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Abstract

A new intermolecular potential energy surface, rovibrational transition frequencies, and line

strengths are computed for (OCS)2 and CO2-CS2. The potentials were made by �tting

energies obtained from explicitly correlated coupled-cluster calculations and �t using an

interpolating moving least squares method. Rovibrational transition frequencies are also

calculated for four isotopologues of the N2O dimer using a previously presented potential

energy surface. The rovibrational Schr•odinger equation for allthree dimers is solved with a

symmetry-adapted Lanczos algorithm and an uncoupled product basis set. All four inter-

molecular coordinates are included in the calculation.

On the (OCS)2 potential energy surface, a previously unknown, cross-shapedisomer is

found along with polar and non-polar isomers. For CO2-CS2, the previously found cross-

shaped minima is found along with a slipped-parallel con�guration. Theassociated wave-

functions and energy levels for each of these isomers is presented. To identify states that

have a permanent dipole, both calculations of line strengths and vibrational parent analysis

is used. For non-polar states of, (OCS)2, and (N2O)2 isotopologues, and all CO2-CO2 states,

only vibrational parent analysis was used. Calculated rotational constants di�er from their

experimental counterparts by less than 0.001 cm� 1 for (OCS)2 and CO2-CS2, and less than

0.002 cm� 1 for any (N2O)2 isotopologue.
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Chapter 1

Introduction

1.1 Purpose

The study of vibrational and rovibrational states is fundamentallyimportant to understand-

ing intramolecular energy transfer, which applies to various aspects of chemical dynamics.

Vibrational states play a key role in phenomena such as how moleculesrespond to the pres-

ence of light. The improved knowledge of intramolecular energy transfer at a fundamental

level is important to a wide array of applications, from pharmaceutical drug delivery, to fuel

cell technology. Van der Waals molecules are particularly interestingbecause of the many

con�gurations that the molecule can adopt. These many con�gurations are also relevant to

testing the e�cacy of ab initio or pairwise potentials as it pushes the limits of the methods

used to create them.

1



CHAPTER 1. INTRODUCTION 2

1.2 Van der Waals interactions

Van der Waals (or dispersion) forces are important in a wide array ofphysical processes

including supramolecular polymers[1],� � � stacking of aromatic rings[2], stabilization of

hydrocarbons[3] and constitute up to half of binding energies of transitions metals[4]. Having

the proper description of these dispersion interactions is integralto topics including drug

design[2] and protein folding[5].

1.2.1 Origin of Van der Waals forces

The following simple derivation of dispersion forces follows that of Ref. 6 and gives some

insights into the origins of these forces. It is a simpli�ed model of theone given by Drude[7]

and was �rst employed by London[8] in his calculations of dispersion energies.

Even when a molecule has no permanent dipole, the electrons are always in constant

motion. Because of this, there is, in general, going to be an instantaneous dipole present.

This instantaneous dipole will then induce an instantaneous dipole on an adjacent molecule

causing an interaction. The simplest (but very crude) model that can describe this interaction

is shown in Fig. 1.1, which shows the interaction of two non-polar molecules A and B.

These molecules are composed of a positive (+Q) with a negative (-Q)charge oscillating

with angular frequency! 0. The distance between these two charges is given byza and zb

which results in an instantaneous dipole of� = Qzi . The Hamiltonian that describes one of

these molecules by itself is given by

H i =
� �h2

2M i
+

1
2

M! 2
0z2

i ; (1.1)

where M i is the reduced mass of moleculei , and the interaction between the charges is
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Figure 1.1: A simple model of two non-polar molecules interacting. Thetwo molecules are
composed of two particles of positive (+Q) and negative (-Q) charge with dis-
tance za and zb. The two molecules are separated by a distancer

approximated as a harmonic potential. The resulting energies for this Hamiltonian are that

of the harmonic oscillator,

Ea =
�

na +
1
2

�
! 0; Eb =

�
nb +

1
2

�
! 0: (1.2)

