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Abstract

The SuzukiMiyaura CrossCoupling of aryl halides and aryl boronic esters has
become one athe most important and oft used@bond forming reactions in industry
and academia alike. Recently, substantial effort has been invested in expanding this
reaction to include alkyl boronic esters as coupling partners, though until recently,
success haselen limited to primary alkyl boronic esters. Secondary alkyl boronic esters,
with the inherent possibility of being chiral, have proven to be more difficult to couple.
As a means of expanding our program ondhantic andregioselective hydroboration
of styrene derivatives, we sought to develop conditions that could couple benzylic
(secondary) boronic esters. Not only was the coupling to aryl iodides achieved in
moderate to good yield with a commercially available (and relatively cheap) catalyst
system ad phosphine, but the coupling reaction proceeds with almost complete retention
of the stereochemistry installed during the hydroboration reaction. Interestingly, these
conditions leave primary (linear) alkyl boronic esters completely untouched. Further
exanination of the chemoselectivity of the reaction revealed that, despite being unable to
crosscouple strictly aliphatic secondary boronic esters, our sitvediated protocol was
able to effectively crossouple chiralallylic boronic esters in high yielédnd good
regioselectivity

The asymmetric syntheses of novel secondary boronic esters have also been
developed to overcome the substrate limitations of the hydroboration reaction. Together

with our effective cross coupling strategy, these novel chiralniomsters have led to



the synthesis of exciting new classes molecules, most notably, the asymmetric
triarylmethanes.

Finally, the stability of mesoporous silica supports used in Pd catalysis was
assessed. Though silica supports effectively reduceomdmination in reaction
mixtures to sulppm levels, their londerm reusability is hindered by material
degradtion caused by harsh reaction conditions. It was found that aqueous base, required
for the SuzukiMiyaura reaction, is responsible for silica degdption and the collapse of
mesostructure. Interestingly, it was determined that the reaction itself had a protective
effect on the material, with the boric acid spl@duct mitigating the deleterious effect of

the base.
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Chapter 1

General Introduction: The SuzukirMiyaura Reaction

1.1 Introduction

The Pdcatalyzed crossoupling of aryl or alkyl halides with boranes or boronic
acid derivatives, commonly known as the Suzdkyaura reaction, currently stands as
one of the most important and oft us€eC bond forming protocols available to the
organic chemist,a fact recognized by a share of the 2010 Nobel Prize in Cheristry.
Though initially used mainly to form bigy and other spsp’ type bonds $chemel-1),
progress made especially in the last decade has rendered the coupling of most sp
hybridized coupling partners possiBié. Indeed, after a gemation of advances based
mostly on ligand development for oxidative addition and transmetalation facilitating
additives, successful cressuplings of alkyl electrophiles and primary alkyl boronic

acid derivatives are now commonplace.

BR; X Pd catalyst
Hs3C

base

Schemel-1: The SuzukiMiyaura crosscouplingof an aryl organoborowith an aryl
halide to form an unsymmetrical biarflryl borares, boronic acids and boronic esters

areall efficient coupling partners.

In spite of the ubiquity of the SuzuMiyaura reaction, and even with the

extended footprint given to it by a generation of modification and improvetiesame
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major shortcomings still remain. In terms of reaction scope, a general protocol for the
crosscoupling of secondary boronic acid derivatives is still lacking. Given that
secondey boronic esters may behiral, and that there is no shortage ofys/ao
synthesize them asymmetricalli’ our inability to create nemacemic carbon
frameworks from them needs to be addressed. Furthermore, as thii-8iyaura
reaction is often used in the synthesis of molecules destined for human consumption, a
costly and timeconsuming Pescavenging step is requirétdAdvances made in the field

of recyclable, suppted catalysts have greatly lowered the amount of Pd that is
ultimately leached into solution, though their mode of action needs to be better
understood to allow for further improvement. Our forays into these last two issues, ones

of reaction scopé and Pd contaminatioli,will be the subject of this thesis.

1.2 Transition-Metal Catalysis of Organometallic Reagents

1.2.1 Grignard reagents make way for Organozinc Reagents

Organometdic species of electropositive metals such as magnesium and lithium
have been known for well over a centtityAfter inserting magnesium metal into an
organohalide bond to form a Grignard reagent, or performingetaihalide exchange to
obtain an organolithium, these reactive species have historically been used as carbon
based nucleophiles in additions to carbonyls.is precisely this high reactivity, though,

tha plagues the chemoselectivity and functional group tolerance of the process.



In the 1970s, organometallics started to find application, not just as highly
nucleophilic carbotbased reagents, but as candidates for recatalyzed crossoupling
reactions.Indeed, in 1972, Corrfd and Kumadd simultaneously and independently
published the first nicketatalyzed crossouplings of Grignard reagentsl to aryl and
vinyl halides (Scheme -2). Considering the possibility of other, undesired processes
owing to the high reactivity of the phenylmagnesium bromide used, the decent
conversion to crossoupled products was noteworthy. That said, the high instance of
homocoupling, limieéd functional group tolerance and high sensitivity to moisture caused
other researchers to pursue other, milder, organometallic species asotnolgsy

partners.

1-2
> 80% Yield

Br MgBr 1 mol % Ni(acac),
+ 2
Br Etzo

1-1

Schemel-2: Ni-catalyzed crescoupling of aryl bromides and Grignard reagents.

Negishi recognized that a whole variety of organometallics were accegsible
hydrometalation reactions acrossOCdouble andriple bonds, including ones where the
metal wasmuch less electropositivkan magnesium and lithium. Zn, Cd, Sn, Zr, B, Al,
and Si were all considered prime candidates, with the latter four mdtélavalg the
advantage oknown protocols for regicand stereodefined synthesésVith this in mind,

Negishi published the first example of the crosspling of an alkenyl aluminum



nucleophile to an aryl bromide electrophile using catalytic amounts of either Ni'8r Pd.
The alkenyl aluminum specied-3 was easily synthesized, with defineH-
stereochemistry, by way of a hydroalumination reaction. Gratifyingly, the
stereochemistry of the double bond was maintained during 6eb@nd forming event

(1-4, Scheméel-3). In an interesting twist of fate,edishi also attempted the {edtalyzed
crosscoupling of the analogous alkenyl boron resulting from the hydroboration of a
terminal alkyne with no succe§$Had he added a stoichiometric amount of base to
activatethe boron towards transmetalation, this surely would have constituted the first
example of an organoboron based cromspling, coming a full three years prior to the

seminal publication by Miyaura, Yamada and SuZfiki.

AR, 5% Pd C.H
= R2AI-H Ho = CSHﬂ/\/\/ 4o
CsHy — H C4Ho _
C5H11 H._~ 74% Yield
H >99% E.E
|
1-3 1-4

Schemel-3: N e g i fdcatélyzed crossoupling of a vinyl iodide and vinyl aluminate

resulting from the hydroalumination of a terminal alkyhB =i-Bu.

The following year, Negishi tested phedighium, magnesium, zinc and
aluminum species for the Rihtalyzed crossoupling with p-iodoanisole to ascertain
which organometallic reagent was best suited forc&elysis. Not only did the
organainc species provide the highest yield in terms of product, but compared to the

other organometallics, the organozinc species also had the highest functional group
4



tolerance and produced the lowest amount of homocoupling prddiibese factors,
together with the ease of synthesis of organozincs, led to the proliferation ofahkesb
Negishi reaction, ultimately leading to a share of the 2010 Nobel Prize in chemistry for
Negishi. Though this thesis focuses afnh exclusively on the cros®upling of
organoboron reagents, it is important to stress that advances in the -Bliyalkia

reaction are often predicated on similar work on the Negishi reaction.

1.2.2 The Emergence of Boron

Despite the remarkable success & tinganozinc coupling, impetus remained for
the development of a bordrased protocol, since organoboron reagents should hold all
the positive attributes of organozincs with the added advantage of having known

asymmetic syntheses and being less air andstoupesensitive??

