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Abstract

A new intermolecular potential energy surface, rovibrational trasition frequencies, and line
strengths are computed for (OCS) and CO,-CS,. The potentials were made by tting
energies obtained from explicitly correlated coupled-cluster calctilens and t using an
interpolating moving least squares method. Rovibrational transitio frequencies are also
calculated for four isotopologues of the MO dimer using a previously presented potential
energy surface. The rovibrational Schmdinger equation for alhree dimers is solved with a
symmetry-adapted Lanczos algorithm and an uncoupled productabis set. All four inter-
molecular coordinates are included in the calculation.

On the (OCS), potential energy surface, a previously unknown, cross-shapsomer is
found along with polar and non-polar isomers. For CQCS;, the previously found cross-
shaped minima is found along with a slipped-parallel con guration. Thassociated wave-
functions and energy levels for each of these isomers is presenté&d identify states that
have a permanent dipole, both calculations of line strengths and viitional parent analysis
is used. For non-polar states of, (OC$%) and (N,O), isotopologues, and all C®-CO, states,
only vibrational parent analysis was used. Calculated rotational cstants di er from their
experimental counterparts by less than 0.001 cm for (OCS), and CO,-CS,, and less than

0.002 cm? for any (N,O), isotopologue.
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Chapter 1

Introduction

1.1 Purpose

The study of vibrational and rovibrational states is fundamentallyimportant to understand-
ing intramolecular energy transfer, which applies to various aspeacof chemical dynamics.
Vibrational states play a key role in phenomena such as how molecutespond to the pres-
ence of light. The improved knowledge of intramolecular energy trafer at a fundamental
level is important to a wide array of applications, from pharmaceutad drug delivery, to fuel
cell technology. Van der Waals molecules are particularly interestingecause of the many
con gurations that the molecule can adopt. These many con guitgons are also relevant to
testing the e cacy of ab initio or pairwise potentials as it pushes the limits of the methods

used to create them.
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1.2 Van der Waals interactions

Van der Waals (or dispersion) forces are important in a wide array gdhysical processes
including supramolecular polymers[1], stacking of aromatic rings[2], stabilization of
hydrocarbons[3] and constitute up to half of binding energies ofansitions metals[4]. Having
the proper description of these dispersion interactions is integr&b topics including drug

design[2] and protein folding[5].

1.2.1 Origin of Van der Waals forces

The following simple derivation of dispersion forces follows that of Reb and gives some
insights into the origins of these forces. It is a simpli ed model of thene given by Drude[7]
and was rst employed by London[8] in his calculations of dispersion ergies.

Even when a molecule has no permanent dipole, the electrons are gisvan constant
motion. Because of this, there is, in general, going to be an instaneous dipole present.
This instantaneous dipole will then induce an instantaneous dipole om adjacent molecule
causing an interaction. The simplest (but very crude) model thatan describe this interaction
is shown in Fig. 1.1, which shows the interaction of two non-polar molgdes A and B.

These molecules are composed of a positive (+Q) with a negative (-@)arge oscillating
with angular frequency! . The distance between these two charges is given by and z,
which results in an instantaneous dipole of = Qz;. The Hamiltonian that describes one of
these molecules by itself is given by

h2

1
H, = 2—Mi+ SM! 222, (1.1)

where M; is the reduced mass of molecule and the interaction between the charges is
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Figure 1.1: A simple model of two non-polar molecules interacting. Theo molecules are
composed of two particles of positive (+Q) and negative (-Q) chaegwith dis-
tance z, and z,. The two molecules are separated by a distance

approximated as a harmonic potential. The resulting energies forighHamiltonian are that

of the harmonic oscillator,

1 1
= + — 1 = + — | .
Ea Na 2 + 0 Eb Np 2 -0 (1 2)
The interaction between two dipoles is given by
2z,71Q
Vint ( ) 4 Or3 1 (1'3)
and therefore the total Hamiltonian is,
Hiot = Ha+ Hp+ Vi () : (1.4)
If you make the transformation,
+
Zy = za Zbi Zy = Za” % (1.5)
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Ht becomes two uncoupled harmonic oscillators of coordinatés and Z, with frequencies,

S 2 S 2
=1, 1 #?Ml%; l,= 1 1+$?M!g: (1.6)
The ground state energy of this system is then
E()= S (11+ 12); @)

Which can then be expanded using the binomial theorem to obtain theell known r ©

relationship,
4
st
2(4 )°rsm2! 3

E(r)=o (1.8)

The rst term in the total energy (! o) is simply the energy of the two molecules at a very
large distancer, so Eq. (1.8) states that the dispersion interaction can be mostlyedcribed
by the r 6 term.

This is the basis for the well-known Leonard-Jones (LJ) potential,

C12 C6 .

Vi3 = Vpaui + Vais = 12 76’ (1.9)

where C;, and Cg are molecule speci ¢ constants.

The LJ potential is a convenient way to represent interactions beeen two non-polar
molecules. TheVys term that describes the dipole-dipole interaction is the only term thiais
empirically derived. Ther 12 term is used to describe the Pauli-repulsion, and is only of the
(LJ) form for convenience as it is easily calculated numerically as €)> = r 2. Although a
convenient representation of dispersion interactions, the LJ pential is woefully inadequate

in describing interactions on higher than a qualitative level.
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1.2.2 Describing dispersion forces in molecules

The description of Van der Waals interactions in electronic calculatiaonly comes to fruition
with ab initio methods more complex than Hartree-Fock. Hartree-Fock doeapture the ex-
change interactions, but only when orbitals higher than the groundtate are accessible by
the electrons, in calculations, is it possible for electron correlatiorotbe captured. Den-
sity Functional Theory (DFT) has made great strides in attemptingto capture dispersion
forces[9]. However, most of this has been done in an ad-hoc way ligiag r © interaction
terms for each atom-atom pair. This still gives little better than a qalitative description[10].
For rovibrational calculations, the electronic potential used needto be very accurate.
Ideally, it would be advantageous to use th&old Standard of electronic structure calcu-
lations being at the Coupled Cluster Singles Doubles and Perturbativiriples CCSD(T)
level. However, due to computational complexity, CCSD(T) gets iraessible quickly with
increasing system size. The largest molecule for which vibrationall@alations have been
performed is currently 6 atoms with an example being G}{N[11]. 6 atoms is pushing the
limit of where a Potential Energy Surface (PES) can be generatecsing CCSD(T). For
CH3CN, the best PES available was generated through a combination oCSD(T)-ppVTZ
and B3LYP-ppVTZ calculations. All calculations in this thesis are pedrmed in a four

dimensional space from CCSD(T)-f12b.

1.2.3 Spectra of Van der Waals molecules

Spectra of Van der Waals molecules are usually di cult to analyse beaae no zeroth-order
model works well. Itis, however, generally possible to treat intra-na inter-molecular coordi-
nates separately and this reduces the number of coordinates aheéreby making it possible

to numerically solve the Schredinger equation to compute a speain. Using computed
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wavefunctions, energy levels, and intensities one can understatie nature of vibrations,
the importance of coupling etc. Some of the vibrations of Van der Viés molecules are large
amplitude and it is therefore necessary to know the potential in a lge region of con guration

space.

1.3 Organization of thesis

The thesis will start by outlining the basics of quantum chemistry anduclear motion the-
ory. In Chapter 3, the generation method for the various PES's ed in the rovibrational
calculations will be brie y outlined. Chapter 4 will outline the methods sed to calculate
the spectra of Van der Waals molecular dimers and complexes in gealer

The next three chapters will focus on the speci cs of the PES sade and and calculated
rovibrational results of three dierent van der Waal dimers. (OC$, in Chapter 5. The
isotopologues of (NNO) in Chapter 6 and CO2-CS2 in Chapter 7. Chapter 8 concludes and

outlines future work.



Chapter 2

Background

2.1 Brief history of quantum chemistry

One of the main sources for understanding chemical phenomenoraismic and molecular
spectroscopy. In order to better understand (at least in a quahtive manner) the exper-
imental results, quantum mechanics was applied to molecular systsfh2]. Initially, the
approach was that of the Born-Oppenheimer[13] (BO) approximatn in that the electrons
were moving in the potential generated from immobile classical nuclefhe BO approach
was (and still is) very successful in qualitatively describing equilibriurstructures, transition
states and molecular orbitals. The concept of potential energy saces (PES)[14] also stems
from the BO approximation and is central to the work presented inHis thesis. Richards[15]
and Schaefer[16] rst described the history of quantum chemistrin three ages The rst
age of quantum chemistry was very crude and the expectation was ongn agreement to
experiment within an order of magnitude. With the advent and availality of computers, it
was possible to obtain calculations in much closer agreement with exijpgent. The main nu-
merical techniques being developed wedAd initio in nature, and based on molecular orbital

7
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wave functions. Although closer to experiment than the rstage of quantum chemistry, the
results could still only be trusted as semi-quantitative and applied dynwhere experiments
could not be performed[15]. An example of where experiments couldtrbe performed is
unstable molecules. As early as 1970[12], theoretical predictiongevbeing made that were
comparable in accuracy to contemporary experiments through eteonic structure calcula-
tions. This marked the beginning of the thirdage of quantum chemistry. At this point,
theoretical quantum chemistry could legitimately make predictionshat could call into ques-
tion the experimental results, or provide new information that cold push for the design of
new experimental apparatuses. With the development of experimtal techniques that could
provide more accurate results, it was becoming obvious that keepgirthe nuclei xed was
not su cient[12]. Nuclei being xed classical particles at the bottomof local minima in a
PES ignored inherent quantum mechanical properties of the nuclisiemselves such as Zero-
Point Energy (ZPE) of vibrations[17] or \tunnelling" of nuclei[18]. Oneof the most famous
examples of tunnelling is the inversion of ammonia[19]. Classically, thedwvells (shown
in Figure 2.1) would have equivalent energy. However, tunnelling casenergy splitting to
occur with the even state having a lower energy than the odd statdJsing only electronic
structure can be quite successful in obtaining equilibrium quantitieshich although related
to experiments, are not equivalent. It was therefore imperativeot enter the fourth age of
guantum chemistry by including electronic structure and nuclear mmn[12]. This could in
theory be done by completely including the nuclear motion from the lgenning but the BO

approximation has produced remarkably good results.



CHAPTER 2. BACKGROUND 9

Potential Energy

Y

Figure 2.1: A pictorial of the ammonia inversion tunnelling.

2.2 Overview of vibrational calculations

In order to quantitatively describe vibrations of molecules, an impaant idea is that of the
nuclei moving on a PES. A PES is generated from calculating the eleatric structure energy
at various positions of the nuclei. In general, a t of these energiagith some set of basis
functions is performed in order to generate the full surface fromhich approximate energies
can be found quickly for any nuclear con guration[14]. This PES fraework naturally yields
itself towards the description of ZPE and tunnelling of nuclei. Using i BO approximation
with a PES produces quite accurate rovibrational energies. Thewae various techniques
that are used to calculate rovibrational energies including time-demdent and perturbational

methods. In the next section, only time-independent variational ethods will be discussed.
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2.2.1 Nuclear Motion Theory

The fundamental equation used in calculating states of molecules i§ apburse the time-

independent Schredinger equation,

B = Ly - ; (2.1)
=g 2
whereH is the Hamiltonian, N is the number of nuclei in the moleculet; 2 is the Laplace
operator, m; is the mass of nucleii (with BO approximation) and V is the PES. Spin
statistics are not explicitly accounted for in Eq. (2.1), however thican be handled with
some post-processing of the resultant energies.

Although any set of coordinates could be used to perform rovibianal calculations, the
problem's size can be reduced by using internal coordinates only. deneral, the PES is
generated using internal coordinates, which assumes the systmnisolated. Internal coordi-
nates reduces the dimensionality of the problem by three for full viorational calculations.
Three of the dimensions are removed because the Hamiltonian is tstationally invariant
and the motion of the centre-of-mass of the molecule is separabfeset of three variables is
then used to describe the orientation of the body- xed (BF) frare attached to the molecule,
relative to the space- xed (SP) frame. After the BF frame is embdded, it is left to decide
how the remaining 3N\ 6 internal coordinates are de ned. Three coordinates are used t
relate the BF frame to the SP frame for the rotational portion of he calculation.

When a choice of internal coordinates is made, it is necessary to wert the time-
independent Schredinger equation of Eq. (2.1) to one de ned in istnal coordinates. The
PES is generally de ned in terms of some internal coordinate. If th®ES is de ned in

di erent coordinates than are chosen for the rovibrational caldations, a transformation T
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can be used to obtain the values of the potential at the points in thehosen coordinates,
given the values in a di erent set of coordinates. This process is dued in Eq. (2.2) for a

transformation between a PES given in coordinate, for the calculation in coordinatery,.

V(rp) = V(rp(ra)); (2.2)

The kinetic energy operator (KEO) in the new coordinates is slightly wre di cult to obtain.

It can be found in one of two ways. The rst is to apply chain rule to tke original KEO.

The second is to write down the classical Hamiltonian in the internal codinates and use
the correspondence principle of Podolsky[20] to obtain the quamuKEO. There are two
types of coordinates that are used most in rovibrational calculatics. The rst is that of

the Eckhart-Watson Hamiltonian and the second is general polar cadinates with the latter

being the coordinates used in this thesis.

Eckart-Watson Hamiltonian

A full description of the Eckart-Watson Hamiltonian can be found in he in uential paper
by Watson of Ref. 21. The coordinates used for this Hamiltonian ame ned with respect
to a reference structure using the Eckart conditions[22]. The Eak-Watson Hamiltonian
is \exact" and has been applied to a variety of molecules including COuC100)[23], HCN
and H,CSJ[24], and CHJ[25]. Versions with minor simpli cations were used to calculate the
J =0 levels of CHkCNJ[11]. The program MULTIMODE[24] uses a modi ed version of the
Eckart-Watson Hamiltonian.

Although successful for many molecules, there are a few well-kmowgsues that arise
when using the Eckart-Watson Hamiltonian. The rst is that the Hamiltonian is singular

in certain instances[26]. An example of when this occurs is when a rlorear molecule
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is in a linear con guration. If a non-linear molecule approaches lineayit the vibrational
calculations can be signi cantly a ected. This was shown to occur fohighly excited states
of H,0[27] with deviations ranging from 0.3cm! to 200cm . Another issue is that normal
coordinates do not describe large amplitude motions well[26]. This is fgrdue to the fact
that the coordinates used are de ned with respect to a single reéce geometry. However,
accurate tunnelling splittings can be obtained by making the referee geometry, the saddle
point, as was done for NH[28]. As dimers have large amplitude motions and no single
reference structure, it was decided that the Eckart-Watson Huiltonian was not suitable for

calculating rovibrational spectra of Van der Waals dimers.

General polar coordinates

A simple and general way to generate a KEO is to start with polar codmates associated
with any set of N vectors that speci es the shape and orientation of the molecule. hEse
coordinates can be chosen to simplify the KEO, and are guarante&a have a one-to-one
correspondence with the geometry of the molecule. The coordieatcan also be chosen to
minimize coupling. If one uses \orthogonal” vectors, the KEO is mucsimpler. \Orthogonal”
in this case, refers to having amrthogonaltransformation between the mass-weighted nuclear
position vectors and the internal mass-weighted Cartesian veco

The KEO can be obtained from applying the chain-rule to the quantunmechanically

KEO in LF coordinates given by,

M1 e @ @
fv= 2 m of e’ o2

i=1

(2.3)

There are three steps involved to obtain the KEO in the new polar codinates. The rst step

is to convert to mass-weighted coordinatesX( = milzzxi). The second is to introduce the
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N N transformation U that linearly relates X; to P . The third step introduces arbitrary
masses to convert the polar coordinates to mass-unweighted coordinat¢P = | =2p ),

This is succinctly described by the transformation J,
J= TFum¥ (2.4)

where andM are diagonal matrices of the arbitrary masses and nuclear massespectively.
The most natural choice of coordinates for describing the shapg&tbe molecule is having
rn 1 describing the centre of mass of the nucldN 1 vectorsro;ro;:::;ry o for the remain-
ing vectors, N-2 polar angles betweenry ; and rg, and N-3 dihedral angles de ned
between the planesry r; andrp r . Using these coordinates results in the KEO de ned

conveniently as,

T=Ts+ Tpr + Teor; Where Ty = Tbr;diag + Toroff ; (2.5)
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with
Ts
Thr.diag
Tor.off
Teor
where

X 2 1 @
o 2 « OF
@ . @ 1

[Bo(ro) + B1(ri)] sn 1@lsm 1@1+ o 1(JZ L,)?

b( 2
+ [Bo(ro) + Bk (r)] g

k=2 .