The interaction between two dipoles is given by

Vint (r ) =
2zazbQ2

4�� 0r 3
; (1.3)

and therefore the total Hamiltonian is,

H tot = Ha + Hb + Vint (r ) : (1.4)

If you make the transformation,

Z1 =
za � zb

2
; Z2 =

za + zb

2
(1.5)
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H tot becomes two uncoupled harmonic oscillators of coordinatesZ1 and Z2 with frequencies,

! 1 = ! 0

s

1 �
2Q2

4�� 0r 2M! 2
0
; ! 2 = ! 0

s

1 +
2Q2

4�� 0r 2M! 2
0
: (1.6)

The ground state energy of this system is then

E (r ) =
1
2

(! 1 + ! 2) ; (1.7)

Which can then be expanded using the binomial theorem to obtain thewell known r � 6

relationship,

E (r ) = ! 0 �
Q4�h

2 (4�� 0)
2 r 6M 2! 3

0

+ ::: (1.8)

The �rst term in the total energy ( ! 0) is simply the energy of the two molecules at a very

large distancer , so Eq. (1.8) states that the dispersion interaction can be mostly described

by the r � 6 term.

This is the basis for the well-known Leonard-Jones (LJ) potential,

VLJ = Vpauli + Vdis =
C12

r 12
�

C6

r 6
; (1.9)

whereC12 and C6 are molecule speci�c constants.

The LJ potential is a convenient way to represent interactions between two non-polar

molecules. TheVdis term that describes the dipole-dipole interaction is the only term that is

empirically derived. Ther � 12 term is used to describe the Pauli-repulsion, and is only of the

(LJ) form for convenience as it is easily calculated numerically as (r � 6)2 = r � 12. Although a

convenient representation of dispersion interactions, the LJ potential is woefully inadequate

in describing interactions on higher than a qualitative level.
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1.2.2 Describing dispersion forces in molecules

The description of Van der Waals interactions in electronic calculations only comes to fruition

with ab initio methods more complex than Hartree-Fock. Hartree-Fock does capture the ex-

change interactions, but only when orbitals higher than the groundstate are accessible by

the electrons, in calculations, is it possible for electron correlation to be captured. Den-

sity Functional Theory (DFT) has made great strides in attemptingto capture dispersion

forces[9]. However, most of this has been done in an ad-hoc way by adding r � 6 interaction

terms for each atom-atom pair. This still gives little better than a qualitative description[10].

For rovibrational calculations, the electronic potential used needs to be very accurate.

Ideally, it would be advantageous to use theGold Standard of electronic structure calcu-

lations being at the Coupled Cluster Singles Doubles and PerturbativeTriples CCSD(T)

level. However, due to computational complexity, CCSD(T) gets inaccessible quickly with

increasing system size. The largest molecule for which vibrational calculations have been

performed is currently 6 atoms with an example being CH3CN[11]. 6 atoms is pushing the

limit of where a Potential Energy Surface (PES) can be generated using CCSD(T). For

CH3CN, the best PES available was generated through a combination of CCSD(T)-ppVTZ

and B3LYP-ppVTZ calculations. All calculations in this thesis are performed in a four

dimensional space from CCSD(T)-f12b.

1.2.3 Spectra of Van der Waals molecules

Spectra of Van der Waals molecules are usually di�cult to analyse because no zeroth-order

model works well. It is, however, generally possible to treat intra- and inter-molecular coordi-

nates separately and this reduces the number of coordinates andthereby making it possible

to numerically solve the Schr•odinger equation to compute a spectrum. Using computed
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wavefunctions, energy levels, and intensities one can understandthe nature of vibrations,

the importance of coupling etc. Some of the vibrations of Van der Waals molecules are large

amplitude and it is therefore necessary to know the potential in a large region of con�guration

space.

1.3 Organization of thesis

The thesis will start by outlining the basics of quantum chemistry andnuclear motion the-

ory. In Chapter 3, the generation method for the various PES's used in the rovibrational

calculations will be briey outlined. Chapter 4 will outline the methods used to calculate

the spectra of Van der Waals molecular dimers and complexes in general.