In 1979, Miyaura, Yamada and Suzuki reported the successfutcooping of
alkenyl boronic esters and vinyl bromides with a catalytic amount of Pg¢P&tid a
stoichiometric amount of @rganic base, critical to achieve turnonterestingly, in
outlining the reaction mechanism in a subsequent publicatiBozukiet al accurately
depict the role obase as replacing the halide on thecBdtre, a step that is necessary to
enable successful transmetalation from boron to palladium. Of course, it would be the
SuzukiMi yaur a r eact i oidesinfray ¢hatdwould chave dulestrdial (

consequencesio our gr oupOos p u-preoticatalysts thirtyryeans tarb | e



1.3 Basic Mechanism of the SuzukMiyaura Reaction

1.3.1 General Catalytic Cycle

The basic catalytic cycle postulated for the SuKiaura reaction, common to
most transitiormetal cros-coupling reactions, is outlined in Schemd In the case of
an arytaryl coupling, oxidative addition of a ligated, electmich Pd to an aryl halide is
followed by transmetalation of the arylboron specidge diarylated Pd then undergoes a
reductive elimination, effectively forming the new biarydfCCbond and regenerating the

active Pd catalyst.

(Pd*")

-

Ar_Arv \ PdOLn\/ Ar'X
RED. ELIMINATION / OX. ADDITION
Ar ,?\r
|

L,Pd—Ar' LnPd—X
(RO),B-X Ar'-B(OR),
TRANSMETALATION

Schemel-4: Generally accepted catalytic cycle tbe SuzukiMiyaura reaction

Isomerization eventand the role of base apenitted for clarity.
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What seems, on the whole, to be a fairly straightvard process actually results
from a series of intricate evlaedeadsthemgimme t h
steps of the catalytic cycle and contentious points, like the generation of the active Pd

catalyst and the critical role of base, warrant further comment.

1.3.2 Generation of an Active Pd catalyst

As outlined in Scheme-4, zerevalent Pd isthe active catalyst for the Suzuki
Miyaura reaction. Pd/Pd** cycles for GC bond formation are knowthough only under
strongly oxidative conditions: #° The conditions for a typic&uzukiMiyaura coupling
are not oxidizing enough to allow access td*Rahd therefore limithe process to the
more common Pd&Pd* cycle. It is perhaps somewhat surprising then that, along with
their P4 counterparts, Pd precatalysts are also effeedi at catalyzing the Suzuki
Miyaura reaction. In fact, it is precisely this resistance to oxidation which rend&rs Pd

complexes aistable, easily handled and, therefore, widely used ataysts.

Several rationales have been reported forirthsitu reductionof divalent Pd" to
the catalytically active PdGrushin and Alper were the first to examine this phenomenon
in detail®® Although initial reports attributed the reduction of?Pduring the Heck
reaction to the triethylamine base, they noticed that, when mixed with rigorously dried
NEt;, PACh(PPh), remained unperturbed. Exposing the divalent Pd complex to aqueous

hydroxide, however, resulted in a complete reduction to-zalent Pd black. Grushin
7



and Alper argued that the hydroxide formed in equilibrium by exogenous base and even
trace amounts of water is sufficient to affect the reduction on a catalytic amount’of Pd
Triphenylphospine is oxidized to triphenylphosphine oxide in the process. When
resolved chiral phosphine ligand was used instead o R3hin 1-5), the resulting
phosphine oxidel-6 retainedits configuration, suggesting that hydroxide attacks Pd
directly and that annN2-type process at the phosphine centre is not occurringszii

5).

HO@S /Ph OH Ph

|_—C|Pd—P<u|v|e CI—Pd—P mMe [LCIPdH] — [LPd"]
\
C Cl  CH,Ph CH2Ph

1-5
/o e

o= "Me

CH2Ph

Schemel-5: Retention ostereochemistry of a chirbjandon Pd precludes hydroxide

attack at the phosphorous cendrging ligand exchang@

Subsequently, Amatore and Jutand disclosed their findings am siterreduction
of the analogous compound Pd(OAPPh),, formed by the facile reaction of excess
PPh with the ubiquitous palladium acetate. They were able to use kinetiaciguaed
by cyclic voltammetry measurements to demonstrate the spontaneous, if slow, reductive
elimination of an acetate and phosphine ligand to vield palladivth(@deed, this

validates the findings of Gshin and Alper, as their proposed mechanism differed only



by X-type ligand exchange (from @b HO) prior to reductive elimination. In any case,
reduction of divalent Rl) to Pd(0) is definitely feasible under typical reaction
conditions. For this reas, of the two Pd complexes most often used in the Suzuki

Miyaura reaction, one is zes@lent (Pd(PP})4) and the other (Pd(dppf)glis divalent

1.3.3 Oxidative Addition

Following the generation of the active Pd@taly$ system, the next step is
oxidative addition of the aryl,likenyl or even alkyl halidé¢o the Pd centre in what is
often the rate limiting step of the process. As noted by Suzuki in ®19@5Pd insertion
into the organohalide is favored when théh&eroatom bond is weak, leading to an
observed reactivity trend that follows | > Br >> CI. A higher propensity for electron

deficient aryl halides to undergo oxidative addition is explained by similar reckoning

Interestingly, a strongly electremithdrawing group on the organic portion of the
electrophile can adequately activate an aryl chloride bond towards oxidative addition,
though initially a general protocol for nactivated aryl chlorides remained als To
confront this problem, the groups of Buchw&ldru?® and Hartwid® desgned highly
active Pd complexes ligated by bullgfectron rich alkylphosphine ligands (Scherr@)1
Under this paradigm, unactivated aryl chlorides are suitable-coogsing partners, even

at room temperature.



/Q J< R R3 Ar Fe A
% g LSy
Ar
R2
FU BUCHWALD HARTWIG

Schemel-6: Examples of electrenich alkylphophine ligands developed by Fu,
Buchwald and Hartwig for Suzukiliyaura crosscoupling

For the better part of the last fifteen years, the challenge facing the oxidative
addition step has not been one necessarily of practice, but of undergtdndeed, the
ligated nature of the catalytically competent Pd complex continues to be hotly contested.
In 1995, Hartwig reported that an aryl bromide could oxidatively add to a diphosphine Pd
complex (Pd[R¢-tol)s],) at room temperature, whereas tlenparative tetraphosphine,
Pd(PPB)4, required prolonged heating at 80 *Che isolated oxidative addition product
was a monoligated dimer, which was initially believed to result from aryl bromide
oxidative adlition to the Pdk complex, followed by ligand dissociation and reversible
dimerization. In actual fact, the kinetic data pointed to a ligand dissociation step to form a
monophosphine complex, PdL, whigirecededthe actual oxidative addition event

(Schemel-7) 3
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Ar-Br | dimerization o Ny
Pd—L| — — AN

0-30°C Br Ar Br L

PdL, — PdL

L

Schemel-7: Low temperature oxidative addition of an aryl bromide to a monoligated Pd

complex. L = P¢-tol)3

Subsequent work showed that, whesing a bulky, electrenich ferrocenyl ligand
(as in Scheme-f), the oxidative addition to arylodides, bromides and chlorides all
proceededvia unique mechanistic pathways, though the transformation invariably
proceeded through the highly coordinativ unsaturated [PdL] speci#sOf course, the
bulky ferrocenyl ligand biases the coordination geometry of the catalytically competent
complex towards a lower ligated form. More recent computationgt Wwas shown that
less bulky ligands can lead to active [Fldtatalysts, especially in the case of aryl iodides
whose low barrier to oxidative addition may blur the energetic differences between the

pathways>

1.3.4 Transmetalation and the Role of Base

Following the oxidative addition step, the transmetalation of organic groups from
boron to the Pd centre occutdnlike other common Rdatalyzed reactions such as the
Sonogashira or Mizorolieck reaction (which can teate the nucleophilic coupling
partnervia Cu-metal insertion to an alkyne and Pd ligation to an alkene, respectively) the