X 1 #
"'Bo(ro) Jz 2(Jz Lz)2 2Jz(|—z)+2 Ikzlkoz
" k6 ko=1 "
b( 1

Bo(ro) (L+)a, +(L )a; + (s To + T Tyor)
K6 k0=3

Bo(ry) J ayL. +J. a, +L

1

B. ) =

D( 1
L, = iz

k=3

b( 1
L = |k

k=3

=1k iy (@(=2;25N 2)

J =3 i,
@

3.2 = D

@, cot ,(J, Ly);

14

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

where iy, lky, lkz, Ilf are the usual angular momentum operators. The terms are groegh
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such that T is the stretch part, Ty, is the bend-rotation part, and T, is the correlation
portion of the KEO. The Jy, Jy, and J, are components of the total angular momentum.

The KEO of Eqg. (2.5) is Hermitian and valid for any choice of orthogorasectors. The
only di erence between KEOs in di erent orthogonal coordinates ighe de nition of the
arbitrary masses.

The main disadvantage of the KEO of Eq. (2.5) is the lack of exibility asone must place
the BF z-axis along one of ther; vectors and one must choose polyspherical coordinates
from the N-1r; vectors as the vibrational coordinates. In Ref. 29, a proceduig outlined
to transform Eg. (2.5) when the z-axis is not taken to be the one dlfie r; vectors. This is

important if rovibrational coupling can be reduced or to exploit symnatry in the molecule.

2.3 Solving the Schiedinger equation

The most popular way to solve the Schredinger (Eg. (2.1)) equatiois to expand the wave-

function in terms of some known basis functionB; (r),

X
(r)= ««Bk(r); (2.13)
k

wherec, are unknown coe cients andr are the full set of coordinates used. In theory, if an in-
nite number of basis functions were used, the exact wavefunctiacould be found. However,

in practise, it is necessary to restrict the number of basis functisrto a fairly small number

of between 10 and 100 for each dimension. Although it is possible tdeahpt to represent
the operators directly, with an example being the use of nite-di eence for derivatives, the
solutions of the Hamiltonian ¥ generally resemble some basis set from which acceptable

solutions can be found with a smaller matrix representation. Starto from Eq. (2.13), two
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methods can be used to obtain solutions with the rst being the coll@tion method.

2.3.1 Collocation Method

The collocation method[30] is a method where the residue function,

jRi=(H E)j i (2.14)

is evaluated at collocation pointgr;i which results in the collocation equations,

hrijRi = hij(H E)j 1=0; 1=1;2:;Np
o
= hrij(H E)jByic=0; i=1;2:5N, ; (2.15)
k=1

where N, is the number of collocation points, andNy is the number of basis functions.
Although it is possible to use this method withN, 6 Ny, it is generally performed with

N, = Np = N so the subscripts will no longer be used and the assumption is thateth
number of basis functions and points is equivalent. The problem hasw been reduced to

solving theN N generalized eigenvalue problem,

hrjH jBi = E hrj Bi (2.16)

with asymmetric matriceshrjH jBi that has valuesh,; = BB, (r;) and hrj Bi has values
b.i = Bk (ri). If the basis functions have the property thatBy (r;) = j, such that the
basis functions are zero at all collocation points except for one,ehight matrix becomes

the identity and the problem is reduced to the \normal" asymmetric genvalue problem.
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2.3.2 Raleigh-Ritz Variational Principle

The second method that can be used to nd solutions of Eq. (2.1) ish¢ Raleigh-Ritz
variational principle. The residue function is converted into the fuctional h jHj i which

results in the well-known equation,

X Bij(H E)jBkic,=0; i=1;2:;N (2.17)

k=1
where the generalized eigenvalue problem is ndBjH jBijci = E HB jBijci. These ma-
trices are Hermitian and have values oh; = RBi (r)IiTB,- (r)dr for the left side and
Sj = RB,- (r) B; (r) dr for the right side. The integrals are performed over all of coorditea
space. Usually, the basis functions are taken to be orthogonal i reduces the overlap
matrix S = hB jBi to the identity and the problem is the \normal" Hermitian eigenvalue
problem. Although the problem is now Hermitian, it now necessitates amy integrals to be
performed as opposed to collocation where the functions (and tliamiltonian acting on

functions) are evaluated at points. These integrals are generallgiormed using quadrature

but the choice of bases can simplify the problem.

2.4 Basis Sets

The choice of the basis set is very important to how accurate andsfathe rovibrational cal-
culations are. The coordinates chosen determine largely what baiiactions are appropriate

to represent the wavefunctions but a few reformulations have ée used.
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Variational/Finite Basis Representation

Performing the integrals of Eq. (2.17) exactly is referred to in lite@are as Variational Basis
Representation (VBR)[31]. The errors from VBR are only due to thdruncation of the
basis. If the potential matrix elements are performed by quadrate then it is known as
Finite Basis Representation FBR. The use of Gauss quadrature h#se major advantage
that the integral,
Z b

w (x) f (x) (2.18)

a
can be computed exactly by summing (x) at N quadrature points x multiplied by weights
w for the function f (x) with polynomial degree up to 2N 1. With this knowledge, a
standard (and enlightening) basis set used in FBR calculations areahof the well-known
orthogonal polynomials with a weight function. By de nition, these mlynomials satisfy the
relation, z .

W (X) Pn (X) Pm (X) = nm (2.19)

a
wherew (x) is the weight function with corresponding orthogonal polynomialg; (x) of the

i'" degree over the ranga to b. If the one-dimensional basis functions are de ned as
p
b (X)= An w(X)pa (X); n=0;L:5n (2.20)

with A, being a normalization constant, the relationship of Eq. (2.19) can beomputed
exactly assuming theN +1 quadrature points are used. In fact, the integral is also exador
R:f b, (X) xby, (x) dx which is relevant in the development of Discrete Variable Represetitan
(DVR). The choice of the basis functions is generally done as to be emnjunctions of a
signi cant portion Hy of the full Hamiltonian B = Hy + Vies Where Vies is known as the

residual potential. These eigenfunctions can often be taken asetlorthogonal polynomials
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with the square root of the weight function, with an example being th solutions to the
1D harmonic potential. Included inHy is the kinetic energy operatoik and possibly some

portion V; of the full PES.

2.4.1 Discrete Variable Representation

The integral relationship of Eq. (2.19) can now be written in a squarenatrix form with

N + 1 quadrature points (and basis functiondy (x) ;:::; by (X)) as,

P .
T =A wp(x); (2.21)
where TYT = | as the matrix is orthonormal. Likewise, the operator X can be writte as
X = TYXPVR T, (2.22)

with X PVR peing a diagonal matrix of the quadrature pointsx . From Eq. (2.22), it can be
seen that the diagonalization of the X representation in any basismgerates as its eigenvalues,
the DVR points, and its eigenvectors as the DVR-FBR transformabn. An important prop-
erty of these DVR functions is that each function is sinc-type. A DR function is non-zero
at the point in which it is localized but zero at the remaining DVR points.

The DVR points (and functions) can either be found by directly calclating the X repre-
sentation of the chosen basis or by diagonalizing the three-termlagon for the orthogonal
polynomials used. The only care that needs to be used in the lattersgais that the func-
tions need to have the appropriate normalization in order to make thtransformation matrix

orthonormal under the appropriate weight function.
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2.4.2 Potential Optimized Discrete Variable Representati on

One popular method to obtain good DVR points is to generate Poteiall Optimized Discrete
Variable Representation (PODVR) basis functions[32, 33, 34, 35].hik is done by choosing
some model potential that makes up a substantial portion of theufi potential and calcu-
lating N eigenfunctions. To do this may require much more than N basfsnctions. The X
representation of these eigenfunctions is then diagonalized to alst the PODVR points and
the FBR-DVR transformation. In multidimensional problems, it is posible to greatly reduce
the number of DVR points required to obtain accurate results by gerating a PODVR for
each coordinate. This technique is most accurate when the couplibgtween the di erent
dimensions is small.

These PODVRs are similar to the Gaussian quadrature type DVRs in #t the FBR-DVR
transformation matrix is orthogonal. However, the DVR functionsare not exactly sinc-type
and therefore the accuracy of the results is determined by the nmmization of the residual

potential.



Chapter 3

Generating the PES surface

This chapter will provide a brief outline of how the PES surface useaif the calculations
of this thesis was generated. This work was performed by Dr. RiagtaDawes of Missouri
University of Science and Technology and an explanation in greateetdil can be found in

Ref. 36.

3.1 PES coordinates

The coordinates used, both to make the surface and to calculatket spectrum, are shown
in gure 3.1 with the example of the OCS dimer. The vectorsy and r point from O to
S in each monomer for OCS. The convention used to de ne the direm of the r; vectors
is to put them in the same order of the most well-known naming conveon. For example,
if the OCS dimer was known more commonly as SCO, then thre vectors would point in
the opposite direction. Likewise, if the dimer has di erent monomershe most common
name is used to determine which monomer is 1 and which monomer is 2.isThpplies to

the CO,-CS; dimer where CQ is oriented by r, and CS is oriented by . The monomers

21
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are assumed to be rigid, and the; lengths are assumed to be constant at the calculated
ground vibrational state averaged bond distances for the specimonomers. This reduces the
number of dynamic coordinates to four. The vector between thesptre-of-mass of monomer
1 to the centre-of-mass of monomer 2 is labelleg. The angle betweerr and ry is ;. The
angle betweent, and ry is labelled ,. The nal coordinate is the out of plane (dihedral)

angle labelled ,, which is the angle between the two vectors normal tey f, andrp f.

Figure 3.1: The coordinates used to generate the PES using (O3 an example. O is
red, C is grey, and S is yellow.

3.2 Choosing a basis set

In order to choose an appropriate basis set to generate the PES &ll Van der Waals dimers,

some benchmarking electronic structure calculations were penfoed for (N,O),[36]. This
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was done by an extrapolation to the complete basis set (CBS) limit uginthree di erent
schemes. Later unpublished benchmarks for (C@and (NHz), were also performed.

Comparisons between di erent bases were done at ve high-symme test geometries
being: 1) In nitely separated monomers, 2) a linear head-to-tail@pmetry with arq of 6:0A,
3) a parallel G, geometry with ro = 5Awhich was attractive 4) a parallel G, geometry with
ro = 3Awhich was repulsive and 5) the non-polar minimum of (pD), also of point group
C,,. Counter-Poise (CP) correction testing was also performed as itugell known that basis
set superposition error (BSSE) can be signi cant when using smallbases.

A comparison was made from the CBS values at the various isomeric & on the
(N0), surface between CCSD(T) with and without the explicit correlation 6 F12(b)[37].
For (N,0),, the CCSD(T)-F12b with a VTZ basis set was found to be very accate to
within the error of the CBS extrapolation at the tested points. Theefore, it was determined
that CCSD(T)-F12b/VTZ-F12 would be used to generate all the stfaces of Van der Waals

dimers.

3.3 IMLS

In order to generate a PES, one must compute electronic energesvarious points, and
generate a function (with various parameters) that either nearlpasses through, or does pass
through, the calculated energies depending on whether tting or terpolation respectively
is used. For all the PESs used in this thesis, an interpolating moving kasquares (IMLS)
tting method is made. At a geometry, r, an IMLS potential is a weighted sum of the local

ts, P
W (VY (1)
G

V(r) = (3.1)
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where the local tsV; (r) are expressed in terms of some baddg

X
Vi(r)=cot  GxBi(r): (3.2)
k

The local t j is centred atr;, which is the location ofab initio data point j. The ¢ values
are found by doing a least squares t at each point.

The basis functions used were,
Bi(ro; 1 2 2)=( 1L)™exp( ro) [M(cos(1) [(cos(2))cosm, 2); (3.3)

where the coordinates 1y; 1; »; ») are those of gure 3.1, and thek value of Eg. (3.2)
represents the basis function indexdsL 1; L, and m,. The parameter is xed at 1.0 A 1.
The maximum radial poweri, as well as the maximunL ., associated Legendre polynomial
used was 6. The sum dof ; and L, was also 6.m, was restricted to be less than or equal to
both L; and L,. The functions " are de ned in Ref. 38.

The local ts are connected using the weight function

|
d(r;ry) 2
(r;) _
dor) *,
(ry)

exp

w; (r) = (3.4)

where =10 **is the error allowed in the interpolation andp = 4 was used. (r;) is the

local data density which is the distance to the 20th nearest neighbousing the distance
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metric d(r; rj) which is stated as,

drr) = (fo) fo +@ (j1 02+( g2 2%+
q

sin(ja)sin(y)sin( j2)sin(2) (2); 2 C (3.5)

This metric was chosen in order to properly represent the fact tha small change in the
shape of the dimer near, = 0 or ¢ = could correspond to a large change in,. The
scaling factorc is chosen based on the length of the monomer fragments in order got
distance and angular displacements on equal footing. The local exgion coe cients ¢ ; i,

are then determined at eachab initio point using a linear least squares t.

3.3.1 Automated surface generation

The IMLS PESs were constructed starting with a low-levehb initio guide surface in order
to know which regions were highly repulsive and thus avoid computingseless high-level
data points. The points chosen for the initial t were chosen using aadially biased Sobol
sequence[39] towards smaith, . After this low-level t was performed, a starting surface
with high-level ab initio points was generated using the same bias towards snallbut with

high-energy regions not calculated. A t was then performed usingoth the full 301 basis
functions, and a smaller 171 basis functions. The error of the t veathen estimated using
the di erence between these two ts at 40000 randomly placed pdm Conjugate-gradient
optimizations was used to locate the points of maximum squared di ence. A new batch of
points (equivalent in number to the number of processors used) svehen calculated at these
largest error points and used to generate a new t. If there wag/simetry in the molecule,

this new point was also added to the geometry partner(s). This peess was repeated until
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the estimated root-mean square error was reduced below the limgexi ed when the process
began. At no time, were points manually added.

Speci ¢ properties about the PESs used will be discussed in the redev chapters.



Chapter 4

Rovibrational Calculations

The coordinates used to perform the calculations are the same dge generate the PES
outlined depicted in Fig. 3.1 and its theoretical and practical implicatios are referred to
more generally in Section 2.2.1. The three vectors arg, r; and r,. Vector r; is the length
of the rst monomer in the direction of the most common naming (poiting towards sulphur
in the OCS dimer). Vectorr, is the length of the second monomerry points from the
centre-of-mass of the rst monomer to the centre-of-mass tife second monomer. There are
two angular coordinates ; and , de ned as the angle between the&,, and ther, andr,
vectors respectively. , de nes the dihedral angle between they r; andry r, planes. The
r, andr, coordinates are held constant. The justi cation for this is that the intramolecular
vibrations of the monomers are of much higher frequency than thetermolecular vibrations.
The BF frame is attached such that the z-axis is alongy, and the x-axis is along the vector
(ro ri) ro. These coordinates are the general polar coordinates of Sect@.1. The
kinetic energy in these coordinates is well known and is given in Ref. J40

The stretch coordinate () is represented using discrete variable representation (DVR)
functions[32, 31, 33] while the bend ¢ and ;) and rotational coordinates use parity adapted

27
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rovibrational functions[41, 42]. For the coordinates;; »; » in the BF frame, the resulting
basis functions are,

r
2 +1
Wit ok (o2 255 )= g 2 |K1 " ()Y (2 2Dk 3 ) (4.1)

with

1 m

Y (2 D)= P (DM 4.2)

m () being the normalized associated Legendre function with )" Condon-Shortley
phase factor, andD3, being the Wigner function of the Euler angles { ; ) which de ne
the orientation of the BF frame relative to the SF frame. With parity adapted functions,
K 0 and P=0 and 1 corresponding to even and odd parity respectivelylhis allows the
even and odd parity functions to be calculated separately. The csinaints of m, 0 when
K =0,and ( 1)’ 6 1 whenm, = K =0, is used during the calculations.|y, |,, and
m, all have the same maximum value. The complete product basis funat® can now be
written as f  (ro) ult .« (1 20 255 ), wheref | (ro) is the DVR function.