The next three chapters will focus on the speci�cs of the PES surface and and calculated

rovibrational results of three di�erent van der Waal dimers. (OCS)2 in Chapter 5. The

isotopologues of (NNO)2 in Chapter 6 and CO2-CS2 in Chapter 7. Chapter 8 concludes and

outlines future work.



Chapter 2

Background

2.1 Brief history of quantum chemistry

One of the main sources for understanding chemical phenomenon isatomic and molecular

spectroscopy. In order to better understand (at least in a qualitative manner) the exper-

imental results, quantum mechanics was applied to molecular systems[12]. Initially, the

approach was that of the Born-Oppenheimer[13] (BO) approximation in that the electrons

were moving in the potential generated from immobile classical nuclei.The BO approach

was (and still is) very successful in qualitatively describing equilibriumstructures, transition

states and molecular orbitals. The concept of potential energy surfaces (PES)[14] also stems

from the BO approximation and is central to the work presented in this thesis. Richards[15]

and Schaefer[16] �rst described the history of quantum chemistry in three ages. The �rst

age of quantum chemistry was very crude and the expectation was onlyan agreement to

experiment within an order of magnitude. With the advent and availability of computers, it

was possible to obtain calculations in much closer agreement with experiment. The main nu-

merical techniques being developed wereAb initio in nature, and based on molecular orbital

7
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wave functions. Although closer to experiment than the �rstageof quantum chemistry, the

results could still only be trusted as semi-quantitative and applied only where experiments

could not be performed[15]. An example of where experiments could not be performed is

unstable molecules. As early as 1970[12], theoretical predictions were being made that were

comparable in accuracy to contemporary experiments through electronic structure calcula-

tions. This marked the beginning of the thirdage of quantum chemistry. At this point,

theoretical quantum chemistry could legitimately make predictions that could call into ques-

tion the experimental results, or provide new information that could push for the design of

new experimental apparatuses. With the development of experimental techniques that could

provide more accurate results, it was becoming obvious that keeping the nuclei �xed was

not su�cient[12]. Nuclei being �xed classical particles at the bottomof local minima in a

PES ignored inherent quantum mechanical properties of the nucleithemselves such as Zero-

Point Energy (ZPE) of vibrations[17] or \tunnelling" of nuclei[18]. Oneof the most famous

examples of tunnelling is the inversion of ammonia[19]. Classically, the two wells (shown

in Figure 2.1) would have equivalent energy. However, tunnelling causes energy splitting to

occur with the even state having a lower energy than the odd state. Using only electronic

structure can be quite successful in obtaining equilibrium quantitieswhich although related

to experiments, are not equivalent. It was therefore imperative to enter the fourth age of

quantum chemistry by including electronic structure and nuclear motion[12]. This could in

theory be done by completely including the nuclear motion from the beginning but the BO

approximation has produced remarkably good results.
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Figure 2.1: A pictorial of the ammonia inversion tunnelling.

2.2 Overview of vibrational calculations

In order to quantitatively describe vibrations of molecules, an important idea is that of the

nuclei moving on a PES. A PES is generated from calculating the electronic structure energy

at various positions of the nuclei. In general, a �t of these energieswith some set of basis

functions is performed in order to generate the full surface fromwhich approximate energies

can be found quickly for any nuclear con�guration[14]. This PES framework naturally yields

itself towards the description of ZPE and tunnelling of nuclei. Using the BO approximation

with a PES produces quite accurate rovibrational energies. Thereare various techniques

that are used to calculate rovibrational energies including time-dependent and perturbational

methods. In the next section, only time-independent variational methods will be discussed.
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2.2.1 Nuclear Motion Theory

The fundamental equation used in calculating states of molecules is of course the time-

independent Schr•odinger equation,

Ĥ 	 =

 

�
NX

i =1

1
2mi

r 2 + V

!

	 = E	 ; (2.1)

where Ĥ is the Hamiltonian, N is the number of nuclei in the molecule,r 2 is the Laplace

operator, mi is the mass of nucleii (with BO approximation) and V is the PES. Spin

statistics are not explicitly accounted for in Eq. (2.1), however thiscan be handled with

some post-processing of the resultant energies.