SuzukiMiyaura reaction relies on the addition of exogenoasebto facilitate the

11



transmetkation of the boronic acid derivative the metal centr&. Initial computational
investigations by Maseras and-workers® suggested that exogenous hydroxide was
necessary to form a more active borasenplex which could undergo transmé&tton to

Pd much more quicklSchemel-8, Path A). More recent experimental work by
Amatore andlutand® contradicts this notion, suggesting instead that the borate complex

is actually inactive to transmégion and that agueous base serves to replace to tKe Pd

bord with a PdOH bond following the oxidative addition &fd to an aryl halidelhis, of

cour se, is consistent with Al pfePfbisitaed opos e
by a ligand exchange on Hd.the case of transmetalationise thydroxylated Pd species

does not reductively eliminate with PPbut rather takes advantage of the oxophilicity of

boron to easily transmetdewith aboronic acid Schemel-8, Path B). In any case, both
Jutandos experi ment al f I n ddudies sagrea nhdt th®la s e r a
transmetkation cannot proceed between the Pdand ArB(OH) species and that the
addition of base is necessaryhis requirement for base wmwhat ultimately foiled
Negi shi &s i ni t-doapling akeryleorapes is 1928leading hinsts turn

instead to organozincs.
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Path A: Boronic Acid Activation

S)

B(OH); Pd”
: -
OHV/ " K \
B(OH),

Pd” 2
X"+ B(OH);
R; H
.0 /
oH Pd
© /©/ \\\ B\/OH
o Ry OH

Path B: X-type Ligand Exchange

Schemel-8: Two proposed transmdttion mechanisms that require exogenous.base

1.3.5 Reductive Elimination to Generate CreSsupling Product

In what is essentially the reverse of an oxidative addition, the reductive
elimination step combines the two distinct organic fumaldies to complete the croess
coupling and regenerate the active catalyst. Just as the oxidative addition is thought to
typically proceed through a monoligated [PdL] complex, Stille proposed that reductive
elimination also proceeds through this highly atnsated complex; the understandable

requirement that the organic groupscisis also noted’
13



This is not to say that reductive elimination cannot proceed through a diligated
complex. In fact, the rate of redu elimination can be enhanced by using bidentate
ligands with large bite anglé8.*® These large bite angles serve to effectively decrease
the distance between the organic growgsupying the other two coordination sites

which, ultimately, facilitates the eventual reductive elimination.

Electronics can also have a significant effect on reductive elimination. Given that
electron rich metal centres are known to undergo facileatixiel addition events, it is not
surprising then that the reductive elimination step, purportedly the opposite of an
oxidative addition, should be favored from electpmor metal centres. Indeed, Knochel
has shown that having a remote site of unsaturaticthe organic group capable of back
binding to the metal centre was required to ensure successful reductive elimination from
Ni in his work with alkyl Negishi variant®. T h e-acidic ligand dibenzylidene amme
(dba) is also known to facilitate reductive elimination by coordinating to therfetal
centre and pul |l i ng-sytne@theme®**density into

R

R1

|
T
Q.
=
B ]

3

O

Schemel-9: The noninnocent nature of dba with respect to reductive elimination.

14



1.4 Suzuki-Miyaura Reactions of sp-hybridized Organoboron Coupling Partners

1.4.1 CrossCoupling of Primary Boronic Acid Derivatives

The crosscoupling of sptype aganoboron species to haloarenes is typically
more difficult than with their sphybridized analogues, owing to a much slower
transmetalation ste}5.As with other organomeliic species, alkyl boron nucleophile®ar
al so very shydside eliminatidnlfrem the d domplex after transmetalation
an eventuality that is even more likely with secondary alkyl borbimsse problems have
mostly been addressed (typically in the form of transmetalation accejeeatditives)
for primary organoboron coupling partners, but that said, the fietgt@indaryboronic

ester crossoupling is still in its infancy.

Indeed, primary alkylboranes have been useful coupling partners for over twenty
years® In 1989, Suzuki was able to demonstrate tBabctyl-9-borabicyclo[3.3.1]
nonane 1-8, B-octyl-9-BBN) crosscoupled smoothly and in high yield with iodobenzene
in the presence of a catalytic amount of Pd and fairly innocuous baseasuNaOH,
KsPO, and KCO; (Scheme 110)* Fol | owi ng Ki shi ds |l ead on
transmetalations to bordf Suzuki also showed that the reaction could béopmed at
room temperature when TIOH was used as Bass.expected, no reaction was observed

in the absence of exogenous base.
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PdCl,(dppf)

| oct
O i s >
3 M NaOH

1-8 DMF, 50 °C 99,

Schemel-10: ThePd catalyedcrosscoupling of iodobazene andB-octyl-9-BBN, a

primary organoborane.

Though a substantial development, there are serious limitations to using
alkylboranes as coupling partners. For one, they are notoriously unstable and are almost
always usedn stu, without purification, following the hydroboration of an alkene. The
second pitfall most often associated with the camspling of B-alkylated9-BBN
derivatives is the poor atom economy of the process. Though it is true that the
stoichiometric amourf resultant cyclooctane moiety tarnishes the atmwnomy of the
process, the uncatalyzed hydroboration reaction does not require precious metals or
expensive ligands, and the subsequent ectoapling can be performed in one pot; all of

which lessens thenvironmental and economic impact of the process.

Alkylboronic acid derivatives, on the other hand, providestable, easy to
handle alternatives to alkylboranes. Whether synthesized by a -catdblized
hydroboration reaction or by the quenching ofadkyl Grignard reagent with a boron
electrophile such as B(OMg)he synthesis of alkylboronic acids and esters can also be
achieved with much greater regiocontrol than alkylboranes. However, the lessened
nucleophilicity of the carbon adjacent to the dyac acid derivative (as compared to an

alkylborane) ensures that an already sluggish transmetalation is rendered even slower.
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Indeed, Suzuki and eworkers noted that primary alkylboronic esters derived from the
metal catalyzed hydroboration of alkenes diot crosscouple to aryl halides in the
presence of standard bases like NaOMe or NaOH, conditions known to affect the cross
coupling of alkylboranes. Thallium(l) salts, which had been used previously to hasten
slow transmetalation steps, were found ® difective additives for the Rzhtalyzed
crosscoupling of alkylboronic esters, with ;80; and TIOH performing well for
catechol and pinacol esters, respectively (Scheth®) 3 Interestingly, though known to

be nore nucleophilic than the analogous esters, alkylboratidswere not successfully

coupled under these conditions.

3 mol% PdCl,(dppf)

3.0 equiv KOH4q) Trace

oct
3 mol% PdCl,(dppf) ©/

1.5 equiv TI,CO5

' 0
©/ + 11 oct—B :@ —
el

93% Yield

Schemel-11: Successful crossoupling of alkyl boronic ester with Thallium sl

Naturally, there was an impetus to find alternatives to the highly toxic thallium(l)
salts. In 2001, Falck and -eeorkers demonstrated that a superstoichiometric amount of
Ag>O could mediate the Pchtalyzed crossoupling of a widevariety of primay
alkylboronic acids with aryl halidés.This marked a significant advance, as the air and
moisture stable primary alkylboronic acids could now be ecospled without the use of

thallium salts. Also of note was theroplete selectivity for the crosoupling reaction
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over the MizorokiHeck reaction in alkylboronic acids that bore peripheral unsaturated
groups 1-9, Scheme 112), an interesting foreshadowing of results we would obtain for

the crosscoupling of secondaryoronic esters.

o)
o PdCl,(dppf) (10 mol%) OEt
OBt + 14 Z>BOH:
2.5 eq Ag,0O
Br 3.0 eq KKyCO; o
1-9 THF,80°C 7

Schemel-12: The crosscoupling of primary boronic acids, as reported by Falck in 2001.

