.11. The spherical mesh

represented the tissues surrounding the prostate, such as the bladder and urethra.

To mimic the setting in which the MR images were acquired from a transrectal robot

probe, the robot probe was placed inside the sphere in the form of a cylindrical mesh.

Material properties of the body (spherical mesh) and the prostate were adapted from
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[23]; both objects were modeled as linear elastic materials, the prostate with Poisson

ratio ν = 0.4 and Young’s modulus E = 21 kPa, body with ν = 0.4 and Young’s

modulus E = 15 kPa. Patient motion causes strong local pressure on the prostate

by the probe. This pressure was modeled by prescribing force loads on the mid-

posterior surface of the prostate. The FE solver was run on 20 cases involving different

force loads (randomized) and probe positions (1D translation along rectal axis) and

a ground truth deformation field was computed. The force loads were randomized

in the range of [0 < Fx < 5,−30 < Fy < 20, 0 < Fz < 2] N. Probe translation was

randomized in the range of −2mm < Tz < 2mm. The coordinate system was defined

such that the rectal axis was aligned with the z axis and the x axis was oriented

normal to contact surface between the probe and prostate. The y axis was obtained

by the right-hand rule.

Rigid perturbation was computationally applied through point transformation defined

by a homogeneous transformation matrix. The transformation matrix describes the

translations and rotations to be applied in a 6-DOF space. The six motion parameters

(three translations and three rotations) were uniformly randomly generated for each

simulation case and were constrained in the ranges of ±5mm and ±5degrees.

2.7.2 Phantom Data

The phantom images were acquired from a prostate biopsy training phantom man-

ufactured by CIRS Inc., Norfolk, VA, whose picture is shown in Figure 2.12. The

prostate along with structures simulating the rectal wall, seminal vesicles, and ure-

thra are contained in this 11.5 x 7 x 9.5 cm acrylic container. The acquisition protocol
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Table 2.1: Acuisition protocol for phantom images

Field Strength 1.5T
Image Type T2-weighted
Slice Orientation Transverse
Slice resolution (mm/px) 0.625 x 0.625
Slice thickness/spacing (mm) 3
Slice Dimensions (px) 256 x 256
Number of Slices 25

for the phantom images is shown in Table 2.1. The moving image was a high res-

olution phantom volume at the reference position and the fixed image was a sparse

volume (three orthogonal slices) of the phantom after being translated or rotated

from the reference position.

Figure 2.12: CIRS 053MM - Multi-modality prostate training phantom
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2.7.3 Clinical Data

In the pursuit of a more accurate biopsy, Krieger et al. developed robotic assistance

under MR image guidance [19]. To date, their system has been used at the U.S.

National Cancer Institute in multiple clinical trials. Under ethics board approval, we

have obtained five patient data sets from their studies. Each data set contained a pre-

needle volume image used for target planning and a post-needle volume image used

for needle placement verification. The high-resolution MRI volumes were acquired

from a T2-weighted MRI transverse scan using a 1.5T GE MRI system. The target

planning (pre-needle) images had resolutions of 0.78 x 0.78 x 4 mm/pixel for patient

1, 0.625 x 0.625 x 3mm/pixel for patient 2, and 0.55 x 0.55 x 3 mm/pixel for patients

3, 4, and 5. The intraoperative images had resolutions of 0.78 x 0.78 x 4 mm/pixel

for patient 1, 0.625 x 0.625 x 3 mm/pixel for patient 2, 0.85 x 0.85 x 3mm/pixel for

patients 3 and 4, and 0.94 x 0.94 x 3mm/pixel for patient 5. Their slice dimensions

were 256 x 256 pixels for all patients. The acquired volumes varied from 16 to 25

transverse slices. We extracted three orthogonal slices from each post-needle volume,

centered in the prostate. As true sagittal and coronal slices were not available, they

were obtained by interpolation between the transverse image slices.
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Results

3.1 Simulated Registration Tests

In order to explore the robustness, capture range and temporal performance of our

rigid algorithm on actual clinical data, we created simulated post-needle volumes

using finite element modeling and rigid transformation to generate realistic defor-

mations and rigid body motions, respectively. In these tests, the fixed image was a

sparse volume of the pre-needle patient image. A software generated deformation field

was applied to the full pre-needle volume by the method described in section 2.7.1.