Although any set of coordinates could be used to perform rovibrational calculations, the

problem's size can be reduced by using internal coordinates only. Ingeneral, the PES is

generated using internal coordinates, which assumes the systemis isolated. Internal coordi-

nates reduces the dimensionality of the problem by three for full rovibrational calculations.

Three of the dimensions are removed because the Hamiltonian is translationally invariant

and the motion of the centre-of-mass of the molecule is separable.A set of three variables is

then used to describe the orientation of the body-�xed (BF) frame attached to the molecule,

relative to the space-�xed (SP) frame. After the BF frame is embedded, it is left to decide

how the remaining 3N � 6 internal coordinates are de�ned. Three coordinates are used to

relate the BF frame to the SP frame for the rotational portion of the calculation.

When a choice of internal coordinates is made, it is necessary to convert the time-

independent Schr•odinger equation of Eq. (2.1) to one de�ned in internal coordinates. The

PES is generally de�ned in terms of some internal coordinate. If thePES is de�ned in

di�erent coordinates than are chosen for the rovibrational calculations, a transformation T
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can be used to obtain the values of the potential at the points in thechosen coordinates,

given the values in a di�erent set of coordinates. This process is outlined in Eq. (2.2) for a

transformation between a PES given in coordinatera for the calculation in coordinaterb.

V ( �rb) = V ( �rb ( �ra)) ; (2.2)

The kinetic energy operator (KEO) in the new coordinates is slightly more di�cult to obtain.

It can be found in one of two ways. The �rst is to apply chain rule to the original KEO.

The second is to write down the classical Hamiltonian in the internal coordinates and use

the correspondence principle of Podolsky[20] to obtain the quantum KEO. There are two

types of coordinates that are used most in rovibrational calculations. The �rst is that of

the Eckhart-Watson Hamiltonian and the second is general polar coordinates with the latter

being the coordinates used in this thesis.

Eckart-Watson Hamiltonian

A full description of the Eckart-Watson Hamiltonian can be found in the inuential paper

by Watson of Ref. 21. The coordinates used for this Hamiltonian arede�ned with respect

to a reference structure using the Eckart conditions[22]. The Eckart-Watson Hamiltonian

is \exact" and has been applied to a variety of molecules including CO-Cu(100)[23], H2CN

and H2CS[24], and CH4[25]. Versions with minor simpli�cations were used to calculate the

J = 0 levels of CH3CN[11]. The program MULTIMODE[24] uses a modi�ed version of the

Eckart-Watson Hamiltonian.

Although successful for many molecules, there are a few well-known issues that arise

when using the Eckart-Watson Hamiltonian. The �rst is that the Hamiltonian is singular

in certain instances[26]. An example of when this occurs is when a non-linear molecule
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is in a linear con�guration. If a non-linear molecule approaches linearity, the vibrational

calculations can be signi�cantly a�ected. This was shown to occur for highly excited states

of H2O[27] with deviations ranging from 0.3cm� 1 to 200cm� 1. Another issue is that normal

coordinates do not describe large amplitude motions well[26]. This is partly due to the fact

that the coordinates used are de�ned with respect to a single reference geometry. However,

accurate tunnelling splittings can be obtained by making the reference geometry, the saddle

point, as was done for NH3[28]. As dimers have large amplitude motions and no single

reference structure, it was decided that the Eckart-Watson Hamiltonian was not suitable for

calculating rovibrational spectra of Van der Waals dimers.

General polar coordinates

A simple and general way to generate a KEO is to start with polar coordinates associated

with any set of N vectors that speci�es the shape and orientation of the molecule. These

coordinates can be chosen to simplify the KEO, and are guaranteedto have a one-to-one

correspondence with the geometry of the molecule. The coordinates can also be chosen to

minimize coupling. If one uses \orthogonal" vectors, the KEO is muchsimpler. \Orthogonal"

in this case, refers to having anorthogonaltransformation between the mass-weighted nuclear

position vectors and the internal mass-weighted Cartesian vectors.