Though AgO is inexpensive and not known for its toxicity, attempts were made
to furthersimplify the protocol for crossoupling primary boronic acid derivatives. In
2002, Molander and eworker reported that primary alkylboronic acids could be eross
coupled to aryl halides and triflates in up to 80% vyield when high loadings of
PdCh(dpp f ) QG Mrere used. In this case, only potassium carbonate was needed to
turn over the reactioff. Primary potassium trifluoroborate salts could also be eross
coupled effectively under similar conditions; uritmately secondary trifaroborates
could not be empl o ylydride elansnatibnhcethe reauttinyalkenee n t
although in undocumented amoufits.

Pd loadings that approach 10 mol% hinder thgdlarc al e vi abi | ity
protocol for both alkyboronic acids and trifluoroborate salts. Doucet ansodaers
addressed this problem by employing the tetrgphine ligandTedicyp(Scheme 113) in

conjunction with [Pd(GHs)ClI],. This catalystigand combination was so efficient at
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turning over the reaction of aryl halides with primary alkyl boronic acids that catalyst
loadings as low as 0.01 mol% could be used. However, in lowering the required Pd
concentration one thousafold, Doucet in turn imbduced a dependence on an exotic

and expensive ligand.

PPh, Q\| P(t-Bu),
= ][;Pphz Ph.Fe Ph
Ph,P
Phop Ph@Ph
Ph
TEDICYP Q-PHOS

Schemel-13: TheTedicypandQ-Phosligands developed by the Doucet and Hartwig

groups, respectively.

In 2002, the Hartwig group released¢@mprehensive study on the synthesis and
application of their newlgeveloped ferrocenyl ligandQ-Phos (Scheme 113).%°
Impressively, Pd complexes of this bulky, monophosphine ligand were shown to have
excellert reactivity for a variety of crossoupling reactions, with the amination of aryl
halides and the alkyl variant of the Suzlkiyaura reaction being chief among them.
Primaryboronic acids were made to be competent coupling partners under this catalytic
system, but what 6 s nmiohr mature df theQ-Phosligdng also e | e c t
facilitated oxidative addition to such an extent that even sterically hindered, unactivated
aryl chlorides were able to react with the primary boronic acid coupling partners.
Unfortunately, the crossoupling ofsecondaryboronic acids remained difficult, even in
the presence of this highly competent catalyst system. As such, selbatylboronic

acid was coupled t@-'butyl bromobenzene, a moderate yield was obtained ®r th
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secondary coupling product and the unwanted, linear isomer was observed (though not
guantified). It would serve as a reminder that the efficient erogpling ofsecondary
boronic acid derivatives, plagued by an even slower transmetalation and prone to

i somer i z at-hydride etinfinatiory wak stilbout of reach.

1.4.2 CrossCoupling of Secondary Boronic Acids

Initially, derivatives of cyclopropylboronic acid constituted the vast majority of
successful crossouplings of secondary boronic acitiRing strain on the cyclopropyl
moiety withdraws gcharacter from the exocyclic-B bond, effectively imparting an $p
hybridization on t hehydfide elichinatioR thattplagees rathar e
secondary boroniacids is precluded by the disfavored formation of a highly strained
cyclopropenyl moiety. In fact, this fortuitous combination would allow
cyclopropylboronic acids to maintain a monopoly in the field of secondary organoboron

crosscouplings for the bettepart of a decad®: *°

Deng and cavorkers were the first to report the synthesis and subsequent Suzuki
type crosscoupling of substituted cyclopropylboronic acfs. Stereodefined
alkenylboronic acids were transformed into the requisite cyclopropylboronic acids by
SimmonsSmith cyclopropanation and then, using fairly mild coupling conditions, these
secondary boronic acids were crassipled wih arylbromides to form arylated

cyclopropanes (Schemel#). Gratifyingly, the configuration of the cyclopropylboronic
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acid was fully transmitted to the arylated coupling prodticthe Chen group
subsequently shoed that cyclopropylboronic acids could be synthesized easily from the
commercially available cyclopropylmagnesium bromide and, under nearly the identical
conditions reported by Deng, these cyclopropylboronic acids were-avapged to

arylbromides in higlyield.>

Deng 1996
H Bu Bu
Bu. Simmons-Smith /\ > Pd(PPh3), (3 mol%)
B(OH), . \
H Cyclopropanation B(OH), K3PO,4 3H,0 Ar
9 examples
Fu 2000 83-98% Yield

Pd,(dba); (1.5 mol%)

Cl P(t-Bu); (4.5 mol%)
LT+ Drsom
HsC 3.3eqKF
H,C 77%

Dioxane, 100 °C

Schemel-14: Successful protocols for the cressupling of both cyclopropyl (top) and

cyclopentyl (bottom) boronic acids.

In 2000, Fu repded the first successful creseupling of a cyclopentylboronic
acid as part of his full study on the use of Pd complexes of alkylphosphines for the
SuzukiMiyaura reaction (Schente14)>* Using a 3:1 ratio of Fu); to Pd(dba); in the
presence of KF, a P4 isolated yield was obtained for theosscoupling of 4
chlorotolueneand cyclopentylboronic acith. This result is noteworthy as the lower ring
strain associated witthe cyclopentyl structure renders the exocycli ®ond much

morespl i ke than the cyclopropyl anal ogue.
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hydride elimination to cyclopentene is mostly lost. However, the symmetric nature of
cyclopenylboronic acid rehe r s -hgdnide elitnination / Pgleinsertion event invisible,
as the arylated products resulting from this type of ring walking would be

indi stinguishable from the fidesiredo produ

1.4.3 CrossCoupling of Secondary Trifluoroboronate salts

As noted previasly, air and moisturestable primary alkyl trifluoroboronate salts
were found by Molander to be viable alternatives to the impossibly unstable
alkylborane$’ Nevertheless, he introduction ofsecondarytrifluoroboronates to the
repertoire of usable crog®upling partners has heédindered by the same factors that
affect the other derivatives of org-anobor

hydride elimination.

As with the secondary boronic acids, the first successful -cagsling of
secondary trifluoroboronates was hetform of a cyclopropyl derivative. In 2004, Deng
showed that cyclopropyl trifluoroborates could be coupled to aryl bromides in high yield
under modified SuzukMiyaura conditions® Again, the crossoupling was
stereoretentive between the configurations of the substituted cyclopropyl trifluoroborate
and the resulting arylated cyclopropahén 2008, the van Hoogenband group reported
the first instance where cyclopentyl patiasn trifluoroboronate was used in a cross

coupling reactiont® Later that same year, Molander disclosed successful conditions for
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the crosscoupling of both cyclopropyl and cyclobutyl potassium trifluanaies with

aryl chlorides’*

OMe Pd(OAc), (5 mol%) OMe
BE.K t-Bu,PPh (7.5 mol%)
3 3 eq. Cs,CO3 79% Yield
+ 1.3 8.2:1 B:L
10:1 tol:H,O
& 1-10 100 °C, 72 h

Schemel-15: Optimized conditions for branched selectivity in secondary alkyl

trifluoroboronate salt crossoupling

Despite the breakthroughs, successful cilamsgpling was still limited to a choice
few secondary trifluoroboronates, mostly all symmetrical, cyclic structures. To address
this issue, Molander turned to Parallel Microscale Experimentation, an automated
techngue which allows for the rapid screening of a variety of ligands, solvents and
conditions for a given reaction.A few pertinent results emerged from this study. First,
the crosscoupling of both cyclopentyland cyclohexyl potassium trifluoroborate salts
were optimized for ligand and conditionBhe cyclopentyl trifluoroboronate derivatives
cleanly reacted in the presence of a bulky, electron donating phosphine ligand (
BuPAd) in 10:1 toluene:water. The cytlexyl systems reacted well under similar
conditions, witht-Bu,PPh acting as the optimal ligan&econdly, and much more
interestingly, the acyclisecpropyl potassium trifluoroboraté-10 was coupled to aryl
chloridesunder these optimized conditignsith selectivities for the desired branched to
linear alkylation reaching as high as 8.2Stheme 415). This provided a major advance

in the field, though the selectivities were very dependent on subsb-gdride
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elimination was still ocurring based o the presence of the linear isomand the

conditions were by no means general.