The basis described above in general results in a very large matrijpresentation of the
Hamiltonian. The overwhelming size causes the use of direct eigeneaksplvers to not be

possible. Therefore, it is necessary to use iterative techniqueshelrmost popular iterative

technique is that of Lanczos[43].

4.1 Lanczos

Lanczos diagonalization is a technique where the Hamiltonian matrix is uttiplied to a

starting vector v; many times until enough of the Hamiltonian matrix has been projecte
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onto the Krylov subspace,

viiHv H2v i H vy (4.3)

which is formed by the recursion relation,

w; = Hy; Vi1
=Wy
W =W iVi
v = vl
Vist = W= 41, (4.4)

wherevy and 1 are zero.

The iterations result in a real symmetric tridiagonal matrix, with diagonal elements

i and o -diagonal elements ;, which contains some of the extremal eigenvalues of the

original matrix. The tridiagonal form of the matrix lends itself to nding the eigenvalues
quickly. This method is only e ective for obtaining extremal eigenvalas and is not e ective
at nding interior (or highly excited) states. Theoretically, if a Krylov subspace were formed
that was as large as the original matrix, all eigenvalues could be faljd3]. How quickly
the extremal eigenvalues converge depends on how close two eigleles are to each other.
Therefore, a Hamiltonian with a very dense spectrum of eigenvaluesuld require many
matrix-vector products to converge the required number of eigealues. After a certain
number of iterations, the Lanczos vectors could lose their (semejthogonality which requires

the vectors to be reorthogonalized.
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4.1.1 E cient Matrix Vector Products

The most computationally expensive and time-consuming portion ofdnczos iterations is
the matrix-vector products. In order to make sure the calculatios are done as e ciently
as possible, the matrix-vector products are performed by exploig the product nature of
the basis and doing the sums sequentially. For the KEO portion of thElamiltonian, the
terms are a product of di erent coordinates. For example, a faotisable Hamiltonian with

coordinates &1; X»; X3) could be represented as

XY
B = AN (%) (4.5)
=1 k=1
where there areg terms that have componentdic) which are functions of only one coordi-
nate, andf is the number of factors in that termg of the Hamiltonian. The matrix element

is formed with the basis

Y
B (X1; X, %) = b (Xk) ; (4.6)
k=1

where B is the full basis function, andy (X;) is the basis function for one dimension. The
matrix-vector product Hu = u®as a sum over all coordinates could be performed naively as,

zo hGUhGY ch Tl = Udig.0; (4.7)

Qiia iGsia e iuiy Tiasiziuniy
where h%:i is a matrix element of then  n matrix representation of the factorfi®) (x)
involving a single coordinate. This evaluation would have a scaling af' wheren is the
number of basis functions in each coordinate. In general, the nuetbof basis functions does
not need to be the same for each coordinate but for simplicity, thissaumption is used in

this case.
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That being said, the use of the product basis of Eq. (4.6) and the drisability of

Eq. (4.5) allows each of the coordinates to be done sequentially as,

XX x X
NER) h&D ... @ el = U?g;ig;::;;igi (4.8)

I 1 I 2 I MK I1I2 ..... |f
=1 i1 i2 in

which has a far superior scaling ohf *1. Almost all kinetic energy operators have this
factorisability. The matrix-vector products are done without eve calculating the full matrix
elements. One only calculates the small one-dimensional matrix elentgefor each of the
factors of the Hamiltonian and applies those for each of the seqti@hsums.

The potential term in the Hamiltonian does not in general have the grial product
structure of Eq. (4.5). However, potential matrix elements (omitng rq for simplicity) are

de ned using quadrature as,

D X 0
Wl V W = TEOTED g T, (4.9)
where the T matrices are as de ned using Gauss-Legendre quadrature poiatsd weights
(z ;w ) as

T™=Pw m@e) (4.10)

with basis function numbersl;. The | is equal to integrals of the potential over , with
appropriate volume elements. These integrals are performed usithge trapezoid rule with
the corresponding quadrature points and weights. The potentiahatrix-vector (x°= Y x)
product can then be written as

X (m?) X T(mo)l

A9mg — TIO 1

o

X
Tl(r.nl) TI(mZ) . (411)

2 ' m9 mz 151 2 2X|1|2m2
1 2 I1 I>

X

al=]



CHAPTER 4. ROVIBRATIONAL CALCULATIONS 32

The sums are once again performed sequentially. This can be thotighas transforming the
vectors from the parity-adapted basis representation to a gricepresentation, multiplying by
the now diagonal potential matrix elements, and then transformig back. In this thesis, the
integrals| are performed using FFT. It was found that using real-to-compleand complex-to-
real FFT routines from the FFTW library[44] sped up the transformation for one coordinate
by a factor of 2[45]. This was in spite of the fact that more quadrate points are needed to
have similar accuracy of the potential integral with FFT. The reaso for the extra points is
that FFT is done more easily with the use of evenly spaced points whiah general are not

ideal.

4.1.2 Symmetry in Lanczos

The method in which symmetries can be exploited in Lanczos calculat®is to employ the
symmetry-adapted Lanczos (SAL) method[46]. This is rst done byorming a symmetry-
adapted basis and performing Lanczos iterations for each irredble representation. The

iteration scheme of Eq. (4.4) then becomes,

Wj(m) - ij(m) j(m)Vj(mi

M= ()T

Wj(m) - Wj(m) j(m)vj(m)

j(Tl) = ijj(m)jj

v o= wm= (4.12)

where (m) is the symmetry label. With Eq. (4.12), a separate set of Lanczosetations

would have to be performed for each symmetry label with the mosbmputational expensive
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portion being the Hv™ term. If a projection operator is de ned as,

X
pm = Fm DI (R)R; (4.13)
R
wherei labels a basis function, ™, that transforms like irreducible representationm, R

is a symmetry operation in the group,h is the order of the group,d,, is the dimension
of the irreducible representationm, and D-(-m) (R) is the ith diagonal element of the matrix
representation ofR in the " basis. The projection operatoP(m) projects themth symmetry

component from a general vector witiN symmetry components, with an example being,

A X
p(m) v(m = y(m) (4.14)

n=1

Since projection operators commute with the Hamiltonian,
" #
X
HyM™ = pMm H v - (4.15)

n=1

many irreps can be found from one set dfiv products. At each iteration, H is applied to
the sum of Lanczos vectors computed at the previous iteration. hE use of the projection
operator to calculated irreps is much less costly than performing aatmix-vector product
for each irrep separately. The two main advantages of using SAL ikat: a) the result-
ing rovibrational energy levels come with symmetry labels to help withssignment and b)
separating eigenvalues of di erent symmetry reduces the densibf the eigenvalue spectrum
making the convergence of individual eigenvalues faster[12].

It is simplest to construct the basis if the symmetry operators agp to only one the
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coordinates[26]. In this case, you can choose VBR functions thaave the desired symme-
try properties for each coordinate. When forming a DVR, one careparate the even and
odd parity VBR functions and diagonalize each separately with respieto the appropriate
symmetric operator[31]. Another method is to take the DVR functins formed without the
proper symmetry and use a linear combination of these functions form the new DVR
with the appropriate symmetry. The advantage of this is that the he DVR functions for
both symmetry blocks are located around the same values of theotdinates. This simpli es
calculating the integrals of the symmetric and antisymmetric operats used in the SAL

method.

4.2 Obtaining rovibrational wavefunctions

In order to assist in the assignment of energy levels, it is importanbtbe able to make proba-
bility distribution plots of the wavefunctions. These are obtained fom the eigenvectors of the
Hamiltonian matrix through a three-step process described by Cul and Willoughby[43].
The rst step is to obtain the eigenvalues through a rst Lanczos alculation. The second
step is to determine the an appropriate number of Lanczos vectoneeded to form the eigen-
vectors for each of the desired eigenvalues. This is referred toths iteration depth. The
nal step is to use these iteration depths to obtain the eigenvects from a second set of
Lanczos iterations[41].

To obtain the iteration depths, a variant of the method described irRef. 43 is used.
Cullum and Willoughby used a Sturm sequence method to estimate théd number of
iterations needed to convergeM ) the eigenvalue and for a copyNl,) of the eigenvalue to
occur. Their iteration depth is found by choosing one of ten valuestweenM; and M,. For

the calculations in this thesis, the residual error of the calculatedgenvector is approximated
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by,
t = jzw] wmes (4.16)

where zy, is the Mth (last) component of theith eigenvector of theM M tridiagonal
matrix, w+1 IS the subdiagonal element between roM and columnM +1 of the tridiagonal
matrix. t; is calculated for each eigenvalue wanted starting froi ; until the error is below
a prede ned threshold. This method guarantees the minimum numbeof iterations are

performed to generate the eigenvectors.

4.3 Post-Processing

Once the eigenvalues with symmetry labels are obtained, it is importato recognize that
there are restrictions on the allowed states by quantum statistics The allowed nuclear
spin states, which are di erent for each isotopologue of the moldey determine whether a
calculated eigenstate is allowed. This means that after the calculatis have been performed,
some of the calculated eigenvalues could be forbidden due to symipetestrictions. This
type of post-processing is required in the calculations of the OCS d#gmin Chapter 5 and
CO,-CS; in Chapter 7.

In order for the results of rovibrational calculations to be usefulo experimentalists, it
is often necessary to compute line-intensities along with the line-pgns (eigenvalues). In
order for this to be done, it is necessary for a dipole moment suréato be available, or at
minimum, a good representation of it. The dipole moment surface caélnen be used with the
rovibrational wavefunctions to obtain approximate line intensities. This step is important
as intensities can have an extremely large range (orders of magui).

There are a variety of coordinates used in the calculations of intehes and the rst is
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de ned relative to the space- xed (SF) frame. The dimer- xed (CF) frame has its z-axis
along the intermonomer vectorr,, and is obtained by rotation of the SF frame about the
z-axis by , then about the y-axis by . The and angles are simply the standard
and angles de ned in Section 2.2.1. Two Euler angles,n; a, specify the orientation of
monomer A to the DF frame, while g; g, specify the orientation of monomer B to the DF
frame. The frames attached to monomers A and B, are the monomeed (MF) frames,
with z-axes de ned, alongr; for monomer A, andr, for monomer B.

Assuming the radiation is absorbed at a thermal equilibrium temperate T, the dipole

intensity for a transition from state jii to state jf i is given by
lie / (Er  Ei)[exp( Ei=kT) exp( E;=kT)]Sy; (4.17)

where E; is the energy of statgji[47]. The line strength is given by

X 2
Si =3 e (4.18)

i
degen

where 3F = 3F is the SF dipole moment operator of the molecule and; is the rovibra-
tional wavefunction. The dipole model used in this thesis for D), and (OCS), approxi-
mates SF with the sum of a term from each monomer. Each term is a dipole that garallel
to the coordinatesr; andr,. In the DF frame (which has it's z-axis on thery vector) relative
to the MF frames (which have the z-axes on the; or r, vector), the dipole components of
monomer A are,

DF X @) ME
o = DVo( ar A30) 70 (4.19)
= 1
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where two Euler angles (a; a;0) relate the MF and DF frame and

Xt
6 = DY (;: 0) DYo( ai a;0) MF (4.20)
;=1
relative to the LF frame with the usual euler angles ( ) relating the DF frame to the LF
frame.
The dipole moment for one monomer is on the MF z-axisMF = MF =0 which implies

MF = A, and simpli es Eq. (4.20) to
Xt
SF=a D (i; 0) DY ( a; a0): (4.21)

The S; integrals must now be performed with the dipole operator as given ingg(4.21)
along with the similar equation for the other monomer. This integral igiven in Ref. 48.
The computation of intensities in this thesis is done only using the cadinates and basis
functions rather than using dimer-type basis functions. This is péarmed by writing 5F in
the three-angle BF frame,

SF X 1) BF
0 = Do’ (57 ) ; (4.22)

=1

This vibrational dipole integral can be evaluated using

1 :
o= ey Feil
BF _— BF
0 - z
BF _— 1 BF i BF
1 - p_z X Iy (423)
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with

18in 1+ 5Sin ,C0OS »

»Sin »>sin

s 1CO0S 1+ 2COS ,COS » (4.24)

where ; and , are the dipole moments of monomer 1 and monomer 2 respectively.
Statistical weights are then applied to the calculated intensities toemove quantum-

disallowed transitions.



Chapter 5

OCS dimer

5.1 Historical studies of the OCS dimer

The Van der Waals molecule (OCS) has been studied by experimentalists and theorists
since 1981. There was disagreement about the structure of (O antil it was realized that
di erent isomers were being probed by di erent experiments and/odi erent experimental
conditions (e.g. expansion gas). In 1981, Ono et al. [49] deducednir photoionization
experiments that the two monomers are planar and either parallelr anti-parallel. For
several years thereafter, experimentalists were unsure whetlthe monomers were parallel
(polar) or anti-parallel (non-polar). According to the infrared sgctroscopic work of Randall
et al. (OCS), was non-polar. Lobue[50] stated that the OCS dimer must have ampeanent
dipole moment, but it was not until 2007, that a polar isomer was diseered by Afshari et
al. [51]. Motivated by this work, a microwave spectrum of the polar isner was measured
and reported in [52]. Various isotopologues have also been studied3, [54]. Fragments of
(OCS); that contain two OCS monomers were also observed to be polar. [586, 57] These
studies also indicated that a non-planar isomer might also exist.

39
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Employing Moller-Plesset perturbation theory (MP2), Bone lookeddr and found several
stable isomers. [58] There have been no theoretical calculationscsiri993. The geometry of
the non-polar S-in (Gy) isomer that Bone found was in good agreement with the geometry
determined earlier by Randall [59]. Bone's calculations predicted otheninima: two sym-
metrically equivalent polar minima, a non-Polar O-in minimum, and a collineaminimum.
To nd the polar (C s) minimum, Bone constrained the monomers to be parallel. It was later

observed that the polar isomer does not have parallel monomers2]/5

5.2 Calculations

In this section we present a 4-dimensional (4D) PES for the interrfeular motions of
(OCS),. It is built from ab initio data at the CCSD(T)-F12b/VTZ-F12 level. Th e surface
is made by using an interpolated moving least squares (IMLS) proage. [60, 36] On this
surface, we computed rovibrational wavefunctions, energies)daline strengths, taking only
the inter-molecular coordinates into account. We nd that there & localized wavefunctions

in low-lying wells with a \cross" shaped minimum.

5.2.1 Properties of the surface

Minima

The surface has 10 minima, with two symmetrically equivalent polar minimmand two sym-
metrically equivalent cross-shaped minima. The geometries of thersponding isomers
are listed in Table 5.1, where the energies are given relative to the disgtion energy and

relative to the energy of the global minimum Eg). Six minima are low-lying. The bent

minima are signi cantly higher in energy and are associated with veryhallow wells with



CHAPTER 5. OCS DIMER 41

depth less than 10cm 2.

The global minimum corresponds to the non-polar S-in (§) structure that has been
described many times in literature (for example, in Ref.61). The codinates of the structure
deduced by Randall et al., from their infra-red absorption study,r@ ; =85:4, ,=94:6,
and ro = 6:894 Bohr [59]. They are in good agreement with those on this PES sacé:

1 =86:8, , =931, andrg = 6:799 Bohr. The non-polar S-in structure of Bone,
computed at the MP2/DZP level [58] has: ; =895, ,=90:5, andry, = 6:876 Bohr.
Bone's MP2/TZ2P dissociation energy D¢) of 625 cm ! is fairly close to our value of 600
cm 1.