We applied 5 mm translation and 5 degree rotation to the deformed volume on all

axes and attempted to recover the introduced biopsy target displacement. In order

to assess whether three tracking slices are sufficient in estimating the out-of-plane

deformation, registration tests were run on N (number of tracking slices) = 3, 4, and

5. Slices were added normal to the superior-inferior axis (transverse slices) positioned

such that they bisected the prostate’s superior and inferior halves. 20 registration

tests were performed for each value of N, totaling the number of registrations to 60.

27
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The results are summed up in Table 3.1. Registration error (ǫ) was defined as the

Euclidean distance between the ground truth points and the corresponding registered

points averaged over the prostate volume of interest, as expressed in equation 3.1.

L,M, and N represent the dimensions of the prostate volume of interest.

In Table 3.1, N represents the number of slices, ǫd and ǫr represent deformable and

rigid errors as defined by Equation 3.1, where PREG(x, y, z) is the rigidly registered

point for ǫr and non-rigidly registered point for ǫd. Success rate (r) was defined as the

percentage of registration tests that resulted in a registration error less than 3mm.

Four of the 20 trials which had initial mean prostate deformation of more than 1.5mm

were discarded from the results as they were outside of the algorithm’s non-rigid cap-

ture range. Plots of initial error vs. final rigid and deformable registration errors for

N=3, 4, and 5 are shown in Figures 3.1, 3.2, and 3.3. Initial error was defined as the

mean distance between the original points in the preoperative (reference) volume and

the corresponding points transformed by ground truth displacement (FEM and rigid

perturbation). The rigid capture range of the algorithm for the simulated data was

found to be 8mm.

ǫsim =

L∑

x=0

M∑

y=0

N∑

z=0

|PGT (x, y, z)− PREG(x, y, z)|

LMN
(3.1)
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Figure 3.1: Plots of initial error vs. final rigid and deformable errors for N = 3

Figure 3.2: Plots of initial error vs. final rigid and deformable errors for N = 4
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Figure 3.3: Plots of initial error vs. final rigid and deformable errors for N = 5

Table 3.1: Registration errors (deformable and rigid) for simulated patient registra-
tions

N ǫd(mm) ǫr(mm) rd(%) rr(%) ∆td(s) ∆tr(s)
3 2.19 2.88 90 70 360 60
4 2.03 2.72 95 75 810 100
5 2.02 2.66 90 75 1390 140
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3.2 Phantom Study

The phantom study consisted of a two-phase test. The first phase was a simulation

experiment, whereby the displaced volume was simulated from the reference phan-

tom volume, in a similar manner to the patient simulation experiment, but only rigid

motion study was performed. At the time the tests were performed, the non-rigid

algorithm had not been developed. Registrations were performed for 75 random per-

turbations, using the same rigid range as the patient simulation case. This test was

conducted first to evaluate the convergence range of our phantom images, for which

a histogram was plotted from the test results, which is shown in Figure 3.4. The

histogram shows the percentage of cases that successfully converged for a particular

bin of initial registration error (IRE), where successful convergence was defined as a

final registration error (FRE) of less than 0.5mm. A threshold of 0.5mm was used

rather than 3mm for two reasons. First, the ground truth displacement between the

reference and displaced volumes is precisely known for validation of registration ac-

curacy, as it was computationally created. Thus, a stricter pass/fail condition can

be applied for simulations. Second, all simulation cases resulted in less than 3mm

error, and thus, using a threshold of 3mm would mean that all 75 tests converged,

which would render the convergence histogram meaningless. It seemed intuitive to

use 0.5mm as this was the average final registration error among the simulation tests

and produced a more descriptive histogram.