The KEO can be obtained from applying the chain-rule to the quantummechanically

KEO in LF coordinates given by,

T̂N = �
1
2

NX

i =1

1
mi

�
@2

@X2
i

+
@2

@Y2i
+

@2

@Z2i

�
: (2.3)

There are three steps involved to obtain the KEO in the new polar coordinates. The �rst step

is to convert to mass-weighted coordinates (�X i = m1=2
i X i ). The second is to introduce the
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N � N transformation U that linearly relates �X i to �P� . The third step introduces arbitrary

masses� � to convert the polar coordinates to mass-unweighted coordinates (P� = � � 1=2
i

�P� ).

This is succinctly described by the transformation J,

J = � � 1=2UM 1=2; (2.4)

where� and M are diagonal matrices of the arbitrary masses and nuclear massesrespectively.

The most natural choice of coordinates for describing the shape of the molecule is having

rN � 1 describing the centre of mass of the nuclei,N � 1 vectorsr0; r2; :::; rN � 2 for the remain-

ing vectors, N-2 polar angles� � betweenrN � 1 and r0, and N-3 dihedral angles� � de�ned

between the planes,r0 � r1 and r0 � r � . Using these coordinates results in the KEO de�ned

conveniently as,

T = Ts + Tbr + Tcor ; where Tbr = Tbr;diag + Tbr;of f ; (2.5)
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with

Ts = �
N � 2X

k=0

1
2� k

@2

@r2k

Tbr;diag = [ B0 (r0) + B1 (r1)]
�
�

1
sin� 1

@
@�1

sin � 1
@

@�1
+

1
sin2 � 1

(Jz � L z)2
�

+
N � 2X

k=2

[B0 (r0) + Bk (r k)] l2
k

+ B0 (r0)

"

J 2 � 2 (Jz � L z)2 � 2Jz (L z) + 2
N � 1X

k6= k0=1

lkz lk0z

#

Tbr;of f = B0 (r0)

"

(L+ ) a�
2 + ( L � ) a+

2 +
N � 1X

k6= k0=3

(lk+ lk0� + lk� lk0+ )

#

Tcor = � B0 (r1)
�
J�

�
a+

2 L+

�
+ J+

�
a�

2 + L �

��
(2.6)

where

B i (r i ) =
1

2� i r 2
i

(2.7)

L z =
N � 1X

k=3

lkz (2.8)

L � � =
N � 1X

k=3

lk� (2.9)

l � = l ix � il iy (i = 2; :::; N � 2) (2.10)

J� = Jx � iJ y (2.11)

a�
2 = �

@
@�2

� cot � 2 (Jz � L z) ; (2.12)

where lkx , lky , lkz , l2
k are the usual angular momentum operators. The terms are grouped
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such that Ts is the stretch part, Tbr is the bend-rotation part, and Tcor is the correlation

portion of the KEO. The Jx , Jy, and Jz are components of the total angular momentum.

The KEO of Eq. (2.5) is Hermitian and valid for any choice of orthogonal vectors. The

only di�erence between KEOs in di�erent orthogonal coordinates isthe de�nition of the

arbitrary masses.

The main disadvantage of the KEO of Eq. (2.5) is the lack of exibility asone must place

the BF z-axis along one of ther i vectors and one must choose polyspherical coordinates

from the N-1 r i vectors as the vibrational coordinates. In Ref. 29, a procedureis outlined

to transform Eq. (2.5) when the z-axis is not taken to be the one ofthe r i vectors. This is

important if rovibrational coupling can be reduced or to exploit symmetry in the molecule.