There are two symmetrically equivalent polar minima on the PES (third alumn of Table
5.1). The structure is just outside the error bounds given in Ref. 5. , =58:2 09,

1=74:2 1.6 ,androg=7:340 0:008 Bohr. The polar (G) structure inferred by Afshari
[51] from their rotational constants is not as close, but it was badeon the assumption that
the monomers were parallel, as had been previously assumed by Bone

The non-polar O-in (C,) minimum was predicted by Bone to have coordinates of, =
1329 , ,=47:1, andry = 8:0368 Bohr with an energy below dissociation of 508 cfm
Our results are similar. Schematics of the polar and two non-polar nima with Van der

Waals radii representations of the monomers are shown in gure 5.1

Bone predicted a linear OCS dimer structure with an energy 209 crhabove the global
minimum[58]. Our PES does not have a linear minimum. It does have bentimma that
Bone does not report. These we denote more bent and less benhefie are two symmetrically
equivalent more bent and two symmetrically equivalent less bent stctures. On our surface,

there is a linear saddle point between two symmetrically equivalent LeBent structures.
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Table 5.1: The local minima of the PES surface.
Coordinate Non-EoIar Polar Non-EoIar Cross- Less More
S-in O-in shaped Bent Bent
ro(Bohr) 6.799 7.256 8.046 6.702 11.240 10.311
1(deg) 86.880 75.258 133.679 106.650 7.846 20.132
»(deg) 93.119 56.575 46.318 73.350 12.915 38.031
»(deq) 180.00 0.00 180.00 85.170 180.00 180.00
E(cm 1) -600.36 -544.37 -519.81 -500.16  -356.32 -360.89
E Eo(cm 1) 0.0000 55.999 80.557 100.21 247.79 239.48

All of these bent structures are in very shallow wells.

The IMLS surface has two low-lying symmetrically equivalent and relately deep minima

that Bone did not report. Each corresponds to the shape that isstmed \cross" in Ref. 62.

The energy of the G cross structure is only 100 cm' above the global minimum, which

suggests that it could play an important role in the dynamics.

Crosshaped structures

were rst observed for heterodimers[63]. Later, a cross-shapstructure was observed for

(CS;)2[62]. A schematic of a cross structure for (OC8)is shown in gure 5.2. Although

no previous calculations reveal the existence of a cross shapedimum, there is a density

functional theory study by Bilalbegovic in 2007 showing that the (OS), anion does have a

stable structure with a cross-like shape[64].
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D

t
Figure 5.1: Shapes of the a)Non-Polar S-in, b)Non-Polar O-in, angRolar isomers on the
PES surface using for Van der Waals radii of O, C, and S 1.4, 1.5, and3

A(respectively).

Figure 5.2: Shape of the crossdsomer on the PES surface using the van der Waals radii
of O, C, and S being 1.4, 1.5, and 1.85.
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Paths between minima

Figure 5.3 shows a 2D PES made by constraining (OGS)o be planar and choosing g
to minimize the energy for each pair of angles;; ,. The axes are the extended angles
de ned in Ref. 48. The extended angles are dened™ = ;, & = 360 2if =0
and 7= 4, 2= ,if ,=180. The top part of the gure is for , = 0 ; the bottom
part is for , =180 . The labels for the di erent minima are: NS for non-polar S-in (global
minimum), NO for non-polar O-in, P for polar, b for less bent and B fomore bent. Note
that every structure appears twice in gure 5.3. For example, NS2NO1 are obtained from
NS1, NO2 by a rotation of the entire molecule. The high density of ctwurs around -365
cm ! showcases the shallow wells around the two bent minima. Due to thenstraint of the
monomers being in the same plane, the cross minimum is not in this gure

Similar to the (N,O), case discussed in Refs. 36, 48, 65, there are two types of planar
paths that connect the low-lying planar minima, disrotatory paths ad a conrotatory path.
Following the disrotatory path, one moves NS1 P1! NO2! P2! NS1. To go from
NO2 to P2, it is necessary to exit the top of the plot and enter the ttom at 3 250. To
go from P2 to NS1, it is necessary to exit at the right of the plot andrger at the left near
> 90. Along the disrotatory path, the barrier from NS1 to P1is 320 cm?! and the
barrier from P1 to NO2 is 150 cm . There is a conrotatory path linking NS1 with NO1.
From NS1 to NOL1 the barrier is 290 cm There is a conrotatory path linking P1 with P3
with a barrier of 260 cm . Judging from the barrier heights, the conrotatory paths may
also play a role in the tunnelling. They are also shorter than their distatory counterparts.

Although, as is the case for BO dimer, the disrotatory path is low-lying, there are, even
lower, out-of-plane, paths that link the polar and non-polar strutures via a cross-shaped

minimum. The paths involving cross-shaped structures do not exi$or N,O dimer. Paths
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through one cross structure are depicted in gure 5.4 which trasghe energy (relative to the
global minimum) along a cut obtained by nding values of 1, 5, and ro that minimize the

energy for every value of ,. As is evident from the gure, the cross minimum is shallow, but
deeper than the two bent wells. Figure 5.5 shows how varies along these paths. All of the
minima except the bent states are linked by "channels" that includehe cross minima. The
non-planar barrier one must traverse to reach one minimum from ather is smaller than the
corresponding planar barrier. The largest non-planar barrier is eéhbarrier one must traverse

to reach a polar minimum from the global minimum (itis 130 cm 1),

5.3 Calculating rovibrational levels

The rovibrational Schredinger equation was solved using the samapproach as in Ref.
Refs. 36, 48 and described in Chapter 4. The coordinates can berséen Figure 3.1. The
calculation is performed with rigid monomers of lengtlry and . Euler angles specify the
orientation of the monomers in the body- xed frame, where the axis is alongt, and the
x-axis is along the vector ¢ ) . For the stretch (ry) coordinate potential opti-
mized discrete variable representation (PODVR) functions[32, 334, 35] were used. The
permutation-inversion (Pl) symmetry group for the Hamiltonian weuse isG,4, composed of
operationsfE; g f E;E g where , permutes the monomers. A/B label symmetric and
antisymmetric irreducible representations (irreps) with respecta , and label even and
odd parities[47]. There are four Pl irreps: A+;B+;A ;B ).

The monomer rotational constant is taken to be the experimentajround state value of
0.2028567 cm! [66]. The masses 15.9949146221[67] , 12, 31.972071[68] a.m.u. f0r &nd
S, respectively are used to compute the reduced mass for the rabeonomer coordinater.

The angular basis we use ha$,.x = Mmax = 50 (the samelha for I, and [,). With this
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basis we used 51 Gauss-Legendre quadrature points fprand , and 102 trapezoid points
in the range [0, 2], with the rst point at zero, for ,. For ro we use 22 PODVR (potential-
optimized DVR) functions. The reference potential that de nes he PODVR functions is
a cut potential in the range [5.6 Bohr, 20 Bohr] with all other coordiates xed at their
equilibrium values. Tests with a huge basis, having 200 sin DVR functierfor ro and an
angular basis withl,»x =50, con rm that this basis set converges levels near 100 crhabove
the zero point energy (ZPE) to better than 0.001 cmt. The vibrational even-parity basis
size is 1001572. We do not apply a potential ceiling when calculating patial matrix-vector
products[69], but the potential is limited to 2093.93 cm® on the repulsive wall (beyond the

tted range).

5.4 Results

5.4.1 Energies and labels for J=0 states.

Table 5.2 lists the lowest = 0 energy levels for each irrep of the OCS dimer. They are
labelled: (Type;v (torsion), vq4(geared bend), y(VdW-stretch), v, (anti-geared bend)). The
geared and anti-geared bends are along disrotatory and conragy coordinates. [48] Type
indicates the well(s) above which the wavefunction corresponding the level is localized.
The wells are represented by NS, P, NO, and C for cross. The tons& fundamental as-
sociated with the NS well is quite low, about 15 cm' (compared to 37 cm ! for the
geared bend, 44 cm ! for the VdW stretch, and 51 cm ! for the anti-geared bend).
Because there are two equivalent polar wells and two equivalent csosells there could be
observable tunnelling splittings. According to our calculations the tanelling splittings are

small. This is partly due to the width and height of the barriers and paty due to the large
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mass that must be moved during the tunnelling processes. In the lpp ground state the
tunnelling splitting is less than 0.0001 cm!. The rst polar state with a splitting larger

than 0.0001 cm? is (P; 2000). The tunnelling splitting for the cross ground state is 0:01
cm 1. Surprisingly, the A state is lower than theA+ state. This must be due to coupling
of vibrational states.

The v, vg, Vi, V, labels are determined in two ways. First, nodal structure in wave-
functions is used. Second, knowing, for each well, the energiesh® fundamentals, we can
estimate energies of overtones and combination bands. For exdeyknowing that in the NS
minimum the v; fundamental is about 15 cm?, and the v, fundamental is about 37cm?,
we estimate that the state (N;2100) should be close to 67 cr and therefore assign the
label (N1;2100) to the level 65.28 cm! above the ZPE.

Probability density (PD) plots were made from the wavefunctions byntegrating over all
but two coordinates. The PDs are normalized with a volume element wita sin factor for
each and ar3 factor for ro. Many low-lying states can clearly be associated with a single
well. PD plots for the lowest levels associated with the four lowest wellse shown in gure
5.6 and gure 5.7. These gures show clean localized non-polar S-irglar, non-polar O-in,
and cross states. The polar state has amplitude in the two polarwels( ; 75; , 60)
and (; 120; , 105). Figures 5.8(a)/5.8(b) and 5.8(c)/5.8(d) show clean; = 1 and
vy = 1 states in the non-polar well. Note that thev, = 1 wavefunction has a node at

= 180 because the wavefunction with > 180 (not shown) is obtained by re ection.
Figures 5.8(e)/5.8(f) and 5.8(g)/5.8(h) showv, = 1 and v, = 1 PDs. They show clear
signs of coupling. One expects, to be coupled to the anti-geared bend coordinate because
the anti-geared motion brings the two monomers closer togetheBecause the cross well

is separated from the polar and non-polar wells by barriers of lessath 30 cm ! and the
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Table 5.2: The lowest vibrational levels (in cm?) of (OCS), for each irrep relative to the
ZPE. The quantum numbers v (torsion), vg(geared bend), v(VdW-stretch), v,
(anti-geared bend) are for the four intermolecular modes. The lals for the states
are (Well;v;,vg,v, ,Va)

A+ B+ A- B-
0.0000(N'S;0000) 36.7504(NS;0100) 14.6106(NS;1000) 51.5003(08)
28.7906(NS;2000) 54.5538(P;0000) 42.9222(NS:3000) 67.5798(P)1
43.8507(NS:0010) 65.2827(NS:2100) 57.9591(NS:1010) 78.93R3(N00)
51.2235(NS;0001) 75.1049(NS;0110) 65.5120(NS;1001) 89.319A(N0)
54.5538(P;0000) 79.3576(P;2000) 67.5798(P;1000) 90.0046(R;B00
56.2277(NS;4000) 85.7370(NS;0101) 68.7305(NS;5000) 98.45D30P)
71.1553(NS;2010) 85.8312(P;0100) 84.2603(NS;3010) 99.9394(03)
71.7988(NS;0200) 91.6396(P;0010) 85.4830(C;0000) 103.7670(P)

79.3575(P;2000)
79.3669(NS;2001)
80.1446(NS;6000)
81.3824(N0O;0000)
85.4970(C;0000)
85.8312(P;0100)
86.0658(NS;0020)
91.6396(P;0010)
93.0127(NS;0011)

1018474(C;1000)

86.3319(NS;1200)
90.0051(P;3000)
90.3966(NS;7000)
91.6749(N0O;1000)
93.0756(NS;3001)
98.4498(P;1100)
99.4759(NS;1020)

100.7011(C;1000)

103.7781(P;1010)

torsional mode in the cross well is at about 15 cm one expects to see wavefunctions de-
localized in the non-planar channel. Such wavefunctions do indeedisex An example is
shown in gure 5.9. The torsion fundamental of the NO isomer is only(l4 cm ! above the

NO ground state. We have not found states localized in the very di@av high-lying bent

minima.
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Figure 5.3: Minimized potential as a function of extended angles¥; 3 . The contours

correspond to energies of -100, -200, -250, -300, -350, -3865, -370, -375, -380,
-400, -450, -500, -520, -540, -560 and -580 émThe green contours are below
-370cm . Every shape appears twice: P1=P4, P3=P2, NS1=NS2, B3=B4,
B1=B2, b3=b4, b1=b2, NO1=NO2.
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Figure 5.6: (a) The NS ground state of the OCS dimer. (b) The rst plar state of the OCS
dimer with energy of 54.5538 cm! above the ZPE. (c) The non-polar O-in state
with energy of 81.3824cm' above the ZPE
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Figure 5.7: The rst cross-shaped state (A+) with energy above 2E of 85.4970 cm!. The
PD also has amplitude in a second equivalent cross-shaped minimumttignot
shown in b).

5.4.2 J > 0 states and rotational constants.

We have also calculatedl >0 levels, and there are experimental transition frequencies and
rotational constants that we can compare with. Experimentalistgletermine rotational con-
stants by adjusting the constants of an e ective rotational Haritonian so that its eigen-
values reproduce the rotational energy levels associated with arfpeular vibrational state.
We can also compute rotational constants by tting, as the expémentalists do. In order
for this to be done, we must assume that every wavefunction is mgaa product of a vibra-
tion/tunnelling state and a rotational state and have a means of agning vibrational and
rotational labels to rovibrational levels. If coupling between rotabn and vibration is too
strong this will be impossible. Even when the coupling is weak enoughathit is possible
to associate rovibrational states with vibrational states, it will bedi cult to do so if the

density of vibrational states is high.
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Figure 5.8: (a-b) The (NS;1000) state with energy 14.6109 cf (c-d) The (NS;0100) state
with energy 36.7500 cm!. (e-f) The (NS;0010) state with energy 43.8512 crh.

(g-h) The (NS;0001) state with energy 51.2249 crh.
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Figure 5.9: State 35 of A+ symmetry with energy of 116.9067 crh It is clearly de-localized
in the entire channel.

To label rovibrational states we use the two ideas presented in Refi8. We use line-
strengths calculated from equations in Ref. 48 and a sum-of-dipslenodel for the dipole
moment of (OCS). Transitions occur in groups that are easily associated with polar oross
vibrational states. Although the total density of states is so higlthat attributing vibrational
labels is impossible, the density of states with appreciable intensity iswoenough that
assigning vibrational labels (but not tunnelling labels) to nal statesof intense transitions
is possible. This enables us to identify polar and cross states embedidie the dense stack
of dark non-polar levels. Note that even thougiB+ and B states are forbidden because
OCS has zero spin, they still may have appreciable rovibrational inteity and can be used to
attribute vibrational labels. The vibrational labels determined in thisfashion are con rmed
using vibrational parent analysis (see below). To assign;land 1;; rotational labels to the

nal states of bright rovibrational transitions that correspondto polar vibrational states, we



CHAPTER 5. OCS DIMER 55

use the fact that the the nal rotational states of R(0) transitions are };(a-type) or 1;;(b-
type). For polar (case b) states, transitions to {(c-type) are symmetry forbidden because
of the the dipole transition ruleA+ $ A andB+ $ B . To nd polar vibrational states
with rotational state 1,9, we compute Q(1) line strengths. Because the b-type transitions
for the Q(1) branch are 15! 1y, and the a-type are 1, ! 1,0 we can use the i or 1y,
assignment we obtained from the R(0) bright transitions to nd thel;, state. The Q and R
transitions for polar states are illustrated in gure 11 of Ref. 48.

Similar ideas are used for cross states, but for the cross struatuthe dipole moment is
parallel to the b-axis (G axis) and therefore only R(0) 1;(b-type) transitions are bright.
The C, axis is parallel tor +  and goes through the centre of mass. From R(0) intensity
data we only nd 1;; rotational states. From Q(1) intensity data we can nd a transition
between 1, and 1ly; and hence identify 15 and ly; rotational states.

Assignments obtained from intensity data are con rmed by vibratioal parent analysis
(VPA). This entails, re-expanding rovibrational wavefunctions in erms of vibrational wave-
functions. [48] See also Ref. 70. From the VPA we can also obtadditional information.
Polar vibrational states are split into two very nearly degenerateunnelling components.
Because the splitting is negligible there are two pairs of nearly degeaie R(0) transitions.
The four Q(1) transitions have the same pattern (See Fig. 11 of Re48). This also occurs
for N,O dimer. For OCS dimer, unlike NO dimer, one of the two nearly degenerate lines is
actually absent because th8+ and B states are forbidden, due to the fact that OCS has
zero spin. In the same fashion, each cross rovibrational state {gisinto two very nearly
degenerate tunnelling components. In this case the tunnelling splitg is larger, two R(0)
transitions occur and there are no Q(1) transitions. This is illustragd in gure 5.10. Itis not

possible to establish tunnelling labels from the intensity data alone (bause the tunnelling
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components are too close). Tunnelling labels can be determined frone VPA.