The second phase of our phantom study involved six registration tests, each corre-

sponding to a rigidly misaligned image of the phantom, as described in section ??.

The ground truth displacement of the phantom was only known in the physical coor-

dinate system of the experimental setup, which was not known to us, as the images
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Figure 3.4: Histogram of convergence rate for phantom registrations

were acquired by a different group. Thus, our reference transformation was found by

using image analysis software and manually registering the two volumes in a trial-

and-error manner. Registration accuracy of the reference transform was confirmed by

inspection of the overlaid source and target images. Registration error was defined as

the mean Euclidean distance between reference transformed points and corresponding

registered points. Equation 3.2 mathematically expresses the error measure.

ǫph =

L∑

x=0

M∑

y=0

N∑

z=0

|PREF (x, y, z)− PREG(x, y, z)|

LMN
(3.2)

The initial registration error (initial RE) values in Table 3.2 represent the initial

misalignment based on the reference transformation found from the manual registra-

tions we performed initially. Two of the six registration tests were excluded from the

results due to a high initial registration error (16mm and 22.4mm), which resulted in
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a high final registration error (4.7mm and 5.8mm). It was reasonable to dismiss these

cases from the results since it is assumed that in the clinical situation, the prostate

will not be displaced by more than roughly 10mm, consistent with findings of Xu et

al. [7]. The fourth phantom test case (fourth column of table 3.2) was included in

the results since the initial displacement was close to 10mm and it allowed for test-

ing the limits of the algorithm. The mean registration error was 1.64mm and mean

registration time was 42s. A checkerboard overlay of the fixed and moving phantom

images before and after registration is shown in Figure 3.5 for one of the test cases.

The slices shown are planes cutting through the approximate center of the prostate.

Figure 3.5: Checkerboard overlay of reference and displaced phantom volumes.
Views: Transverse(left), Sagittal(Middle), Coronal(Right). Top row: Be-
fore registration. Bottom Row: After Registration.



CHAPTER 3. RESULTS 34

Table 3.2: Registration Error for Phantom Registrations

Initial RE(mm) 3.50 5.81 5.97 12.32 Overall

Final RE(mm) 0.75 0.86 1.38 3.58 1.64

3.3 Clinical Study

Our retrospective clinical study involved registration tests on five biopsy patients.

These patients were chosen for registration tests for two reasons. First, the images

had good contrast between the prostate and the surrounding tissues. Second, we

were able to test patients with normal motion (less than 5.4 mm) and those with

large motion (greater than 5.4 mm). Patient motion was measured in terms of target

displacement and was classified based on the average target displacement that was

found by Xu et al. [7] (5.4 mm). Target displaced was defined as the distance between

the pre-needle and post-needle insertion position of the biopsy target. As shown in

Table 3.3, DT represents target displacement (mm), whose values were obtained from

the findings of Xu et al. [7], as the patient data used were identical. Three orthogonal

tracking slices (extracted) were used for registration. To validate the registrations, we

segmented the prostate in both volumes and computed the mean surface misalignment

after registration. We term this measure as surface distance error (SDE). For each

surface, fixed and moving, the consisting points were sorted into a N x 3 array, where

N is the number of points in the surface. The moving surface points were then

re-sorted according to a nearest neighbor search[24] such that the distance between

corresponding fixed and moving points is minimized. Equation 3.3 mathematically

expresses the formulation of SDE. The results (Table 3.3) may seem surprising at

first, but actually coincides with latest results in the literature contributed by Xu [7]
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Table 3.3: Mean surface distance errors (mm) and standard deviations before and
after registration of actual patient data sets

Patient No. DT Initial SDE Rigid SDE Non-rigid SDE
1 9.90 4.51 1.82 1.32
2 7.00 2.23 2.38 1.93
3 4.12 7.76 1.65 1.62
4 4.36 4.13 1.88 1.83
5 11.45 7.67 5.01 3.56

overall 8.69 5.26 2.55 2.05

σ 2.64 2.15 1.40 0.87

and Karnik [8].