2.3 Solving the Schr•odinger equation

The most popular way to solve the Schr•odinger (Eq. (2.1)) equation is to expand the wave-

function in terms of some known basis functionsB i (�r ),

	 (� r ) =
X

k

ckBk (�r ) ; (2.13)

whereci are unknown coe�cients and �r are the full set of coordinates used. In theory, if an in-

�nite number of basis functions were used, the exact wavefunction could be found. However,

in practise, it is necessary to restrict the number of basis functions to a fairly small number

of between 10 and 100 for each dimension. Although it is possible to attempt to represent

the operators directly, with an example being the use of �nite-di�erence for derivatives, the

solutions of the Hamiltonian Ĥ generally resemble some basis set from which acceptable

solutions can be found with a smaller matrix representation. Starting from Eq. (2.13), two
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methods can be used to obtain solutions with the �rst being the collocation method.

2.3.1 Collocation Method

The collocation method[30] is a method where the residue function,

jRi = ( H � E) j	 i (2.14)

is evaluated at collocation pointsjr i i which results in the collocation equations,

hr i j Ri = hr i j (H � E) j	 i = 0; i = 1; 2; :::; Np

=
NbX

k=1

hr i j (H � E) jBk i ck = 0; i = 1; 2; :::; Np ; (2.15)

where Np is the number of collocation points, andNb is the number of basis functions.

Although it is possible to use this method withNb 6= Np, it is generally performed with

Np = Nb = N so the subscripts will no longer be used and the assumption is that the

number of basis functions and points is equivalent. The problem has now been reduced to

solving the N � N generalized eigenvalue problem,

hr j Ĥ jB i = E hr j B i (2.16)

with asymmetric matrices hr j Ĥ jB i that has valueshk;i = ĤB k (r i ) and hr j B i has values

bk;i = Bk (r i ). If the basis functions have the property thatBk (r i ) = � ij , such that the

basis functions are zero at all collocation points except for one, the right matrix becomes

the identity and the problem is reduced to the \normal" asymmetric eigenvalue problem.
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2.3.2 Raleigh-Ritz Variational Principle

The second method that can be used to �nd solutions of Eq. (2.1) is the Raleigh-Ritz

variational principle. The residue function is converted into the functional h	 j Ĥ j	 i which

results in the well-known equation,

NX

k=1

hB i j (H � E) jBk i ck = 0; i = 1; 2; :::; N ; (2.17)

where the generalized eigenvalue problem is nowhB j Ĥ jB i j ci = E hB jB i j ci . These ma-

trices are Hermitian and have values ofhij =
R

B i (�r ) ĤB j (�r ) d�r for the left side and

sij =
R

B j (�r ) B i (�r ) d�r for the right side. The integrals are performed over all of coordinate

space. Usually, the basis functions are taken to be orthogonal which reduces the overlap

matrix S = hB jB i to the identity and the problem is the \normal" Hermitian eigenvalue

problem. Although the problem is now Hermitian, it now necessitates many integrals to be

performed as opposed to collocation where the functions (and theHamiltonian acting on

functions) are evaluated at points. These integrals are generally performed using quadrature

but the choice of bases can simplify the problem.

2.4 Basis Sets

The choice of the basis set is very important to how accurate and fast the rovibrational cal-

culations are. The coordinates chosen determine largely what basisfunctions are appropriate

to represent the wavefunctions but a few reformulations have been used.
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Variational/Finite Basis Representation

Performing the integrals of Eq. (2.17) exactly is referred to in literature as Variational Basis

Representation (VBR)[31]. The errors from VBR are only due to thetruncation of the

basis. If the potential matrix elements are performed by quadrature then it is known as

Finite Basis Representation FBR. The use of Gauss quadrature hasthe major advantage

that the integral,
Z b

a
w (x) f (x) (2.18)

can be computed exactly by summingf (x) at N quadrature points x � multiplied by weights

w� for the function f (x) with polynomial degree up to 2N � 1. With this knowledge, a

standard (and enlightening) basis set used in FBR calculations are that of the well-known

orthogonal polynomials with a weight function. By de�nition, these polynomials satisfy the

relation,
Z b

a
w (x) pn (x) pm (x) = � nm (2.19)

wherew (x) is the weight function with corresponding orthogonal polynomialspi (x) of the

ith degree over the rangea to b. If the one-dimensional basis functions are de�ned as

bn (x) = An

p
w (x)pn (x) ; n = 0; 1; :::; n ; (2.20)

with An being a normalization constant, the relationship of Eq. (2.19) can becomputed

exactly assuming theN + 1 quadrature points are used. In fact, the integral is also exactfor
Rb

a b�
m (x) xbn (x) dx which is relevant in the development of Discrete Variable Representation