Knowing the symmetry of both the total wavefunction and vibratiov/tunnelling state
one can deduce the symmetry of the rotational state. For NS ardO states the k; 111; 110
states have symmetry B-, B-,A+. In Ref. 48 this is denoted case &or polar states we nd
that the 1q1; 111; 110 States have symmetry B-, A-,B+. In Ref. 48 this is denoted case [he
symmetry of the cross rotational states is less clear because ¢ovss states, the vibrational
parentage is in some cases ambiguous. Because there are two @llimy components there
are 6J = 1 states. The parentage of the lowest two states is unambiguauBecause they are
the lowest they are assumed to beyl The other four states have about 50 percent of their
parentage from each of thd = 0 cross-shaped states. The two highest states at 85.6439 and
85.6429 cm? are assumed to have as parent the tunnelling component with the t@r energy
(at 85.4970 cm?) and to be 1,5 and 1;; rotational states, respectively. The two lower states
at 85.6315 and 85.6305 cm are assumed to have as parent the tunnelling component with
the smallest energy (at 85.4830 cm) and to be 1, and 13, rotational states, respectively.
With this choice the two cross tunnelling components have similar rot@nal constants. We
nd that for cross states the 1;1::; 1;0 states have symmetry B-, A+, B-. We refer to
this as case c. The bright R(0) transitions between cross-shapeohnelling components are
\across" i.e. from upper to lower or from lower to upper. See guré.10.

Being able to attribute vibrational parents makes it possible to extct rotational con-
stants from our rovibrational energy levels. Rotational constda for the lowest vibra-
tional states that can be associated with each of the minima are reged in Table 5.3
Experimental and theoretical rotational constants dier by lessthan 0.001 cm?, indi-
cating that the minimum geometries and the well shapes on the new teatial are accu-

rate. Rigid rotor rotational constants computed from the positios of the minima are:
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A = 0:1023B = 0:0433C = 0:0304 cm?! for the non-polar global minimum; andA =
0:1345B = 0:0349C = 0:0277 cm? for the polar S-in minima. This indicates that to
achieve excellent agreement with experiment it is imperative to accaufor the motion of
the nuclei. Rotational constants computed from the rigid geomdts determined by Bone,
the only previous ab initio calculation, also agree less well with experimte For the NS min-
imum, Bone nds A = 0:0998B = 0:0425C = 0:0298 cm?! . For the polar well, he nds
A =0:1350B = 0:0322C = 0:0260 cm?® . Rovibrational levels and rotational constants
for the fundamentals with energy less than 100cm are given in Table 5.4. All of these
rotational constants were calculated using = 1 levels.

In Tables 5.3 and 5.4 the theoretical rotational constants are detmined from the the
J = 1 levels, but the experimental rotational constants of Minei andNovick [52] were
obtained by tting eigenvalues of a spectroscopic Hamiltonian to exggimental levels with
higher J values. We have t computed rovibrational levels using the same spteoscopic
Hamiltonian and levels withJ < 5. To do this, it is necessary to assign the corresponding
rovibrational states. Table 5.5 compares the spectroscopic paraters we obtain with their
experimental counterparts. The agreement with experiment is og again very good. The
only parameter that is signi cantly dierent is  which has error in the rst digit. The
rotational constants are little changed by tting more levels and ading more spectroscopic

parameters to the e ective Hamiltonian.
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Table 5.3:J = 1 rotational levels (in cm 1) for the lowest states localized in each of the
minima. Rotational constants (in cm 1) are derived fromJ =1 levels.

J =0 (S;w,Vg,Vr Va) 1o1(sym) 111(sym) 110(Sym) A B C
0.0000(NS;0000)(A+) 0.0719(B) 0.1324(B ) 0.1447(A+) 0.1026 0.0421 0.0298
NS[59] 0.1023 0.0420 0.0298
54.5538(P;0000)(A+) 54.6152(B) 54.7147(A ) 54.7217(B+) 0.1337 0.0342 0.0272
54.5538(P;0000)(B+) 54.6152(A) 54.7147(B ) 54.7217(A+) 0.1337 0.0342 0.0272
P[51, 52] 0.1329 0.0344 0.0273
81.3825(NO;0000)(A+) 81.4321(B) 81.6278(B ) 81.6306(A+) 0.2219 0.0262 0.0235
85.4970(C;0000)(A+) 85.5673(B) 85.6429(A+) 85.6439(B ) 0.1112 0.0357 0.0346
85.4830(C;0000)(A) 85.5533(B+) 85.6305(A ) 85.6315(B+) 0.1129 0.0357 0.0346

Table 5.4: J = 1 rotational levels (in cm 1) for the ground state and the fundamentals with
energy less than 100 cnt. Rotational constants (in cm 1) are derived fromJ =1

levels.
J=0 (S;Vt,Vg,Vr ,Va) 1o1(sym) 111(sym) 110(sym) A B C
0.0000(NS;0000)(A+) 0.0719(B) 0.1324(B ) 0.1447(A+) 0.1026 0.0421 0.0298
14.6106(NS;1000)(A) 14.6823(B+) 14.7430(B+) 14.7548(A) 0.1024 0.0417 0.0300
36.7504(NS;0100)(B+) 36.8208(A) 36.8831(A ) 36.8951(B+) 0.1035 0.0412 0.0292
43.8507(NS;0010)(A+) 43.9211(B) 43.9833(B ) 43.9953(A+) 0.1033 0.0412 0.0292
51.2235(NS;0001)(A+) 51.2928(B) 51.3556(B ) 51.3649(A+) 0.1021 0.0393 0.0301
54.5538(P;0000)(A+) 54.6152(B) 54.7147(A ) 54.7217(B+) 0.1337 0.0342 0.0272
67.5798(P;1000)(A) 67.6414(B+) 67.7385(A+) 67.7452(B) 0.1312 0.0342 0.0274
85.8312(P;0100)(A+) 85.8914(B) 85.9946(A ) 86.0014(B+) 0.1367 0.0335 0.0267
91.6396(P;0010)(A+) 91.7000(B) 91.8022(A ) 91.8090(B+) 0.1358 0.0336 0.0268
54.5538(P;0000)(B+) 54.6152(A) 54.7147(B ) 54.7217(A+) 0.1337 0.0342 0.0272
67.5798(P;1000)(B)  67.6414(A+) 67.7385(B+) 67.7452(A) 0.1312 0.0342 0.0274
85.8312(P;0100)(B+) 85.8913(A) 85.9946(B ) 86.0014(A+) 0.1367 0.0335 0.0267
91.6396(P;0010)(B+)  91.7000(A) 91.8022(B ) 91.8090(A+) 0.1358 0.0336 0.0268
81.3824(NO;0000)(A+) 81.4321(B) 81.6278(B ) 81.6306(A+) 0.2219 0.0262 0.0235
91.6749(NO;1000)(A) 91.7250(B+) 91.9087(B+) 91.9113(A) 0.2101 0.0264 0.0237
85.4970(C;:0000)(A+) 85.5673(B) 85.6429(A+) 85.6439(B ) 0.1112 0.0357 0.0346
85.4830(C;0000)(A) 85.5533(B+) 85.6305(A ) 85.6315(B+) 0.1129 0.0357 0.0346
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Table 5.5: Comparison of spectroscopic constants of the polar tetavith those of reference
[52]. Constants were obtained from a t to levels with] 4. Values are in cm?.
The bracketed number is one standard deviation in units of the lastigit.

Parameter Ref. [52] This Work
A 0.1329371(6) 0.1337048(4)
B 0.03436352(6) 0.034235(1)
C 0.0272855(8) 0.027235(1)
J 7.131(8) 10 & 7.3(2) 108
IK -1.712(1) 10 -1.91(7) 10’
K 1.401(7) 10 © 1.391(6) 10 °©
J 1.781(7) 10 8 2.0(4) 108
K 2.27(2) 10 1 3.3(6) 10’

5.4.3 Transitions with line strength greater than one

Frequencies for the most intense transitions are reported in Tab®6. All line strengths
in this paper are reported in units of the OCS dipole. Comparing the kght transitions of
Table 5.6 and the assigned parents of Table 5.3, it is clear that polaraimsitions can occur
across or within tunnelling pairs. The only transitions visible for the ayss-shaped tunnelling

pairs occur across. Transitions that include B states are not shavas they do not exist.

The brightest transitions are all within a vibrational state. Table 5.7shows line strengths
of some of the strongest transitions between di erent vibratiorlestates. They are all weaker
than those of transitions within a vibrational state. According to pevious calculations for
(N20O),, a transition from the ground state to the non-polar+torsion stae had an appreciable
line strength (3.3 10 2) [48]. This transition is observable [71] and it is therefore possible
that NS and NO transitions in Table 5.7 might also be observable. It alsmay be possible
to observe the Cross to Cross+Torsion transitions as its line strgth is about half the

magnitude of the transitions for the Non-Polar states. The intenty of the Polar transitions
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Table 5.6: Bright transitions for the OCS dimer for J 1

60

Lower Upper IR sadoo IR ok o Freq(MHz) Line strength

(P:0000)

54.5538(A+)  54.6152(A)  Og! 1o 1842.8 1.14

54.5538(A+)  54.7147(A)  Og! 1n 4824.8 2.71

54.6152(A )  54.7217(A+)  lo! 1o 3191.8 4.07

54.7147(A )  54.7217(A+) 11! 1 209.8 1.72
(P:1000)

67.5798(A )  67.6414(A+)  Op! los 1847.9 1.07

67.5798(A )  67.7385(A+)  Op! 1is 4756.8 2.71

67.6414(A+)  B67.7452(A)  1lo! 1o 3111.7 4.07

67.7385(A+)  67.7452(A)  1i1! 1io 202.8 1.60
(P:0100)

85.8312(A+)  85.8913(A)  Ogp! 1o 1801.4 1.15

85.8312(A+)  85.9946(A)  Ogp! 1n 4897.4 2.66

85.8913(A )  86.0014(A+)  lo! 1o 3300.8 3.99

85.9946(A )  86.0014(A+) 14! 1i0 204.8 1.73
(P:0010)

91.6396(A+)  91.7000(A )  Ogo! 1o 1811.1 1.19

91.6396(A+)  91.8022(A)  Og! 11 4874.2 2.67

91.7000(A )  91.8090(A+) 1! 1o 3267.0 4.01

91.8022(A )  91.8090(A+) 14! 1i0 203.9 1.79
(C:0000)

85.4970(A+)  85.6305(A)  Op! 11 4001.9 1.97

85.4830(A )  85.6429(A+)  Op! 1n 4792.1 1.97
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Table 5.7: R(0) transitions from the ground state to other vibratimal states.

Lower Upper I od IR ok o E(m 1 Line Strength
(NS;0000) (A+) (NS;1000) (A ) Ooo! 110 14.7548 2.810 2
(NS:0000) (A+) (NS:0100) (A ) O 1oz 36.8208 1.010 2
(NS:0000) (A+) (NS:0100) (A )  Og! 1i 36.8831 1.210 *
(P:0000) (A+) (P;1000) (A ) Ooo! Lio 13.1915 1510 4
(P;0000) (A+) (P;0100) (A )  Op! 1os 31.3376 0.210 *
(P:0000) (A+) (P;0010) (A )  Op! 1os 37.1463 1.710 3
(P:0000) (A+) (P;0010) (A )  Op! 1y 37.2484 6.010 4
(NO:0000) (A+) (NO:1000)(A )  Og! Lio 10.5289 4.0 10 2
(C:0000) (A+) (C:1000) (A )  Ogp! 1 15.6902 9.810 3
(C:0000) (A ) (C:1000) (A+)  Ogo! 1 16.2250 8.310 3

is orders of magnitude smaller, so it is unlikely that these inter-vibranal bands would be

visible.

5.4.4 Comparison to observed microwave transitions

Rovibrational states localized in the polar well were calculated fal = 1;2;3;4;8, and 9.
Computed transition frequencies and their experimental countparts [52] are compared in
Table 5.8 in the Supplementary material. The agreement is quite goodtivthe maximum

error being 138.9 MHz (0.0046¢cnt). This shows that the quality of the computed frequen-
cies degrades very little ag is increased. However, the calculation of higher levels did
take signi cantly more time. Using 4 Quad-Core Opteron 8350 2GHzrpcessors in parallel,

computing theJ = 0 energies took about an hour, compared to about a day fdr=9 levels.
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Table 5.8: Comparison to observed transitions in the supplementadata of reference [52].

J |(<)(£Jq< g!) IR 0K 0 Veal (MHZ) Vobs(MHZ) Ve Vobd (MHZ)
313! 21 5207.4 5219.5 12.1
303! 202 5486.2 5500.5 14.3
32! 2 5528.2 5544.5 16.3
31! 2 5570.1 5588.4 18.3
312! 211 5837.0 5855.5 18.0
210! 1og 6458.7 6438.4 20.3
414! 313 6931.2 6947.2 16.0
431! 330 7395.9 7415.7 19.8
dyy! 3p1 7467.8 7492.2 24.4
82! 817 7746.6 7689.3 57.4
413! 3p2 7767.6 7793.4 25.8
9,71 98 7947.5 7905.6 42.0
313! 202 7989.5 7972.6 16.9
817! 8os 8232.3 8279.9 47.6
4dyy! 443 8391.8 8304.8 86.4
31! 312 8691.1 8605.9 85.1
20! 211 8957.2 8873.0 84.2
414! 3p3 9434.5 9419.2 25.3
21! 295 9577.5 9498.4 79.1
918! 909 9740.3 9807.6 67.3
32! 313 9823.4 9896.1 72.7
dy3! 4y, 10327.9 10260.1 67.7
21! 1o 12843.4 12770.5 72.9
20! 153 13062.2 12993.7 68.6
32! 211 14474.0 14406.5 67.5
99! 818 14791.8 14846.8 55.0
31! 2 15157.5 15097.8 59.7
431! 4y, 15313.4 15174.5 138.9
330! 31 15385.3 15251.0 134.3
99! 8os 15628.2 15654.8 26.6
dy3! 3> 15999.9 15934.9 65.0
919! 8os 16236.8 16238.4 2.4
98! 8,7 16389.6 16433.4 43.8
918! 817 17136.1 17398.7 46.3
9,71 8 17337.0 17182.4 61.7
4dyy! 313 17417.9 17370.5 47.4
331! 2 20955.5 20839.0 116.5

330! 221 20967.5 20850.4 117.1
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Figure 5.10: Bright R(0) and Q(1) transitions for the cross-shaped state of the OCS dimer.
All bright transitions are b-type due to the orientation of the dipole. The levels
associated with the symmetric and anti-symmetric tunnelling stateare on the
left (solid lines) and right (dashed lines), respectively. Transitions thicated
with dotted arrows do not occur because the B states do not existransitions
indicated with dashed arrows are symmetry allowed but weak becauthey are
not btype. (As a result, there are noQ(1) lines.) Based on the symmetry of
the J = 1 rotational factors, the case here is de ned as case (c).



Chapter 6

NNO dimer

6.1 Historical studies of the N >0 dimer

There have been various studies of the nitrous oxide dimer {8), appearing in literature
since 1978.[72, 73, 74, 75, 76, 77, 78] In 2007, a polar isomer wasdi@9, 80, 81] which
garnered renewed interest in (BD),. This was later followed by a study by Dehghangt al.

that focused on the isotopologues of (}D),[82].

6.2 Transformation of potential

Most theoretical rovibrational calculations are performed usinghie most abundant isotopo-
logue of the system. This was the case in the earliab initio study of (N,O), non-polar[36]
and, polar and t-shaped[48] isomers. However, there are manyeples of experimentalists
producing results for a wide variety of isotopologues. This chaptstudies the e cacy of us-
ing the Potential Energy Surface (PES)[36] calculated for the mbsommon isotopologue of

the nitrous oxide dimer ¢*N,O), for calculations of di erent isotopologues. In other terms,

64
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we are testing the approximation that

Vo (ro) = Va(Tu a(rp)); (6.1)

where V; is a potential explicitly calculated for isotopologuei, and T is de ned as the
transformation that transforms the mass-weighted coordinagebetween two isotopologues
andr; such that,

ri=Ti;(r): (6.2)

6.3 Calculating rovibrational levels

Figure 6.1: (N,O), coordinates. O is red and N is blue.