ǫpat =

N∑

i=0

|Pfixed(i)− Pmovingmin
(i)|

N
(3.3)

The average rigid registration time was 70s for the rigid algorithm and 1000s

for the deformable algorithm (includes initial rigid alignment time). The pre-needle

insertion and post-needle insertion positions of the first biopsy target for patient 1

are shown in Figure 3.6. The pre-insertion position was obtained from biopsy data

and the post needle position was obtained by our tracking algorithm.

The prostate surfaces before and after rigid and deformable registrations for pa-

tient 1 are shown in Figure 3.7. Note that the prostate was segmented for the purpose

of validation. No segmentation was involved in the algorithm before or during regis-

tration.
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Figure 3.6: Transverse, sagittal, and coronal views of biopsy target position before
needle insertion (top) and after needle insertion (bottom)

Figure 3.7: Prostate surfaces before registration (left), after rigid registration (mid-
dle), and after deformable registration (right). Just as in Table 3.3, de-
formable registration shows no substantial benefits.
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Discussion

4.1 Registration Accuracy

One major challenge of our evaluation is the fact that in clinical patient data there

is no strong ground truth. As opposed to many computer assisted interventions that

use fiducials to perform or evaluate registrations, there are no fiducials associated

with the in-vivo prostate during a biopsy procedure. Implanting such markers for

our study would involve discomfort and risk to the patient. As such, the measure of

registration error for actual patient registrations for this study is based on surface

misalignment (SDE). In the case of this study where an accurate ground truth is

not present, point transformations cannot be used to compute error as performed by

previous groups [13] since there is no reference transformation to base the error on.

Absence of a ground truth also means that it is impossible to compute the target

registration error (TRE), the error in estimating the motion of the target. However,

Lasso et al. [22] assessed TRE in image-guided prostate needle placement using a FE

37



CHAPTER 4. DISCUSSION 38

model of prostate. In this study, he proved that prostate deformation and segmenta-

tion error in surface-based registrations have clinically insignificant impact on TRE.

Thus, it can be safely assumed that SDE is a reasonable replacement of TRE when

it is not measurable.

High tracking accuracy was obtained in phantom registration tests. This was ex-

pected from a rigid motion problem. Due to time constraints, non-rigid tests were

not performed on the phantom.

The relatively large variation of registration errors among the five patients is mainly

due to the large time span over which the data were acquired and archived (5 years).

During this time, devices (such as the probe) changed, which affected the imaging

parameters such as contrast, resolution, and field of view. The time extensiveness of

the legal procedure for obtaining anonymized patient data hindered the perfection

of the retrospective clinical study. As a result, experiments were performed on data

that was already available and the results are preliminary.

The main sources of registration error for the patient data are segmentation error

and needle artifacts. Although manual segmentation is generally more accurate the

automatic segmentation, the results vary between the users who segment the prostate

surface. The contribution of needle artifacts to the error is probably small since it

only occupies a few voxels.

Our validation work has not focused on statistical analysis of results as the number

of patient data is relatively small compared to published related works. Such large

scale statistical analysis has already been performed for the purpose of determining

the targeting accuracy of current MRI-guided prostate biopsy procedures[7], which

has prompted the need for a fast biopsy target tracking algorithm. Our algorithm’s
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accuracy, robustness, and time efficiency assessment is heavily dependent on phantom

and simulation studies using a realistic deformable model of the prostate, putting less

emphasis on studies on large population of clinical data.