(DVR). The choice of the basis functions is generally done as to be eigenfunctions of a

signi�cant portion Ĥ0 of the full Hamiltonian Ĥ = Ĥ0 + Vres where Vres is known as the

residual potential. These eigenfunctions can often be taken as the orthogonal polynomials
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with the square root of the weight function, with an example being the solutions to the

1D harmonic potential. Included inĤ0 is the kinetic energy operatorK and possibly some

portion V0 of the full PES.

2.4.1 Discrete Variable Representation

The integral relationship of Eq. (2.19) can now be written in a squarematrix form with

N + 1 quadrature points (and basis functionsb0 (x) ; :::; bN (x)) as,

Tj� = A j
p

w� pj (x � ) ; (2.21)

whereT yT = I as the matrix is orthonormal. Likewise, the operator X can be written as

X = T yX DVR T ; (2.22)

with X DV R being a diagonal matrix of the quadrature pointsx � . From Eq. (2.22), it can be

seen that the diagonalization of the X representation in any basis generates as its eigenvalues,

the DVR points, and its eigenvectors as the DVR-FBR transformation. An important prop-

erty of these DVR functions is that each function is sinc-type. A DVR function is non-zero

at the point in which it is localized but zero at the remaining DVR points.

The DVR points (and functions) can either be found by directly calculating the X repre-

sentation of the chosen basis or by diagonalizing the three-term relation for the orthogonal

polynomials used. The only care that needs to be used in the latter case is that the func-

tions need to have the appropriate normalization in order to make the transformation matrix

orthonormal under the appropriate weight function.
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2.4.2 Potential Optimized Discrete Variable Representati on

One popular method to obtain good DVR points is to generate Potential Optimized Discrete

Variable Representation (PODVR) basis functions[32, 33, 34, 35]. This is done by choosing

some model potential that makes up a substantial portion of the full potential and calcu-

lating N eigenfunctions. To do this may require much more than N basisfunctions. The X

representation of these eigenfunctions is then diagonalized to obtain the PODVR points and

the FBR-DVR transformation. In multidimensional problems, it is possible to greatly reduce

the number of DVR points required to obtain accurate results by generating a PODVR for

each coordinate. This technique is most accurate when the couplingbetween the di�erent

dimensions is small.

These PODVRs are similar to the Gaussian quadrature type DVRs in that the FBR-DVR

transformation matrix is orthogonal. However, the DVR functionsare not exactly sinc-type

and therefore the accuracy of the results is determined by the minimization of the residual

potential.
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Generating the PES surface

This chapter will provide a brief outline of how the PES surface used for the calculations

of this thesis was generated. This work was performed by Dr. Richard Dawes of Missouri

University of Science and Technology and an explanation in greater detail can be found in

Ref. 36.

3.1 PES coordinates

The coordinates used, both to make the surface and to calculate the spectrum, are shown

in �gure 3.1 with the example of the OCS dimer. The vectors~r1 and ~r2 point from O to

S in each monomer for OCS. The convention used to de�ne the direction of the r i vectors

is to put them in the same order of the most well-known naming convention. For example,

if the OCS dimer was known more commonly as SCO, then ther i vectors would point in

the opposite direction. Likewise, if the dimer has di�erent monomers, the most common

name is used to determine which monomer is 1 and which monomer is 2. This applies to

the CO2-CS2 dimer where CO2 is oriented by ~r1, and CS2 is oriented by ~r2. The monomers

21
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are assumed to be rigid, and the~ri lengths are assumed to be constant at the calculated

ground vibrational state averaged bond distances for the speci�c monomers. This reduces the

number of dynamic coordinates to four. The vector between the centre-of-mass of monomer

1 to the centre-of-mass of monomer 2 is labelled~r0. The angle between~r1 and ~r0 is � 1. The

angle between~r2 and ~r0 is labelled � 2. The �nal coordinate is the out of plane (dihedral)

angle labelled� 2, which is the angle between the two vectors normal to~r0 � ~r1, and ~r0 � ~r2.

q1

q2

f 2

r0

r2

r1

Figure 3.1: The coordinates used to generate the PES using (OCS)2 as an example. O is
red, C is grey, and S is yellow.