The rovibrational Schredinger equation was solved using the sanag@proach of Refs. 36

and 48 and described in Chapter 4. The coordinates used are shaghematically in Figure
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6.1. The calculation is performed with rigid monomers of length, and . Euler angles spec-
ify the orientation of the monomers in the body- xed frame, wher¢he z-axis is alongr and
the x-axis is along the vectorry, . For the stretch (ry) coordinate potential optimized
discrete variable representation (PODVR) functions[32, 33, 345Bwere used. The bend
( ) and rotation ( ;; 1) coordinates used parity-adapted rovibrational functions[41, 2.
In the calculations, the angular quantum numbers of the bend-ration functions, Iy, I,
and m,, all have the same maximum value. The use of the parity adapted-fia makes it
possible to do even and odd parity levels separately. When the moners were di erent
((**N,O)(**N*NO) and (**N,0)(**N,0)), the labelling of the states was even (+) or odd
( ) parity. When the monomers were identical °N,0), and (**N!*NO),), a symmetry
adapted variant of the Cullum and Willoughby Lanczos[46, 83] methodas implemented
to calculate energy levels. This allowed the labelling of even and odd t&ts with respect
to the permuting of the monomers. The four permutation-inversio (Pl) symmetry groups
were (A+,B+,A B ) where A/B is to label symmetric and antisymmetric irreducible rep-
resentations of the permutation of the monomers. Quadratureas used for the potential
integrals. Matrix-vector products required for Lanczos were agputed sequentially using
techniques described in Refs. 31 and 40, 69, 84, 45. The wavefions were obtained from
the eigenvectors of the Hamiltonian matrix using methods describguteviously[41, 45].

The various monomer rotational constants for the di erent isotpologues are taken to be
the experimental ground state values found in Ref.85. The massesed for calculating the
reduced mass of inter-monomer distancey| are taken to be 14.0030740052, 15.0001, and
15.9949146221 for M, N*°, and O respectively. As in previous calculations on{{N,O),)[36],
the angular basis had.x = Mnax = 44, 45 Gauss-Legendre quadrature points for, and

2, and 90 equally spaced trapezoid points in the range; ] for ,, with zero being the
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rst point. For ro, 25 PODVR functions were used. The reference potential used sva
cut de ned in the range [4.5 Bohr, 18.0 Bohr]. Tests performed ort*N,0O), con rm that
the energy levels are converged to better than 0.001 ctn The vibration even-parity basis
is about 628 000. A potential ceiling was used to reduce the spettrange with about 82
percent of the quadrature points below the ceiling value of 5240 cfn

The PES used for the rovibrational calculations of each of the isqiologues was the same.
However, the quadrature and DVR points where the PES was samglevere dependent on
the isomer being calculated. Looking to Eq. (6.1)a refers to (*N,O), and b refers to the

isotopologue being calculated.

6.4 Results

6.4.1 Energies and labels for J=0.

The low lying states for the isotopologues with equivalent and di erdrmonomers are shown
in Tables 6.1 and 6.2 respectively. The labels for the states are of floem (Type;v; (torsion),
Vg(geared bend), v(VdW-stretch), v, (anti-geared bend)). Where the Type is the well from
which the wavefunction is localized. For this paper, N is the label fohe Non-Polar well and

P is the label for the Polar wells. When the monomers are equivalentye Polar wells are
equivalent in energy to less than 0.0001 crh according to calculations in this and previous
work[48]. This is not the case for isotopologues with di erent monom® In this case, the
polar wells were labelled as Pand P, as was done in Ref. 81. The geared and anti-geared

bends are along disrotatory and conrotatory coordinates[48].
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Table 6.1: The lowest vibrational levels (in ch) of (*®*N,O), and (*®*N'*NO), for each ir-
rep relative to the ZPE. The quantum numbers y (torsion), vq4(geared bend),

v; (VdW-stretch), v, (anti-geared bend) are for the four intermolecular modes.
The labels are (Well;y,vg,V; ,Va)

A+

B+

A-

B-

0.0000(N;0000)
49.9506(N;2000)
51.6079(N;0010)
79.2953(N;0200)
96.3946(N;0001)
97.0473(N;2010)
99.2091(N;4000)
100.0734(N;0020)
114.9930(N;0210)
126.0668(N;2200)
138.5227(N:0400)
141.4709(N:6000)
142.4823(N:4100)
143.4326(N;2001)
143.6184(P;0000)
145.0899(N;4010)

0.0000(N;0000)
49.9675(N;2000)
52.0146(N;0010)
79.3263(N:0200)
96.4881(N;4000)
97.2825(N;0001)
99.7066(N;2010)
100.5825(N)
115.2980(N:0210)
126.1184(N;2200)
138.8338(N;0400)
141.5690(N;6000)
142.8702(N;2001)
143.5421(P;0000)
143.9925(N;2020)
145.3756(N:4010)

(**N20),

41.2860(N;0100)

85.4353(N;0110)

89.0123(N;2100)
112.5860(N;0300)
126.6917(N;0120)
130.9050(N;2110)
134.2485(N;0101)
135.3983(N;4100)
141.8673(N;0310)
143.6184(P;0000)

25.3644(N;1000)
73.3442(N;3000)
75.8042(N;1010)
102.5049(N;1200)
119.2646(N;5000)
120.2643(N;1001)
122.4350(N;3010)
123.0847(N;1020)
139.1094(N;1210)
148.1570(N;3200)
162.0301(N;1220)
162.3369(N;7000)
164.3517(N:5010)
164.7427(P;1000)

(15N14No)2

41.2680(N;0100)

85.7062(N;0110)

89.0003(N;2100)
112.7371(N;0300)
126.9851(N;0120)
131.1331(N;2110)
134.3627(N;4100)
135.5489(N;2110)
142.2876(N;0310)
143.5421(P;0000)

25.3588(N;1000)
73.3787(N;3000)
76.1595(N:1010)
102.5525(N;1200)
119.3375(N;5000)
120.5656(N;1001)
122.7463(N;3010)
123.6696(N;1020)
139.4306(N;1210)
148.2189(N;3200)
162.3374(N;1220)
162.4907(N;1400)
164.6059(N;5010)
164.6524(P;1000)

64.7030(N;1100)
108.2692(NL11
112.2575(N;B10
136.600300)L
149.5334(N)1
152.3685(00)3
156.254100)1
157.423000)
164.7420(1)

64.6846(N;1100)
108.5322(N)L11
112.2495(N)310
136.750300)L
149.832300)1
152.6032(03
156.38600L)L
157.5508(N5100
164.6520(9)
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Table 6.2: The lowest vibrational levels (in crt) of (**N,0)(**N,O) and (**N,O)(**N1*NO)
for each irrep relative to the ZPE. The quantum numbers (torsion), vq4(geared
bend), v (VdW-stretch), v, (anti-geared bend) are for the four intermolecular

modes. Labels are (Wellnvg,v,,va)

(*N20)(**N0)

+
0.0000(N;0000)
41.5622(N;0100)
50.3619(N;2000)
52.1829(N;0010)
79.8488(N;0200)
86.0754(N;0110)
89.6615(N;2100)
97.0954(N;4000)
97.5212(N;2010)
100.0950(N;0001)
100.9912(N;0020)
113.3456(N;0300)
115.7763(N;0210)
126.9810(N;2200)
127.5780(N;0120)
131.8370(N;2110)
134.9051(N;0101)
136.2647(N;4100)
139.3919(N;0400)
142.6528(N;6000)
142.8227(N;0301)
143.3244(R;0000)
143.4453(N;4100)
143.8133(p;0000)
144.3945(N;2001)

25.5633(N;1000)
65.1628(N:1100)
73.9607(N;2000)
76.5263(N;1010)
103.2642(N;1200)
109.0939(N;1110)
113.0766(N;3100)
120.2743(N;5000)
120.9602(N;1001)
123.2806(N;3010)
124.1664(N;1020)
137.5527(N;1300)
140.0932(N;1210)
149.2077(N;3200)
150.6002
153.4455(N;3110)
157.0064(N;1110)
158.4987(N;5100)
163.1215(N;1220)
163.5925(N;7000)
164.5742{f1000)
165.0866(p1000)
165.4413(N;5010)
166.4028
166.5662

(14N20)(15N14NO)

4
0.0000(N;0000)
41.2770(N;0100)
49.9607(N;2000)
51.8109(N;0010)
79.3109(N;0200)
85.5722(N;0110)
89.0062(N;2100)
96.4496(N;0001)
97.1600(N;2010)
99.4651(N;4000)
100.3217(N;0020)
112.6620(N;0300)
115.1456(N;0210)
126.0928(N;2200)
126.8406(N;0120)
131.0207(N;2110)
134.3082(N;0101)
135.4704(N;4100)
138.6809(N;0400)
141.5287(N;6000)

142.0781(N;0301)
142.6808(N;4100)

143.5725(@00)
143.5882(000)
143.7067(N;2001)

25.3616(N;1000)
64.6939(N:)L100
73.3634(N33000
75.9811(N)1010
102.528800)L.2
108.4023(M0)L 1
112.25320031
119.307800)50
120.41270L)10
122.5906(10,3
123.37.4920)
136.67.4300)
139.2702(10)
148.188200)
149.6858
152.486a(10)
156.322004)
157.483900)
162.1979
162.409900)
164.4812(N;5010)
164.6898(P000)

164.7056(R1000)
165.5514

165.6570
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In order to label the states, plots of the J=0 wavefunctions werenade. The probability
density (PD) plots were made from the wave functions by integratm over all but two
coordinates. The PDs are normalized with a volume element with a sinfactor for each
angle and anrZ factor for ry. The rst step in labelling states, was to recognize which well
the wavefunction was localized in. There are no states that have Hization in two wells
except for the degenerate Polar states with identical isomers. helling fundamentals was
done by looking at nodal structure to determine the;, =1, vqg = 1, v, =1, and v, = 1 labels.
Four distinct single node wavefunctions were observed so the labadliof the fundamentals
is good. The gures forvy =1, vy = 1, v, =1, and v, = 1 of (}**N,0), are shown in Ref.
36. For combination bands and overtones, labelling the states waetralways obvious. In
order to assist the labelling of states, the energy of the fundantahwas noted and could
be used to check whether a label made energetic sense. For eXamine (N;1100) level of
(**N20), could be approximated as a sum of the energy af=1 of 254cm *andvy=1
of 41:3 cm ! which would give the (N;1100) state an energy of 66:7 cm 1. The labelled
state for this has an energy of 62030 cm ! and thus is a reasonable label. The strategy of
using fundamental energies is more important when labelling the argear or VdW stretch
as these states are coupled[36, 48].

The rst comparison to experiment that can be made is to the obseed frequencies
of the fundamentals. The rst fundamental observed was the tgional frequency[65] which
was originally done for {*N,O), but later updated to include the frequency for *N,0),[86].
For (*N,0),, the torsional frequency was found to be 23(1:0) cm * compared to 257599
cm 1 from the rovibrational calculations done previously[36]. FortfN,O),, the experimental
frequency was found to be 26(1:0) cm ! compared to 253644 cm ! calculated in this work.

Although the calculated frequencies themselves do not agree, tbeange in the torsional
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frequency between the two isotopologues is40cm ! for both experiment and theory. For
the geared (disrotatory) bend fundamental, the'¢N,O), frequency was found to be 43(1:0)
cm 1[82, 65] compared to the calculated 48609(1) cm®. For (**N,0),, the experimental
value was found to be 45(1:0) cm ' compared to 412860(1) cm ! in this work. Here the
frequencies do agree to the experimental values within the errdfhe change in the frequency
found from the experiment is 0:7 cm ! compared to 0:6 cm ! suggested by the theoretical
calculations. Recently, the anti-gear fundamental was observéd be 960926(1) cm ! and
95:4913(1) cm * for (**N,0), and (**N,0), respectively[86]. This compares to the calculated
values of 975221 cm ! and 963946 cm®. In this case, the theoretical calculations predict
a signi cantly larger change in the frequency than is observed expmentally ( 1.1 cm?!

compared to 0:6 cm 1).

6.4.2 J>0 energy levels and rotational constants of fundamentals
for ( 15N 20) 2

J>0 levels have also been calculated for each isotopologue. The J=1rgi®s and rota-
tional constants, for non-polar and polar levels are shown in Tablés3 and 6.4 respectively.
Where possible, comparisons have been made to experimental tiot@al constants. The
experimentalists determine rotational constants by adjusting tb constants of an e ective
rotational Hamiltonian so that its eigenvalues reproduce the rotanal energy levels, asso-
ciated with a particular vibrational state. Likewise, in this and previas papers[36, 48], the
rotational constants are found by assuming that every wavefgtion is nearly a product of
vibration/tunnelling states and a rotational state. This means tha coupling between rota-
tion and vibration must be small. It is then required for vibration and otation labels to be

assigned to wavefunctions.
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Table 6.3: J = 1 rotational levels and rotational constants (in cm 1) for each isotopologue's
ground and fundamentals in the non-polar well.

J=0 101 1, 1o A B C
(W; Vi, Vg, Vi Vo) (Sym) (sym) (sym) (sym)
(*N,0),

0.0000(N;0000)(A+) 0.1036(B )
(N;0000)[80]
25.3645(N;1000)(A ) 25.4680(B+)
41.2860(N:0100)(B+) 41.3873(A)
51.6079(N:0010)(A+) 51.7089(B)
96.3946(N:0001)(A+) 96.4968(B)

0.0000(N;0000)(A+) 0.1056(B )
(N;0000)[76]
25.3588(N;1000)(A ) 25.4643(B+)
41.2680(N:0100)(B+) 41.3713(A)
52.0146(N;0010)(A+) 52.1173(B)
97.2825(N;0001)(A+) 97.3865(B )

0.3424(B )  0.3515(A+)

25.6966(B+) 25.7051(A )
41.6414(A ) 41.6504(B+)
51.9543(B ) 51.9630(A+)
96.7044(B ) 96.7113(A+)

(15N14No)2
0.3437(B )  0.3532(A+)

25.6921(B+) 25.7009(A)
41.6248(A ) 41.6342(B+)
52.3624(B ) 52.3714(A+)
97.6172(B ) 97.6263(A+)

(**N20)(**N,O)

0.0000(N;0000)(+)  0.1067()
(N;0000)[82]
25.5633(N;1000)() 25.6698(+)
41.5622(N;0100)(+) 41.6666()
52.1829(N:0010)(+) 52.2867()
100.0950(N:0001)(+) 100.1961()

0.3464( )  0.3559(+)

25.8993(+)  25.9082()
41.9217()  41.9312(+)
52.5335( )  52.5426(+)
100.4171() 100.4242(+)

(14N20)(15N14No)

0.0000(N;0000)(+)  0.1046()
25.3616(N;1000)() 25.4661(+)
41.2770(N;0100)(+) 41.3793()
51.8109(N;0010)(+) 51.9127()
96.4496(N:0001)(+) 96.5530()

0.3431()  0.3524(+)
25.6943(+)  25.7030()
41.6331()  41.6423(+)
52.1581( )  52.1669(+)
96.7582( )  96.7650(+)

0.2952 0.0564 0.0473
0.2940 0.0564 0.0472
0.2846 0.0560 0.0475
0.3092 0.0552 0.0462
0.3003 0.0548 0.0461
0.2621 0.0546 0.0477

0.2957 0.0575 0.0481
0.2944 0.0575 0.0480
0.2850 0.0571 0.0483
0.3098 0.0563 0.0470
0.3009 0.0559 0.0469
0.2873 0.0566 0.0474

0.2978 0.0581 0.0485
0.2966 0.0581 0.0485
0.2872 0.0577 0.0488
0.3120 0.0569 0.0474
0.3032 0.0564 0.0474
0.2751 0.0542 0.0470

0.2954 0.0570 0.0477
0.2848 0.0566 0.0479
0.3095 0.0558 0.0466
0.3006 0.0553 0.0465
0.2603 0.0551 0.0483
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To make these assignments, it is rst necessary to make assignrseaf the J = 0 energy
levels as was described in Section 6.4.1. Following this, it is necessaryge the two methods
described in Ref. 48. The rstis to use line-strengths calculateddm a sum-of-dipoles model
for the dipole moment of (NO),. Transitions that occur within states that have a permanent
dipole (polar) are easily assigned as they are bright. If there are states with a permanent
dipole with similar energy nearby, higher J states with the same vibrain label are easily
assigned. This is successful, even if these polar states are embddd a high density region
of non-polar (dark) energies. However, the distinction betweendegenerate tunnelling pair
is not resolved using this technique.