Finally, by the use of nete y mmet r i c al subst r awydede, t he
elimination and reinsertiowas probed Suzuki postulated early on that the very slow
transmedlation step likely had more adverse effect on the erospling of secondary
organoboron species t ha rhydida eliminatodiThoaghe d pr c
optimization is usually needed for each individsabstrate, potassium trifluoroboronates
are thought to undergo a more facile transmetalation to Pd and can even prevent
unwanted sideeactions® That said, they are s-hydidd pron
elimination and metateinsertion which can lead to chain walking. Using
diastereomerically enriched unsymmetrical cyclohexyl potassium trifluorobarhie
Molander was able to confirm that this Pd rmglking was occurring, since the aryl
group was depositethroughout the ring, and even on the exocyclic methyl group
(Schemel-16). Since this process occurs by Pd walking around the entire ring, in an
enantiomerically enriched substrate this would lead to loss of stereochemistry. Bulky
phosphine ligands fawor r educt i ve el ihydiide @iminatom, amdeas at i v ¢
such, this type of ligand offered the best selectivity for the desired product, though large
amounts of isomerization were still observed (Scheri®€)$° It is interesting to note
that of the undesired products resulting from chaatking, exocyclic arylation product
1-12 is the most prominent, further confirming the more facile reductive elimination at

primary centres.
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Cl
CHj

: Pd(OAc), (5 mol%) Ar
+ 13 O,BFgK t-Bu,PPh 75mol% O’ O\ Q O
10:1 PhMe/H,0 Ar

100°C, 72 h
1-11 72% 4% 3% 21%

Ph

1-12

Schemel-16: Evidence of ringwalking, even under optimized conditions for secondary

Molanderates.

1.4.4 CrossCoupling of Secondary Boronic Esters

In 2001, Zou and Falck demonstrated that primary alkyl boronic esteld loe
activated towards transmetalation by ihesitu reaction of the boronic ester wigFBuLi.
The resultant bated complex easily transf
providing an alternative to Tl or Ag activation (Schemd7)>’ Interestingly, the
transmetalation of the secondary alkyl group, emanating froraetleutyllithium base,
was never observed. Thus, Zou and Falck demonstrated cleargn intramolecular
competition experiment, just how ntuenore difficult the crossoupling of secondary

boronic esters is compared to the already difficult primary examples.
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Pd,dbag, P(t-Bu)s, KF 90%

Schemel-17: The activation of alkyl boronic esters s¥8uLi and the demonsttion of

exclusive transmetalation of the primary alkyl chain.

It is not surprising, then, that no effective protocols for this important class of
substratesexist, with all examples prior to our work stemming fron derivatives of
cyclopropylboronic esters. Work by both Gevorgyaand Charett€ showed that, like
with the boronic acids and trifluoroborates, the cromspling of ¢clopropylboronic acid
pinacolate esters is highly stereoretentive, meaning that the stereochemical information
imparted to the secondary boronic ester is maintained throughoutGh®i@ing event.

These results, coupled with the large variety of meth&dewn to synthesize
enantiomerically enriched secondary boronic esters, implied that the development of a
general protocol for the crossupling of secondary boronic esters would have an

indisputable impact on the field of asymmetric synthesis.

1.5 Suzuki-Mi yaura Coupling of Primary sp*hybridized Electrophiles

1.5.1 Primary Alkyl Electrophiles
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The development of crosoupling protocols for alkyl electrophiles has been
substantially more successful than that of their nucleophilic counterparts. Suzuki reported
the Pdcatalyzed crossoupling of an alkyl iodide to &-alkyl-(9-BBN) derivative in
1997° (Scheme 118) and by the end of the decade, Knochel had developed a
synthetically useful Ncatalyzed Negishiype couplng of alkyl iodides to organozinc
reagent$? ®° The systematic development of a general protocol for both primary and
secondary alkyl electrophiles however, would come through wank #y the Fu group

throughout the 2000s.

CGH‘]SI + (g'BBN)'CBH»]S m C14H30
K3POy4 64% Yield

Schemel-18: Alkyl-Alkyl crosscouplingbetween alkyl iodides and primary
organoborane?.

In terms of crosgoupling viability, the limitations associated with alkyl
electrophiles are akin to those of alkyl boronic ester derivatives; a slow oxidative addition
replaces the sluggish transmetalation but both prace s ar e v4inydnder abl e
elimination® The Fu group was welirmed to confront the issue of slow oxidative
additions, given their previous experience in the field of elegiainligand development
for the activation of aryl chloridewifle supra. In 2001, Fu reported a general protocol
for the Negishi crossoupling of previously inert aryl and vinyl chlorides with
organozinc species, using the electron rich £@yP({Bu); phosphie ligands. Though

elevated temperatures were needed, it was shown thati@Gjpbond could, in fact, be
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activated, leading to the syntheses of sterically congested biaryls and synthetically useful
styrene motif$! With a Pdcatalyst system capable of activating previously inert carbon

halide bonds, the Fu group turned its attention to another such example: alkyl bromides.
Perhaps not surprisingly, when a very similar catalyst system was used (with the addition

of KsPOA BD base), gmary alkyl bromides were coupled tB-alkyl-(9-BBN)
organoboranes in moderate to good yiéfds.u 6s success with pri ma
was not limited to thalifficult-to-handle organoboras; with a mofiied ligand system

and judicious choice of solvent following an extensive optimization, both alkyl and vinyl

boronic acids could be reacted with alkyl bromides (Sched®) 33

5 mol% Pd(OAC)Z C6H13
B(OH)2 10 mol% P(t-Bu),Me
C6H13Br +

3 equiv KOfBu
t-amyl alcohol, RT 87% Yield
as above
CioHasBr + CgHygB(OH), C1gHa

66% Yield

Schemel-19: Crosscoupling of both aryland alkyl boronic acids to primary alkyl

bromides.

Unfortunately, activation of the notoriously inert allgiiloride bond, known to
be over 10 kcal/mol stronger than an alkyl bromide f8mioved to be elusive under
these conditions. Undeterred, the Fu group reported in 2002 that(db®&gdPCys
catalyst system could, with a sugoichiometric amount of CsOH,O, activate

primary alkyl chlside bonds towards oxidative additi&hMechanistic work indicated
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that a strongly negative entropy of activation existed for the -@asggling of alkyl
halides and, together with data on the effect of solvelaripy on activation energy, Fu
determined that the oxidative addition of alkyl halides by Pd proceeidedn $2
pathway®® The S2-type mechanism of oxidative addition is weditablished for Pd and

Ir metal cetres, and is favored by the low steric encumbrance of the primary alkyl

halide®’

1.5.2 SuzukiMiyaura Coupling of Secondary Shybridized Electrophiles

Given that the SuzulVliyaura reaction oprimary alkyl eectrophiles is tempered
by a slow, {2-type oxidative addition to Pd, the successful ciamgpling of the more
hinderedsecondaryalkyl halides should be expected to be even harder to achieve. Once
again, inspiration for this new type of SuzMiyaura potocol was found in work done
on the analogous Negishi type reaction. Though pioneered by Knochel through the late
1990s, all examples reported were of primary alkyl bromides and iodides. It was not
until 2003 that Fu reported the first examples of tbhecessful Nicatalyzed cross
coupling of secondaryalkyl bromides and iodides with alkylzinc reagetft©ne year
later, a similar itkel-based catalyst system was used to affect the first Siviiykiura
type reaction between secondary alkyl halides and phenylboroni€®dnichis case,
replacing Ni with Pd led to a complete shut down of the reaction, indicating that a one

electron radical process, typiaafl Ni, was likely at play during the successful oxidative
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addition step. In time, even the once unimaginable aospling of secondary alkyl

chlorides was achieved through-tditalyzed processes (Schem2Q).”

6 mol% NiCl,-glyme
O/CI ©/B(OH)2 12 mol% Prolinol
+
2 equiv. KHMDS

Isopropanol

80% Iso. Yield

Schemel-20: Ni-catalyzed crossoupling ofsecalkyl chloride with phenylboronic acid.