The registration errors found by simulations (Table 3.1) are higher than those found

by retrospective clinical tests (Table 3.3), justified by the fact that measures of error

were different as explained in sections 3.1 and 3.3. Since ground truth transformation

was known for the simulation data, the error was computed based on point trans-

formation as explained in section 3.1. The error was computed over a bounding box

covering the prostate. This includes voxel distance errors within the prostate as well

as corners of the bounding box which are outside of the prostate. On the other hand,

since the ground truth transformation for the patient data was not known, the error

was measured as mean surface distance as described in section 3.3. As a result, the er-

rors reported for the simulations consider not only the residual surface misalignment,

but also how well the voxels matched within the prostate and on it’s four outside

corners. This explains the higher error for the simulation tests.

From the rigid and deformable registration results on limited clinical data (Table 3.3),

it has been shown that only 0.5 mm improvement in SDE is achieved by the addi-

tion of a deformable registration step. A 0.5 mm error improvement is not clinically

significant, which is fully in step with the latest findings of Xu [7] and Karnik [8]

who suggest that their results from rigid and non-rigid intraoperative prostate biopsy

registrations were not clinically significant, though statistically different. Again, clin-

ical significance is defined in terms of average tumor size (4mm). An accuracy gain

of 1.25 fold at the cost of 14 fold loss in temporal performance does not favour the

deformable algorithm for clinical applications.
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4.2 Number of Tracking Slices

The results of registration error as a function of number of tracking slices, reported

in table 3.1, show that three tracking slices are sufficient in reasonably estimating

the out of plane deformation of the prostate gland given the small gain in accuracy

for a large loss in computational time as more slices are added. To make a clinically

significant impact on accuracy and maintain fast registration speed we must use a

large number of tracking slices, perhaps 10 or more, in true sagittal and coronal views,

and implement the algorithm on a GPU.

4.3 Summary of Contributions

Rigid and non-rigid intensity based registration algorithms were developed for track-

ing the biopsy targets in a robotic assisted MRI-guided prostate biopsy procedure.

The algorithm was tested on simulated patient MRI, phantom MRI, and clinical

MRI. As observed from clinical registration results, the objective of 3 mm accuracy

was fulfilled. However, the registration time slightly exceeded the objective (70 s vs

60 s). Suggestions for improving temporal performance will be discussed in section

4.4. A decoupled rigid optimization method was used, which eliminated the need

for multi-resolution registration and random restarts. It was proven by simulation

study that among 3, 4, and 5 tracking slices, 3 is the optimal choice for speed and

accuracy. The simulated data were obtained from a realistic FE model of the prostate

with accurately known ground truth rigid and non-rigid displacements. Registration

results on the simulated data provided an insight into how the algorithm may behave

in response a typical patient motion in a clinical scenario. The rigid algorithm does



CHAPTER 4. DISCUSSION 41

not require random restart or multi-resolution pyramids. Rather than using coarse

resolution registration results as the initial guess, translation optimization results

were used. Using the data available, this method has shown more consistent results

in contrast with the multi-resolution method.

4.4 Future work

We must stress again that our experiments were conducted with reformatted sagittal

and coronal images. Under true clinical circumstances, the resolution of the sagit-

tal and coronal tracking images will be several times higher, which will undoubtedly

improve registration performance. In essence, the current tests with low-resolution

non-axial slices underestimate the true power of our prostate tracking method. Also,

in practice tracking slices will be acquired more often than in the data sets we re-

ceived for the analysis. In real cases, we will run an additional tracking sequence

immediately before needle insertion, which will divide current prostate motion and

deformation errors in about half - a major improvement in target tracking perfor-

mance.

Our registration time for the rigid algorithm is clinically acceptable. Deformable

registration times could raise feasibility concerns, but in all we are not particularly

concerned about time, because for clinical trials the registration should be ported to

the GPU which then obsoletes all prior considerations.

In conclusion, results on limited clinical patient data indicate that the rigid registra-

tion is sufficient for tracking of the prostate in MRI-guided robotic biopsy. Our rigid

algorithm has demonstrated convergent results for initial prostate displacements up
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to 8mm. Work continues with performing target registration error studies in typ-

ical sextant and octant biopsy locations and, most importantly, moving toward a

prospective clinical trial with the use of true sagittal and coronal slices.
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