As the dipole moment is in the plane perpendicular to the c-axis, onlytgpe and b-type
transitions will be bright. C-type transitions are also symmetry fobidden as onlyA+ $ A
andB+ $ B are permitted. Therefore, the R(0) branch can give informationt@out the 1y;
and 1;; J=1 states only. The 1, states can be assigned through examining Q(1) transitions.
Fig. 11 of Ref. 48 illustrates these transitions.

The second method is vibrational parent analysis (VPA). This is pesfmed by re-
expanding the calculated rovibrational wavefunctions into vibratioal wavefunctions[48, 70].
From this analysis, we can not only con rm the assignments from thimtensity analysis, we
can also resolve, from which tunnelling pair, a1 energy level belongs. It also enables
the assignment of non-polar (dark) states. From this, the symnwy of the rotational states
relative to the J=0 state can be made. For states localized in the ngwmolar well, the sym-
metries of b, 1,1, and 1,0 are B , B , and A+ respectively. This is denoted as case a[48].

For polar states, the symmetry is B, A , and B+ which is denoted as case b.
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Table 6.4: J = 1 rotational levels and rotational constants (in cm 1) for each isotopologue's

ground and torsional fundamental in the polar well.

J=0 101 1, 1o A B C
(W; Vi, Vg, Vi Vo) (Sym) (sym) (sym) (sym)
(*N,0),

143.6184(P;0000)(A+)143.7147(B) 143.9598(A ) 143.9677(B+)

143.6184(P;0000)(B+) 143.7147(A) 143.9598(B ) 143.9677(A+)
(P;0000)[81, 79]

164.7427(P;1000)(A )164.8430(B+) 165.1925(A+) 165.2010(B)

164.7427(P;1000)(B ) 164.8430(A+) 165.1925(B+) 165.2010(A)

(15N14No)2
143.5421(P;0000)(A+)143.6402(B) 143.8849(A ) 143.8931(B+)
143.5421(P;0000)(B+) 143.6402(A) 143.8849(B ) 143.8931(A+)
164.6524(P;1000)(A )164.7546(B+) 165.1047(A+) 165.1135(B)
164.6524(P;1000)(B ) 164.7546(A+) 165.1047(B+) 165.1135(A)

(**N20)(**N,0)
143.3244(R:0000)(+) 143.4236( ) 143.6706() 143.6789(+)
(P..;0000)[81]
143.8133(R.0000)(+) 143.9111() 144.1629() 144.1709(+)
(P,:0000)[81]

165.0326(+)
165.5436(+)

165.0414()
165.5522()

164.5742(R;1000)( ) 164.6777(+)
165.0866(R;1000)( ) 165.1881(+)

(14N20)(15N14No)

143.9146( ) 143.9226(+)

143.5725(R;0000)(+) 143.6698( )
(P4;0000)[81]
143.5882(;0000)(+) 143.6854( )
(P,;0000)[81]
164.6898(R;1000)( ) 164.7911(+)
164.7056(R;1000)( ) 164.8068(+)

143.9304() 143.9385(+)

165.1408(+)
165.1567(+)

165.1494()
165.1653()

0.2972 0.0521 0.0442
0.2972 0.0521 0.0442
0.2981 0.0518 0.0440
0.4039 0.0544 0.0459
0.4039 0.0544 0.0459

0.2979 0.0531 0.0450
0.2979 0.0531 0.0450
0.4056 0.0555 0.0467
0.4056 0.0555 0.0467

0.3007 0.0537 0.0454
0.3004 0.0533 0.0452
0.3047 0.0528 0.0449
0.3063 0.0524 0.0447
0.4110 0.0562 0.0473
0.4106 0.0550 0.0465

0.2975 0.0526 0.0446
0.2981 0.0523 0.0444
0.2977 0.0526 0.0446
0.2983 0.0523 0.0443
0.4046 0.0549 0.0463
0.4049 0.0549 0.0463
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From these assignments, rotational constants can be extradtérom the rovibrational
energy levels. The rotational constants listed in Tables 6.3 and 6.4eadlerived from the J=1
levels only. For the ground non-polar state, comparisons to exp@ental values can be made
for (**N,0),, (**N*NO), and (**N,O)(**N,0). The discrepancy between the theoretical
calculations and the tted experimental values are all very similar. e rotational constant
Ais underestimated by 00012 or 00013 cm %, the B constants are equivalent within the error
of the calculations, and the C constants are di erent by 0:0001 cm®. These di erences
are all the same as reported in Ref. [36]. For the ground polar statehe discrepancy is is
more varied. For the equivalent-monomer isotopologué®\N,O),, the di erence of 0:0009
cm 1, +0:0003 cm?, and +0:0002 cm ! is equivalent to that of Ref. [48]. This is also similar
to discrepancy in ¢*N,O)(**N*NO). For the (**N,0)(**N,O) isotopologue, the rotational
constants B and C also di er from experiment by similar values as thetlwer isotopologues.
However, while the rotational constant A for the (R;0000) state only di ers by +0:0003
cm 1, the constant A for (P,;0000) di ers by 0:0016 cm 1.

Ref. [81] also gave some observed transitions for various isotogoles from which com-
parisons can be made. Table 6.5 shows the comparison between tlewated and observed
transitions. The di erence between the calculated and observedainsitions frequencies is
fairly constant for all observed transitions. Once again, the erron the observed transitions
for P, and Py is very similar for (**N,O)(**N*NO) but quite dierent for P , and P, of

(*N20)(**N20).
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Polar  Ji%od ok Veal(MHZ) Vobs(MHZ) Vea  Vobs(MHZ)
(**N20)>
Lo 1o 7586.3 7618.3 32.0
Ooo! 111 10236.2 10256.8 20.6
215! 134 5537.2 5510.8 26.9
202! 101 5768.5 5738.8 29.7
211! 1o 6010.8 5978.4 32.4
211! 202 7827.6 7857.8 30.2
210! 1o 12885.1 12895.4 10.3
33! 210 8262.5 8301.3 39.2
303! 202 8594.1 8637.0 42.9
312! 211 8963.5 9014.8 51.3
312! 303 8227.2 8205.3 21.9
(**N20)(**N,0)
a Ooo! 111 10377.7 10368.6 9.1
b Opo! 111 10480.2 10529.4 49.2
(14N20)(15N14No)
a Ooo! 111 10254.8 10275.2 20.4
b Opo! 111 10259.6 10280.2 20.6
a Lo 1n 7581.7 7613.5 31.8
b 10! 1pg 7587.5 7619.9 32.4




Chapter 7

CO »-CS» complex

7.1 Historical studies of dimers involving CO >

The CO,-CS, complex had not been studied in great detail until 1998 when Duttort

al.[63] performed an infrared study of this non-polar dimer system. lthough few studies
had been performed on C@CS,, there was interest in the study of it. This was mainly
due to the wide variety of orientations that dimers with a CQ monomer were found to
possess. For HCI[87, 88] and HF[89, 88] with GOthe most stable structure is linear (or
nearly linear) but HBr[88] prefers a T-shaped conformation. Hower, the CO,-Br,[90] was
found to have the linear orientation. CQ-HCN is found to have both nearly linear[91] and
T-shaped[91, 92] conformations. Slipped parallel structures wefound for CO, combined

with itself[93], N,O[94], acetylene[95], and OCS[96].

Non-planar structures have also been found for GQvith other monomers. The structure
with SH,[97] is such that the plane of the S-C®is perpendicular to the plane of the KHS
monomer. The structure with OCS also forms a cross-shaped stture[98]. And most
relevantly, the CO,-SO, dimer forms a cross-shaped con guration. From the many studies

77
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Table 7.1: The local minima of the CQ-CS, PES surface.

Slipped Cross

Coordinate Parallel Shaped Bent
ro(Bohr) 6.946 6.292 11.180
1(deq) 114.103 90.000 19.463
»(deq) 70.021 90.000 8.410
»(deg) 180.00 90.000 180.00
E(cm 1) -539.03 -541.67 -314.94
E Eolcm 1) 2.64 0.00 226.73

of VAW dimers involving CO,, it is clear there is no simplea priori way to determine what
the most stable structures will be. The only experimental study athe CO,-CS, was that
of Dutton et al.[63] where it was determined that the cross-shaped structure svéhe most

energetically favourable.

7.2 Properties of the PES

7.2.1 Minima

This PES surface has 8 wells with: 4 symmetrically equivalent slippedgdiel wells, 2
symmetrically equivalent cross-shaped wells, and 2 symmetrically eeplent bent wells. The
geometries of the corresponding energies relative to dissociatiae given in Table 7.1. It
can be seen that the cross-shaped well is only slightly more energaty favourable to the
slipped-parallel well. The dierence in the minimum between the two wellss 2.64 cm .

The Bent well is signi cantly higher than the other two wells and also ha a depth of less
than 10 cm 1. It is also notable that that the slipped-parallel structure is not eactly parallel

as 1+ , 6 180 . Schematics of the cross-shaped and slipped-parallel structsir@re given

in Figure 7.1.
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Figure 7.1: The shape of the left)cross-shaped and right)slippgdarallel isomers of the CG-
CS;, dimer on the PES surface for Van der Waals radii of O(red), C(grg¢yand
S(yellow) of 1.4, 1.5, and 1.83\(respectively).

The only one of the three distinct structures observed experimiatly is that of the cross-
shaped well. Duttonet al. gave the structure as ;; ,; » = 90deg andro = 6:410 Bohr
. The ;,,,and , coordinates of Table 7.1 are exactly the same as given in Ref. 63,
and the experimentalr, value is close to the value given in Table 7.1 with a discrepancy of
0.108 Bohr. Duttonet al. claimed that the atom-atom interactions were responsible for the
cross-shaped structure while multipole interactions would suggestplanar shape, like most
of the other dimers including CQ. Dutton et al. suggested that the atom-atom interactions
were larger than the multipole interactions which explains the shapeHowever, the PES

presented here suggests the two shapes are actually very closeriargy.
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7.2.2 Paths between minima

Figure 7.2 shows a 2D contour image of the PES made by constrainin£CS, to be
planar and choosing to minimise the energy for each pair of angles; ,. The axes are the
extended angles de ned in Ref. 48. The extended angles are dedne; = ;, > = 360 2
if ,=0 and 3= 4, 2= ,if ,=180. The top part of the gure is for , =0 ; the
bottom part is for , =180 .

The labels for the di erent wells are SP for the slipped parallel and B fahe bent wells.
Every structure in the molecule is labelled twice. For example SP1 is @bed from SP2 by
rotating the entire molecule. There is also a small circle around the gition where a linear

con guration would be, but the depth of the well is less than the RMSrror of the PES.
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In (N,0), discussed in Refs. 36, 48, 65, and (OGSh Chapter 5, there are two types of
planar paths that connect the low-lying planar minima, disrotatory @ths and a conrotatory
path. For CO,-CS;, the disrotatory path is closed between SP7 and SP3. Thereforthe
only types of paths between di erent con gurations are conroteory. The conrotatory path
between SP7 and SP1 has a barrier of about 155 ctn The transition state on this path
is the parallel structure. The conrotatory path between SP1 an&P6 has a barrier of 255
cm ! with the transition state being T-shaped.

To get between SP2 and B2, the COmonomer rotates and ips. The barrier for this
path is about 240 cm?. The well depth is less than 10 cm! between the bent con gurations
and the height of the well relative to the slipped parallel states is abib 15 cm 1. Because
the bent states are high and very shallow, no energy levels or wauattions were calculated
for this structure.

Although some of the conrotatory and disrotatory paths are qué low-lying, the CO,-
CS;, dimer has an even lower lying path in the out of plane coordinate,. Figure 7.3 shows
the transition from SP1 or SP7 to SP4 or SP6 through the cross-ahed well (in the centre)
rotating through 5. It is obtained by minimizing ro, 1, and , at each , value. The
rst thing that can be noticed from Figure 7.3 is that the slipped pardlel and cross wells
have very similar energy with only a di erence of about 3 cmt. The barrier between SP
and cross wells is also very small at about 40 crh This is much smaller than the barriers
when both monomers are in the same plane. Therefore, it is more pable that transitions
between dierent SP con gurations occurs by rotating through , than the conrotatory

cycles previously discussed.
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Figure 7.2: Potential as a function of extended angles™; 7 by minimizing with respect

to ro. The contours correspond to energies of -100, -150, -200,0,2800, -307.5,
-320, -330, -350, -360, -380, -400, -450, -500, -520 tnGreen contours are those
below -380 cm?.
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Figure 7.3: Barrier in , direction found by minimizing »; »;ro while changing ,. The mid-
dle well corresponds to the cross-shaped well while the outside weltsrespond
to two SP wells each.

7.3 Rovibrational calculations

The rovibrational energy levels were found the same way as desedldn Ref. Refs. 36, 48 and
in Chapter 4. The coordinates used are shown schematically in Figufel. The monomer ro-
tational constant is taken to be the experimental ground statealue of 0.3902184cnt[99] for
CO, and 0.109159873cnt[100] for CS. The masses 15.9949146221[67] , 12, 31.972071[68]
a.m.u. for O, C, and S, respectively are used to compute the reddcmass for the inter-
monomer coordinatery, and are equivalent to the ones used to generate the PES.

A large basis was needed to calculated the energy levels. The angldasis we use has
Imax = Mmax = 52 (the samelna for I; and 1,). With this basis we used 53 Gauss-Legendre
qguadrature points for ; and , and 106 trapezoid points in the range [0, 3, with the rst

point at zero, for ».
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Figure 7.4. A schematic of the coordinates used for rovibrationahlculations of CG-CS; as
an example. O isred, C is grey, and S is yellow.

For ro we use 25 PODVR (potential-optimized DVR) functions[32, 33, 34, 35 The
reference potential that de nes the PODVR functions is a cut pantial in the range [5.6
Bohr, 20 Bohr] with all other coordinates xed at their equilibrium vaues in the cross-shaped
well. The vibrational even-parity basis size is 1275975. Tests with aidre basis, having 200
sin DVR functions for ro and an angular basis withl,,.x = 52, con rm that this basis set
converges levels near 50 crhabove the zero point energy (ZPE) to better than 0.001 cm.

We apply a ceiling just below the ceiling used in the generation of the PEairface. This
reduces the number of points referenced in the potential by appdmately half. The ceiling
was applied to reduce the spectral range[69].

The monomers are symmetric about their centre of mass, and askythere is no obvious
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way that the r; and r, vectors could be uniquely described. Therefore the calculationsvea
been performed with exchange of the S and O atoms accounted. fofhe permutation-

inversion (PI) symmetry group for the Hamiltonian we use i$5g, composed of operations
fE;E g f E; o) s; o sgwhere o; s permutes the O and S atoms. e/o label symmetric
and antisymmetric irreducible-representations irreps with respeto ; and label even and

odd parities. This results in 8 distinct parity blocks (+ee,+eo,+0e,+00,ee,-€0,-0€,-00) in
which the energy levels are labelled a&( o s). The use of a parity-adapted basis makes

it possible to calculate all the parity block calculations separately.

7.4 Results

7.4.1 Energies and labels for J=0 plus rotational constants from

J=1 of ground states of each low lying minima.

Table 7.2 lists the lowest] = 0 energy levels for each irrep of the COCS;, dimer. The
labelling of the states is done in the form (Typejv(torsion), vy(geared bend), y (anti-
geared bend), v(VdW-stretch)) for the SP states, and (Type; v (torsion), vs(CS, monomer
bend), vo (CO, monomer bend), y(VdW-stretch)) for the cross states. The type indicates
the well(s) over which the wavefunction is localized. The wells are reggented by C for
the cross, and SP for slipped-parallel. The SP well has the same tgpef fundamentals
as (N,O), and (OCS),. For the cross isomer, the fundamentals have the same torsiondan
stretch behaviour but the gear and anti-gear bends are replacég bends for the individual
monomers. Conveniently, this means that there is very little couplinpetween coordinates

and di erent fundamentals are easily assigned.
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Table 7.2: The lowest vibrational levels (in crt) of (CO,)(CS,) for each irrep relative to the
ZPE. The quantum numbers y (torsion), vg(geared bend), y (anti-geared bend),
v; (VdW-stretch) are for the four intermolecular modes. The paritie (eo) are for

monomers 1 and 2 respectively.