Like with the alkyl boronic esters, the true inspiration behind developing-cross
coupling praocols for secondary alkyl electrophiles was to open the door to asymmetric
C-C bond forming events. In 2008, Saito and Fu finally realized that goal, whereby a
racemic secondary alkyl bromide was croespled to a primary organoborane in the
presence o chiral diamine ligand (Scheme21).”* This stereoconvergent process led to
alkyl-alkyl coupling products in high yields and enantiomeric excesses. Most recently,

this asymmetric process has been extended tocaaylb$® and aryl Gignards’®

NiCl, glyme (10 mol%)
1.2 KOt-Bu, 2.0 j-BuOH

Bu
Bu i-Pr,0, 5 °C Ph
P 4 15 PR N"N(9:BBN) o
Br

(12 mol%)

A 84% Yield
MeHN  NHMe 94% ee

Schemel-21. Stereoconvergent cressupling of a racemic homobenzylic secondary

bromide and a primary organoborane.
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Simply by @timizing catalytic systemaften by only varying the ligand, the Fu
group has systematically, and almost sifg@dedly, created the field of asymmetric
crosscoupling of alkyl electrophiles. It must be ndtéhat, over a decade later, secondary
boronic ester derivatives hawtill not been successfully coupled to secondary alkyl
electrophiles, further outlining the difficulties that exist when working with secondary

coupling partners.

1.6 General Summary and Qutlook

With advances arriving in the form of trifluoroborate salts, transmetalation
facilitating additives for primary alkyl boron coupling and bulky, electron rich ligands
to enable the oxidative addition of both primary and secondary alkyl electsptfiée
applicability of the SuzukMiyaura reaction had been almost completely flushed out in
less than a generation after the seminal publication in 1979. That said, by the later stages
of the 2000s, the cros®oupling of secondary boronic esters had riesxh virtually
unknown, and would stand as one of the last challenges remaining to those pushing

SuzukiMiyaura methodologies.

It was against this backdrop that we undertook our studies into developing a
general protocol for the croseupling of chiral econdary boronic esters with the
retention of stereochemistry. That previous examples were rare and limited to very

privileged systems (cyclopropyl boronic esters and larger, symmetric rings) was certainly
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not from lack of interest or lack of trying. Indkemost groups whose work is outlined
above had pursued the topic with varying degrees of success. In the case of Fu, Hartwig
and Molander, this preliminary work is published; for others, admission of their failed

efforts would only happen after the fact.

Of course, those members of the Crudden group who would develop the silver
mediated protocol would benefit from the fortuitous link between the branched
regioselectivity of the hydroboration reaction of styrene derivatives and the initial
requirement, uder our conditions, of the secondary boronic ester to be benzylic. The
next two chapters will discuss the optimization and understanding of this new protocol
and finally, its application to the cressupling of novel asymmetric secondary boronic

esters t@roduce, in some case, previously inaccessible organic frameworks.
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Chapter 2
The Cross-Coupling of Secondary Boronic Esters with Retention of

Stereochemistry

2.1 Introduction

2.1.1 Hydroboration of Styrene Derivatives

Our interest in the field of secondary boronic ester ecospling was borne out
of previous work done in our group on theyrasetric hydroboration of styrene
derivatives: First disclosed in 1985 by Manning and Notlhe metalcatalyzed
hydroboration reaction was more selective and requirddemiconditions than its
uncatalyzed counterpart. Il ndeed, in the pl
catalyst, catecholborane (HBCat) is able to hydroborate alkenes at room temperature,
foregoing the elevated temperatures needed for the unadglyacess. Most impressive,
though, was the noted chemoselectivity of the catalyzed hydroboration of a-ketone
containing olefin. In the uncatalyzed reaction, the oxophilicity of boron dominates,
leading to a selective hydroboration of the ket(é); conversely, in the Ritatalyzed
variant, the selectivity is reversed with complete selectivity for the ebgftinoboration

being observed22, Scheme2-1).
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Scheme2-1: Chemoselectit of the Rhcatalyzed hydroboration reactién.

Though remarkablehemaelectivity for olefins was observed, controlling the
regioselectivity of the hydroboration across an unsymmetric olefin had not been pursued
The Evans group began to address this issue in 1988 with the first paper dedicated to the
regioselectivity of the hydroboration in cyclic alkenes with pendant allylic alcohols and
ethers serving as directing groubsiterestingly,anti facial selectivity was observed for
both the uncatalyzed hydroboration by HBcat and the reaction catalyzed by a ptiosphine
ligated cationic Rh complex. Where the processes diverge is in their respective
regioselectivities, with thencatalyzed reaction leading to thes@bstituted alcohol and

the catalyzed reaction installing the boronic ester at the digtasiBion (Scheme-2).

43



OBn OBn OBn
@ 1. Hydroboration \OH
2. Oxidation “IOH

9-BBN, Uncatalyzed 4 1

HBcat, Rh cat. 1 10

Scheme2-2: Regioselectivity of the Rlsaialyzed hydroboration reaction as
demonstrated by Evaris.

The question ofegio- andenantiselectivity was more fully brought to light by
the work of Hayashi and Ito in 1989They noted that the regioselectivity of the reaction
could be changed to favor the Markovnikov product by using cationic Rh catalysts and
phosphine ligands during the hydroboration of styrene using HBCat. For example, 1
mol% of [Rh(COD})]BF,4, combina with 1,4bis(diphenylphosphine)butane (dppb) to
form an active catalyst capable of imposing a branched:linear ratio of >99:1 on the
product boronic ester. That the phosphine ligand was in some way affecting the nature of
the transition state during thiegioselectivitydetermining step made it conceivable that
the same could be true of tlmantiselectivitydeterming step. Thus a noacemic
diphosphine ligand, (+BINAP, was used and after subsequent oxidation of the boronic
ester, gave rise to the Imic alcohol (Scheme -3) in high regio- (99:1) and

enanticelectivity (8595% ee).
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1 mol% [Rh(cod),]BF,4 I?cat OH
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Scheme2-3: Branched selectivity achieved with the bidentate phosgigaged Rh
catalyzed hydroboration ream.

Up to this point, the majority of metahtalyzed hydroborations were performed
with HBcat, as the tempering of its Lewis acidity by oxygen {pae donation to the
empty boron porbital was needed to limit the uncatalyzed background reaction with
olefins. Pinacolborane, (HBPin, SchemelRis considerably easier to handle and the
boronic acid pinacolate esters that would result from its use in the hydroboration reaction
are typically stable to air and chromatographic purification, unlike their lualtec
analogues. The steric bulk provided by the pinacol functionality could, however, decrease
any selectivity for the more sterically congested branched site. Work in our laboratory
showed that the hydroboration of styrenes could be achieved directli#BiRim at room
temperature using a cationic rhodium catalyst, and that with judicious choice of bidentate
phosphine ligand (dppb once again showed the most favorable results) very high B:L
ratios could be obtainedAs in the preceding work by Hayashi and Ito, the high
regioselectivities obtained with the bidentate phosphine ligand (dppb) allowed for the
smooth transition to neracemic bidentate ligands to interrogaaanticelectivity.
Though BINARmodified atalysts provided mixtures of branched and linear products

when using HBpin, nomacemic Josiphos ligands gave moderate B:L ratios of about 3:1.
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Amazingly, catalysts modified by this ligand gaweposite enantiomersf the product,
depending on whether HBPor HBcat was used as the hydroborating reag@nsimilar
phenomenon was observed for hydroborations with Quinagified catalyst§.
Furthermore, the Crudden group discovered that irrespective of liganstyrene
derivative, the use of iridium as a substitute for rhodium led to complete selectivity for

the linear isomer (Scheme4}, illustrating the sensitive nature of this reacfion.

[Ir(CoD)CI], ES(OR)z

Pi”B\/\© DPPB ©/\ Rh* / (+)-BINAP
0\ O :
. . B—H - B:L
L:B 99:1 s o Bt

HBPIn HBcat

99:1
96:4

Scheme2-4: lllustration of the regioand enantioselectivity of the metal catalyzed

hydroboration of styrene.

2.1.2 Elaboration of Hydroboration Products

I n the twenty years after Manmetatg and
catalyzed hydroboration reactidnthe process had been advanced to include
regioselectivities complementary to the uncatalyzed reaction and had been rendered
enantioselectivé.In terms of applicability, however, the process was falling short of its

potential, as the resultant boronic esters were virtually exclusively being oxidized to
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alcohols? Considering the numersuroutes to enantioenricheseephenethanol, this

transformation is not hugely value added.

Alternatives to boronic ester oxidation do exist, but are limited. Indeed, our group
has developed an asymmetric hydna@timn-homologation protocol to accessayl
propionic acid$ and the amination protocol developed by the Brown group has led to
chiral benzyl amines in high er from neacemic benzyl boronic estetdhat said, an
enantiospecific crossoupling protocol, so important to the pharmaceutical indd8try,

was still lacking.

It was under this umbrella of thought that our groudah to truly capitalize on
the advances of the catalyzed hydroboration reaction by utilizing the resultant alkyl
boronic ester moieties, not as alcohol precursors, but as Swypekicrosscoupling
partners. Should this prove successful, it would starizktefit both reactions, foat this
time, no SuzukMiyaura protocol had yet been performed on chiral secondary boronic
esters with the exception of cyclopropyl derivatives. Furthermore, the transformation of
the hydroboration product to diaryl alkares provides an extremely valuable route to
these difficult compounds. Indeed, prior to our Suadiraura crosscoupling strategy,
very few synthetic routes to tdiarylethanes were known, amongst which stereospecific
syntheses were even more rare (Sch2sg Sigman and caorkers have put forth very
elegant work on the hydroarylation of styrenes, though, despite using a near
stoichiometric amount of a chiral ligand, observe no enantioselection in the prbduct.
Hi y a ma 6-souplmg af foenzyl silanes, though found to be almost completely

stereospecific, is limited by the poor enantiomeric excesses of the starting m&terials.
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Sigman 2007

2.5 mol% PdI(-)-sparteine]Cl, O
40 mol% (-)-sparteine
o]

/©/\ + PhSnBu, 75 mol% MnO,

Isopropanol, 25 psi O, O

60°C, 18 h 76% Yield
Hiyama 1990
CH; Q :
TfO n-BuyNF )
51% Yield
34% ee 34% ee

Scheme2-5: Reductive hydroarylation coupling (tdpjand fluoridemediated silicon
coupling (bottom) to 1 Hiarylethanes?

Since our intial reporton the stereoretentive cressupling of benzylic boronic
esters™ chiral secondary boronic est&8 andtrifluoroboronate saltg-4 have also been
found to undergo successful,-Bdtalyzed crossouplings with aryl halide electrophiles
(Scheme ). Indeed, Suginom¥,and subsequently MolandErtook advantage of a
putative intramolecular activation of the sadary boronic ester by an adjacent amide
carbonyl moiety to facilitate the difficult transmetalaltion to Pd. Interestingly, a nearly
completeinversion of stereochemistry is observed in both cases. This phenomenon is
attributed to the aforementioned cambp | 6 s i nt er a c t 4orbital ofeordnh t h e
which effectively blocks Pd from reacting from the same face. Instead, a backside attack

by Pd, leading to the observed inversion of stereochemistry, takes place.
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Suginome t
5 mol% Pd(dba), HN™ 0 PCy>
10 mol% XPhos - A iPr iPr
HN™ ~O 3 equiv K,CO4 @/\ r O

. 2 equiv H,O
Bpin  + ArBr

o 71-89% Yield iPr
Toluene, 80 °C, 12 h enantiospec.: 92-98%
2-3 (Inversion) XPhos
Molander
10 mol% Pd(OAc), MeO o
MeO o 20 mol% XPhos )J\)\
\©\ J\) +  PhCl 0 equv It N Fh
N “BF4K ; H
H CPME/H,0, 95 °C 82% Yield
er = 95:5 (inversion)
2-4

Scheme2-6: Recent work from the groups of Sugindfh@gop) and Molandér (bottom)
on the enantiospecific cressupling of secondary bonic ester derivatives.

2.2 Cross-Coupling of Hydroborated Styrene Derivatives with Aryl Halides

2.2.1 Initial Reaction Development: From Zero to Sixty

The Hayashi hydroboration of styrene with catechol borane catalyzed by
[Rh(COD)(BINAP)]BF, affords tphenyletlylboronic acid pinacolate ester in high yield
(65%), regioselectivity (98.5:1.5, branched:linear) and high enantioselectivity (94:6,
R:S)* With both racemic and nermacemic starting materials in hand, we set out to

develop successful coupling conditions of this secondary boronic ester with aryl halides.
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The first successful crosouplings were performed by postdoctoral fellow
Daisuke Imao and will be summarized briefly hErnitial attempts to affect the cross
coupling by standard routes failéd@able 2-1, entries 1,2, reasserting the difficulties
associated with coupling secondary boronic esters outlined in Chapter 1. It was then
decided that, of the pitfalls generallysasided with secondary boronic esters as
coupling partners, the sluggish transmetalation would need to be addressed first, followed
then by the miti gdydide elimioafion evenis. Insmratiennwias a | b
taken from the crossoupling of primary bronic esters. Though primaboranesare
readily transmetalated with strong inorganic bases (NaOMe, NXQk8,inherently less
reactive primary boronic acids and esters require more help, often in the forrliomtha
or silver salts’ In fact, for the difficult crossoupling of bulky vinyl boronic acids,
Kishi was able to demonstrate rate enhancements ofama four orders of magnitude
for Ag and Tl salts respectivelyyer hydroxide base$.Shying away from toxic thallium
saltst® we turned instead to silver as a transmetalation promoter. Gratifyingly, the
addition of a supersikchiometric amount of AgD, in conjunction with a catalytic amount
of the commercially available Pd(Ph enabled the crossoupling of 4
iodoacetophenone with boronic es#eb in 30% GC yield Table2-1, entry 4). A larger
excess of PRhwithrespecta Pd) was added -lhydridecelbminatiorer po't
and this, together with a higher loading of Pd (8 mol%) led to -@ogpled produce-6

in 65% GC yield Table2-1, entry 5).
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Table 2-1: Development of Successful Ceo€oupling Conditions.

Bpin O O
©/\ /©)J\ Pd catalyst O O
1.5 +
| base
2-5 2-6
entry catalyst (%) ligand (equiv.) Base yield (%)

1 Pd,(dba); (2) PPh; (8) K3PO, 0
2 Pd,(dba); (2) PPh; (8) Cs,CO3 0

3 Pd,(dba); (2) PPh; (4) Ag,O 25

4 Pd(PPhg), (4) none Ag,O 30

5 Pd,(dba); (4) PPh; (8) Ag,0 65

6 Pd,(dba); (4) PPh; (12) Ag,0 64

Reaction ConditionsTHF, 0.05 M, 70 °C, 24 h. Note: loadings given datalyst not necessarily Pd and
that phosphine ligand equivalents are given with respect to the catalytic amount of Pd

2.2.2 Ligand Effects on the Reaction

We net sought to improve upon this result, and by analyzing the effect of each
component, we gained a better understanding of what allows this new, yet wholly

uncomplicated, system to work where others failed.

The obvious place to seek improvement in yields iag examiningthe ligand
used in the reaction. The large excess of;RRIs presumetb increase yield (compare
Table 2-1, entries &%) by favoring a ceordinatively saturated Pd centre during the
catalytic cycle, thereby reducing the likelihoofl yield-reducingb-hydride elimination
reactions. Although an-fbld excess of ligand to Pd is higher than desirable; #$h

cheap (0.51 CARQyram, SigmaAldrich) and abundantly available, therefore it would
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require a significant jump in yield to justify using éferent, more exotic ligand system
for the reaction. With this in mind, we screened a wide variety of ligands and compared

them to our standard conditions.