=+

0.0000(C;0000)(e€)
8.2478(SP;0000)(00)
8.2479(SP;0000)(ee)
8.2480(SP;0000)(0e)
8.2480(SP;0000)(e0)
15.2596(C;1000)(00)
26.6014(C;0100)(e0)
27.4004(ee)
28.1279(SP;2000)(0€)
28.2798(SP;2000)(00)
28.5009(SP;2000)(e0)
29.4709(ee)

41.9149(C;0010)(0€)

45.9463(C;0001)(ee)

0.0000(C;0000)(00)
15.2571(C;1000)(ee)
19.0753(SP;1000)(00)
19.0794(SP;1000)(oe)
19.0799(SP;1000)(e0)
19.0872(SP;1000)(ee)
26.7388(C;0100)(oe)
28.2567(C;2000)(00)
31.4974(C)(e0)
35.0505(ee)
35.6139(oe€)
36.9500(C)(00)

44.3713(C;0010)(e0)
45.6746(C;0001)(00)
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As there are four equivalent SP wells and two equivalent cross wellsc@uld be possible to
have splittings for the various levels. According to our calculationghe tunnelling splittings
are small. This is partly due to the width and height of the barriers andoartly due to
the large mass that must be moved during the tunnelling processeBor the cross-shaped
well, the rst state that has tunnelling greater than 0.0001 cm?! is (C;1000). For the SP
structures, there is splitting greater than 0.0001 cm' for the ground state (SP;0000). As
with the OCS dimer cross states, the (C;1000) and (C;0010) evenripa state has a higher
energy than the odd parity state. This must be once again due to gpling.

Probability density (PD) plots were made from the wavefunctions byntegrating over all
but two coordinates. The PDs are normalized with a volume element viata sin factor
for each and ar3 factor for ro. Many low-lying states can clearly be associated with a
single well. The +ee (SP;0000) and (C;0000) states are shown in Figut® and Figure 7.6
respectively. The SP states clearly show amplitude in all four SP wellshile the cross states

have amplitude in the two cross wells.
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Figure 7.5: The (C;0000)(ee) wavefunction.
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Figure 7.6: The (SP;0000)(ee) wavefunction. There is amplitude in dbur symmetrically
equivalent SP wells.

The vi, Vg, Vi, Va, Vs, Vo labels are determined by using the nodal structure of the
wavefunctions. As the barrier between SP and cross wells is only 4@ &, the labelling
of states becomes di cult and ambiguous for most states with engires 30 cm! above the
ZPE. The reason for this is that wavefunctions show amplitude in batSP and cross wells.

PD plots of the fundamentals of the cross isomer are shown in Apgbr A.1. The
torsional fundamental associated with the cross well is quite lowbaut 15 cm * (compared

to 26 cm ! for the CS, bend, 43 cm ! for the CO, bend and and 45 cm ! for the
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VdW stretch). The PD plots of these four fundamentals are showim Appendix A.1. The

tunnelling pairs of (C;1000) and (C;0100) states look quite similar. Bbtthese states are
also far enough below the barrier height to be localized in the crosslwd&he energies and
wavefunctions of the (C;0010) state are both quite di erent. Asan be seen from Figure A.3,
the (C;0010)(+oe) with energy 41.9147 cm' has signi cant amplitude in regions outside the
cross well. The (C;0010)(-eo) state (with energy 44.3708 chy on the other hand, is quite
well localized in the cross well. It is suspected that at least some ofetharge disparity in

the energies of this tunnelling pair is due to coupling of the two (C;00})8tates with states

of similar energy. Surprisingly, the VdW stretch fundamental tunelling pair looks quite

similar and is well localized despite having an energy higher than the b&r of around 45
cm 1,

For the SP well, only the ground (SP;0000) and torsion (SP;1000) $ts are localized,
and uncoupled from other states well enough, to obtain any meawgiul data. The PD plot
for all four (SP;1000) states is shown in Figure A.5. As you can seeIin Table 7.2, there
are only three (SP;2000) states labelled where symmetry would regufour. The reason
for this is that both the 27:4004 cm *(ee) and 294709 cm (ee) states could reasonably be
assigned as the fourth (SP;2000) or the second (C;2000) statehel both have the proper
parity and approximately correct energy to represent either sta. However, when looking
at the PD plots, neither seem to have the appropriate nodes to bassigned as (SP;2000) or
(C;2000). The assignment is therefore left blank. This type of amhig@y in nodes continues

for all higher wavefunctions in the SP well and most of the wavefutions in the cross well.
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7.4.2 J > 0 states and rotational constants

Rovibrational levels forJ > 0 have also been calculated and have been compared with ex-
periments where applicable. Experimentalists determine rotationaonstants by adjusting
the constants of an e ective rotational Hamiltonian so that its eigavalues reproduce the
rotational energy levels associated with a particular vibrational ste. To do this t, we
must assume that every wavefunction is nearly a product of a vibtian/tunnelling state and
a rotational state and have a means of assigning vibrational andtadional labels to rovibra-
tional levels. If coupling between rotation and vibration is too strog this will be impossible.
Even when the coupling is weak enough that it is possible to associatwibrational states
with vibrational states, it will be di cult to do so if the density of vibra tional states is high.
In this section, a tis performed to compare the results of Ref. 6fr the ground cross state.

To label rovibrational states, only vibrational parent analysis (VRA) from Ref. 48 was
used. VPA involves re-expanding the the rovibrational wavefuniins in terms of vibrational
wavefunctions. In the study of (OCS), and (N,O), isotopologues, intensity calculations
were also used to assign rovibrational states. This was not usedddecause neither C®
or CS; is a polar monomer so the use of intensities is not as straightforward

It is possible to arti cially assign a dipole moment to one (or both) of tle monomers to
assist in the assignment o > 0 states. This was done with an arti cial dipole attached
to the lighter CO, monomer, to simulate how the infrared spectra of Duttoret al.. The
asymmetric stretch of the CQ monomer was used there.

Both O and S have zero spin, so only the (ee) states actually existlthough this is the
case, the (eo,0e,00) states can still be used to determine rotatmrtonstants. The labels
are also useful for determining the symmetry of a rotational stat For the cross states, the

1o1; 111; 1,0 States have symmetry ee, +oe, oe, while SP has symmetry ee, oe, +oe.



CHAPTER 7. CO,-CS, COMPLEX 91

Unfortunately, no bright transitions were found for the only allowe transitions of ee to
+ee within the calculated J < 3.

Being able to attribute vibrational parents makes it possible to ex#ct rotational con-
stants for the calculated rovibrational energy levels. A, B, and Cotational constants for
the lowest vibrational states associated with cross and SP wells ameported in Table 7.3.
Using the minimum geometry from the PES for the cross-shaped cguaration to calculate
rigid rotor rotational constants results in A=0.0849, B=0.0479, ad C=0.0363. This has an
error on the order of 0.001 cm! while the rotational constants presented in Table 7.3 have
an error on the order of 0.0001 cnt. This indicates that accounting for the motion of the
nuclei is imperative to achieve excellent agreement with experiment.

There is a clear failure of the model Hamiltonian used to t the vibratimal levels for
states near (and above) the barrier between SP and cross wellshi§ presents itself in the
cross states as a divergence of the rotational constant A betvea tunnelling pair. One
of the tunnelling pair's energies will t to a constant A that is much larger than would be
suggested by the geometry of the molecule. The other tunnelling ipavill have energies
corresponding to a much smaller (or even negative!) rotational cstant A. It is suspected
that this is due to the internal rotation[101] of the molecule aroundhe A-axis, which for the
cross states is parallel to they vector. In order to properly assign rotational constants, it

would be necessary to include an extra term to the t to account fothis internal rotation.

Dutton et al. assigned and t energy levels to a model Hamiltonian for the crossagmd
state. Similarly, a twith J = 1;2 rovibrational levels has been performed and the compari-
son between the experimental and two (C;0000) states rotatioheonstants is made in Table

7.4. The A,B, and C rotational constants are all in excellent agreemewith each other with
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Table 7.3: J = 1 rotational levels and constants for ground and ¥ vs, and v; fundamentals
of cross as well as the ground and, Yyundamental for SP. Rotational constants
are derived fromJ =1 energy levels.

J=0 (S;Vi,Vg,Vr ,Va) Loi(sym) L11(sym) lio(sym) A B c

0.0000(C;0000)(+ee) 0.0818(ee) 0.1212(+oe) 0.1323(0e) 0.0858 0.0464 0.0354
0.0000(C;0000)( 00) 0.0818(+00) 0.1212(e0) 0.1323(+e0) 0.0858 0.0464 0.0354

Cexp 0.0859 0.0463 0.0355
8.2478(SP:0000)(+00) 8.3162(00) 8.3845( e0) 8.3951(+e0) 0.1078 0.0395 0.0289
8.2479(SP:0000)(+ee) 8.3163(ee) 8.3844( oe) 8.3950(+0e) 0.1076 0.0395 0.0289
8.2480(SP:0000)(+0e) 8.3164(0e) 8.3846( ee) 8.3952(+ee) 0.1077 0.0395 0.0289
8.2480(SP:0000)(+€0) 8.3164(e0) 8.3846( 00) 8.3952(+00) 0.1077 0.0395 0.0289
15.2596(C;1000)(+00) 15.3406(00) 15.3783(+€0) 15.3894(e0) 0.0837 0.0461 0.0349
15.2571(C;1000)( ee) 15.3381(+ee) 15.3803(0€) 15.3914(+0e) 0.0883 0.0460 0.0349
26.6014(C;0100)(+e0) 26.6813(€0) 26.8438(+00) 26.8545(00) 0.2078 0.0453 0.0346
26.7388(C:0100)( 0e) 26.8191(+0e) 26.7359(ee) 26.7475(+ee) -0.0374 0.0460 0.0343
45.9463(C;0001)(+ee) 46.0261@e) 45.7551(+0€) 45.7656(0€) -0.2259 0.0451 0.0346
19.0753(SP;1000)(00)19.1449(+00) 19.2196(+e0) 19.2308€0) 0.1151 0.0404 0.0292
19.0794(SP;1000)(0€)19.1482(+0e) 19.2151(+ee) 19.2248¢e) 0.1061 0.0392 0.0296
19.0799(SP;1000)(e0)19.1497(+e0) 19.2133(+00) 19.224400) 0.1040 0.0404 0.0293
19.0872(SP;1000)(ee)19.1554(+ee) 19.2112(+oe) 19.2214¢e) 0.0950 0.0392 0.0289
45.6746(C;0001)( 00) 45.7543(+00) 46.0902(e0) 46.1010(+e0) 0.3811 0.0453 0.0345
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Table 7.4: Comparison of spectroscopic constants of the crosatetwith those of reference
63. Constants were obtained from a t to levels with] 2. Values are in cm?,
The bracketed number is one standard deviation in units of the lastigit.

Parameter Ref. 63

This Work (+ee)

This Work (-00)
A 0.08590(1) 0.0858418(2) 0.0858403(2)
B 0.04634(1) 0.0464293(2) 0.0464293(2)
C 0.03546(2) 0.0354059(1) 0.0354059(2)
3 -1.37(65) 10 7 1.11(32) 10 7 1.11(32) 10 7
IK -1.01(22) 10 © 1.02(7) 10 ° 1.02(7) 10 °
K 1.06(23) 10 °© -0.92(3) 10 ¢ -1.28(3) 10 6

an error of less than 0.0001 cnt. The 5, .k, and  constants on the other hand are

the same magnitude but opposite sign. In future work] > 2 levels will be calculated to see
if that corrects the sign problem.



Chapter 8

Summary and Conclusions

8.1 Summary

Accurate PESs for (OCS), (N,O),, and CO,-CS;, VdW dimers have been used to calculate
rovibrational spectra. The PESs were made frorab initio data at the CCSD(T)-F12b/VTZ-
F12 level and an IMLS interpolation method. The error of the IMLS eor is small so
results obtained from the potential should be accurate. This is comed in all rovibrational
calculations performed with these PESs.

To do the rovibrational calculations, matrix elements are not comped or stored but the
Lanczos algorithm is used. Kinetic energy elements of the Hamiltoniaare performed by
performing each coordinate sequentially, while potential matrix eleemts are performed with
guadrature by doing sums sequentially. These calculations with thégid monomers are not
especially di cult even though the basis size needed can be larger tha million. Obtaining
a good PES and analyzing the functions and energy level patternsfés more di cult. This
analysis was done for (OC$) four isotopologues of (MNO),, and CO,-CS,. In order to
assignJ = 0 vibrational energy levels, probability distribution plots were madefor each

94
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of the low-lying energies. Nodal counting was used to assign fundamtals and overtones.
The knowledge of fundamental energies was also useful in assigraambination states. For
J > 0, two technigues were used to assign energy levels. The rst wae tcalculations of line
strengths to identify bright transitions. The second was vibratioal parent analysis which
expands the the rovibrational states in terms of the vibrational avefunctions.

For the (OCS), dimer, rotational constants agree with experimental results to ithin
0.001 cm?! for the non-polar S-in and Polar isomers. The rotational constastof the non-
polar O-in as well as the never before seen cross-shaped isomerdiso been calculated. A
comparison of observed rovibrational transitions also showed eXent agreement.

The rotational constants calculated for the isotopologues of g), agreement with ex-
periment is similar to the results calculated for the most abundant isope (**N, °0), for
the cases when the two monomers were equivalent. In the case wehthe two monomers
were di erent, the non-polar states had similar agreement to expienentally determined con-
stants. For the polar wells where the two wells were no longer identicéhe accuracy of the
results depended on which polar well was examined.

Calculations for the CQ,-CS, dimer agreed with experiment well for the global minimum
cross-shaped structure. This is the only experimental structarobserved. Higher vibrational
states seemed to su er from a failure of the model Hamiltonian to wth the energy levels
were t to. This is thought to be because of a missing term that wouldccount for internal

rotation of the dimer due to the low barrier between states.

8.2 Future Work

The next step is to determine an appropriate Hamiltonian for which ta rovibrational energy

levels of CQ-CS; could be tto. There are also many more rigid monomer Van der Waals
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complexes that could be examined using the techniques outlined in thisesis.
In a broader context, it would be useful to develop techniques in@der to make it feasible
to study larger molecules. This could involve the use of more localizeddis functions and

pruning of higher energy basis functions.
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Appendix A

Wavefunctions of CO »-CS»

fundamentals

A.1 Figures of Cross fundamentals

Figure A.1 shows the standard torsional fundamental. Figure A.2 skvs the (C;0100) fun-
damental where there is only a node in,. This implies that the CO, monomer is fairly
stationary while the CS monomer vibrates. Likewise for (C;0010), there is only a node in
1. Therefore, the CQ monomer is vibrating while the C$ monomer is fairly stationary.
Unlike in previous studies of dimers, the VdW stretch (C;0001) staties not coupled.

As mentioned in Chapter 7 and can be seen in Figure 7.3, the barriertlween the cross
and the slipped parallel states is only about 40cmi. Therefore, there is non-negligible
amount of the probability distributions of the (C;0010) and (C;0001)tates outside of the
cross well. This makes the assignment of the>D states trickier because the parentage is

not as de nite.
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Figure A.1: a-b) The (C;1000)(+00) state of the CQ-CS, complex at 15.2598cm*
. ¢c-d) The (C;1000)(-ee) state of the C®CS, complex at 15.2573cm*

A.2 Figure of (SP;1000)

Due to di culty in assigning the SP states, only the (SP;1000) was aggned de nitively. As
can be seen from Figure A.5, all of these SP states look very similaeevthough the energies

are slightly di erent.
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Figure A.2: a-b) The (C;0100)(+eo0) state of the CG-CS, complex at 26.6018cmt. c-d)
The (C;0100)(-oe) state of the C@-CS, complex at 26.7393cm*
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Figure A.3: a-b) The (C;0010)(+oe) state of the CG-CS, complex at 41.9147cmt. c-d)

The (C;0010)(-e0) state of the C@-CS, complex at 44.3708cm*
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Figure A.4: a-b) The (C;0001)(+ee) state of the CG-CS, complex at 45.9462cmt. c-d)
The (C;0001)(-00) state of the CG-CS, complex at 45.6747cmt
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Figure A.5: The a-b)(SP;0001)(o0), c-d)(SP;0001)(oe), e-f)E0001)(e0), and g-
h)(SP;0001)(ee) states.