Table 2-2: Ligand screen for the cross coupling of an aryl iodide withralic boronic

esters.
Bpin 0 Pd,dbas 0
S O e QLD
I ligand
2-5 2-6
entry Pd I(c;z)dlng ligand (mol%) y(loe/(:;j
1 4 PCys; (16) 5
2 4 dppf (6.8) 2
3 4 BINAP (6) trace
4 4 '‘BuPBIPh (6.4) 2
5 4 P(p-FPh); (32) 8
6 4 P(furyl); (32) 0
7 4 AsPh; (32) 0
8 4 P(p-MePh); (32) 41
9 4 PMePh, 42
10 4 P(p-MeOPh); (16) 31
11 4 P(p-MeOPh); (32) 44
12 8 P(p-MeOPh); (64) 48
13 4 PPh; (16) 25
14 4 PPh; (32) 40
15 8 PPh; (64) 65

Reaction conditions: THF, 0.05 M, 70°C, 24 h.
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Surprisingly, the cheapest, most readily available ligand fjRiitperforned all
other ligands tested. The bidentate ligands teStatl¢2-2, entries 2,3) completely shut
down the reaction, presumably by locking the Pd metal centre in a catalytically
incompetent Pdiform. In terms of ligand electronics, electron releasingsphmes otit
performed electron withdrawing ligands, though, again, neither could outmatch the
bellwethertriphenylphosphine (compail@ble2-2, entries 5,11 and 15).

Though disappointed that the yield of the test reaction could not be augmented
simply by switching ligands, we were encouraged that the ubiquitous ¢ the best
results. Parallel studies in our group provided insightwitgsuch a standard ligand was
performing as well, if not better, than any other ligand tested. In measuring theskafet
the reaction, it was determined that the reaction was first order in the secondary boronic
ester and, somewhat unexpectedigro order in aryl iodide Exotic (and expensive)
phosphin® % and Nheterocyclic carbene (NHC) ligarfdsare frequently used in
difficult crosscouplings, however both the electrooh phosphines and NHCs rely on
s t r odomatiod to Pd to increase the rate of oxidative addition to an electrophile. As
noted earlier, the oxidative addition to aryl halides can be, but is not always, the rate
determining step (RDS) for the SuztMiyaura reaction and rates depend ba halide
used (I>Br>>CI¥® In our reaction, the use an aryl iodide keen to undergo oxidative
addition followed by a difficult transmetalation step renders the oxidative addition step
kinetically silent and preentp any potential rate increase from electrch ligands.

Also, electronrich ligands are more easily oxidized which may affect their utility in this
reaction yide infra).
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Interestingly, the very slow transmetalation seems to render the kineticsvef acti
catalyst formation insignificant as well. Elegant work done by the Baird group has shown
that the choice of Pd patalyst can have an effect on reaction rates and outédmes.
With this in mind, a highly aci v e ¥bdt€hp) (catalyst was developed and has been
shown to have excellent reactivity in a variety of-dathlyzed processes. When we
employed this preatalyst in the silvemediated crossoupling of benzylic boronic
esters, no improvement in yieldas observed, suggesting that the formation of an active

Pd-catalyst is not limiting.

2.2.3 Effect and Role of Silver Salts on the Reaction

Like PPh, Ag,0O is a common, relatively inexpensive reagent, and yet its addition
to the reaction is critical to achie turnover. The effect of other silver salts screened for

the reaction is given ifable2-3.

Table 2-3: Development of Successful Cross Coupling Conditions.

Bpin O pd,dbas (4 mol %)
o)
Heaeal-==Yo¥s
|

silver source

O

2-5 2-6
entry silver source  equivalents  vyield (%)
1 AgOAcC 3 0
2 AgOTf 3 0
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3 AgBF, 3 1
4 Ag,COs 15 38
5 Ag,COs 3 33
6 Ag,0 1.5 65
7 Ag,0 3 65

Reaction conditions: THR.05 M, 70 °C, 24 hEquivalents of silver source are given with respectto 4
iodoacetophenone, the stoichiometrically limiting reagent.

Several very iterestingmechanistiansights can be gleaned from these data. It is
apparent from comparing entries3land 47 of Table 2-3 that conversion is obtained
only when the additive contains two silver atoms per molecule. This effect does not result
from the taal amountof silver added, as this has been accounted for by adding double
the molar amount of additive for monomeric silver salts. This is also confirmed by entries
6 and 7 ofTable 3 which show no increase in yield at 3 equivalents of silver (I) cxsde
compared to 1.5 equivalents. Since maximum efficiency is observed at a 1:1
stoichiometric ratio of AgD to boronic ester, this is strongly suggestive that there is a
favorable interaction between the two, with Ag(l) binding at two sites of the boronic
ester. From this information, a plausible explanation for the roleAgfO can be
proposed: the boronic ester is activated to a putative boronate by way of the oxygen atom
of Ag.0, secured in the proper location by the favorable interaction between the two
bridged Ag atoms with t hesygemmofdhe pherg/ltgleupe st er
respectively (Figure-2). This is also in agreement with the observation that a site of
unsaturation adjacent to the secondary boronic ester is required to achieve

transmetalation\ide infrg asthis provides the second coordination site for silver.
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Figure 2-1: Proposed method of activation of benzylic boronic esters b Ag

Precedence for this type attivation exists for silvemediated crossoupling$®
and for the protodeboronation of secondary boronic etdnsthe latter case, fluoride
ion can be used to activatetertiary benzylic boronic ester which can then undergo a
facile protodeboronation in the presence @fOH Interestingly, the protodeboronation
occurs with retention of stereochemistry, indicating that protonation does not occur from
either face, but ratr from an HO molecule already bound to the boronic ester moiety
(Scheme Z). Naturally, these findings have mechanistic implications with regard to the
Ag-,0 activation of secondary benzylic boronic esters, though it is unclear at this time
whether the pesumed coordination of A@ leads to a transmetalation to siffeor

merely activates the boronate towards transmetalation to Pd.
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Scheme2-7: Mechanisn proposed by Aggarwal to account for stereospecific

protodeboronation of boronic estéfs.

The mode of action being proposed for,8gis both mild and tailored to a
particular set of boronic esters. As such, thistquool can activate previously inert types
of boronic esters all the while leaving other, classically more reactive, sites untouched.
Surprisingly, primary alkyl boronic esters survive the sHwerdiated reaction conditions
almost completely untouchedtf@ugh this impressive chemoselectivity begins to erode
upon introduction of other bases which are known to activate primary boronic esters. The
chemoselectivity of the reaction will be examined in detail in Section 2.4.

Lastly, concurrent work done in ogroup has shown that the role of Agmay
not be exclusively activation of the boronic ester. In fact, the catalytic cycle was shut
down upon introduction of excess iodide ion agNBuwhich likely indicates that silver
is acting, at least in part, tomeve iodide from the coordination sphere of Pd after the
oxidative addition step. Corroborative evidence for this hypothesis was also obtained by

3P NMR (vide infra).
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2.2.4 Attempted Cros€oupling with a Potassium Trifluoroborate Analogue

Much of the earlywork on coupling spbased boron nucleophiles was centered
on the air stable and easy to handle potassium trifluoroboronate analogues of boronic
acids and estef8.Not only are these easily synthesized from a giveronic acid and
agueous KHE; but these salts typically couple efficiently at only a slight excess relative
to aryl halide, limiting the wastage of large amounts of precious (ofterrac@mic)
boronate ester. Earlier work by Molander showed thatimary alky! trifluoroboronate
salts were competent coupling partners under modified Siiykiura reaction
conditions, but that theecondaryboronate yielded only trace amounts of prodfiate
set out to determine if the conditions we had developed to couple secondary boronic
esters would translate favorably to their trifluoroborenabhalogues, and if sd, they

would lead to an improvement in yield.

Table 2-4: Effect of stoichiometry and the nature of the boronic acid derivative for a
standard coupling.

2-6
entry equivs boron species solvent yield (%)
1 1.2 Bpin THF 50

1.5 Bpin THF 65
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