3.2 Choosing a basis set

In order to choose an appropriate basis set to generate the PES for all Van der Waals dimers,

some benchmarking electronic structure calculations were performed for (N2O)2[36]. This
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was done by an extrapolation to the complete basis set (CBS) limit using three di�erent

schemes. Later unpublished benchmarks for (CO)2 and (NH3)2 were also performed.

Comparisons between di�erent bases were done at �ve high-symmetry test geometries

being: 1) In�nitely separated monomers, 2) a linear head-to-tail geometry with a r0 of 6:0�A,

3) a parallel C2v geometry with r0 = 5�Awhich was attractive 4) a parallel C2v geometry with

r0 = 3�Awhich was repulsive and 5) the non-polar minimum of (N2O)2 also of point group

C2v . Counter-Poise (CP) correction testing was also performed as it iswell known that basis

set superposition error (BSSE) can be signi�cant when using smallerbases.

A comparison was made from the CBS values at the various isomeric minima on the

(N20)2 surface between CCSD(T) with and without the explicit correlation of F12(b)[37].

For (N20)2, the CCSD(T)-F12b with a VTZ basis set was found to be very accurate to

within the error of the CBS extrapolation at the tested points. Therefore, it was determined

that CCSD(T)-F12b/VTZ-F12 would be used to generate all the surfaces of Van der Waals

dimers.

3.3 IMLS

In order to generate a PES, one must compute electronic energiesat various points, and

generate a function (with various parameters) that either nearlypasses through, or does pass

through, the calculated energies depending on whether �tting or interpolation respectively

is used. For all the PESs used in this thesis, an interpolating moving least squares (IMLS)

�tting method is made. At a geometry, �r , an IMLS potential is a weighted sum of the local

�ts,

V (�r ) =

P
j wj (�r ) Vj (�r )

P
j (�r )

; (3.1)
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where the local �ts Vj (�r ) are expressed in terms of some basisBk

Vj (�r ) = cj; 0 +
X

k

cj;k Bk (�r ) : (3.2)

The local �t j is centred at �r j , which is the location ofab initio data point j . The cj;k values

are found by doing a least squares �t at each point.

The basis functions used were,

Bk (r0; � 1; � 2; � 2) = ( � 1)m2 exp (� �r 0)
l � m2

L 1
(cos (� 1)) � m2

L 2
(cos (� 2)) cos (m2� 2) ; (3.3)

where the coordinates (r0; � 1; � 2; � 2) are those of �gure 3.1, and thek value of Eq. (3.2)

represents the basis function indexesi; L 1; L2 and m2. The parameter� is �xed at 1.0 �A � 1.

The maximum radial poweri , as well as the maximumL1;2 associated Legendre polynomial

used was 6. The sum ofL1 and L2 was also 6.m2 was restricted to be less than or equal to

both L1 and L2. The functions � m
l are de�ned in Ref. 38.

The local �ts are connected using the weight function

wj (�r ) =

exp

 

�
�

d (�r; �r j )
� ( �r j )

� 2
!

�
d (�r; �r j )
� ( �r j )

� p

+ �
; (3.4)

where � = 10� 14 is the error allowed in the interpolation andp = 4 was used. � ( �r j ) is the

local data density which is the distance to the 20th nearest neighbour using the distance
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metric d (�r; �r j ) which is stated as,

d (�r; �r j ) =
�

(r0) j � r0

� 2
+ c2

�
(� j; 1 � � 1)2 + ( � j; 2 � � 2)

2 +

q
sin (� j; 1) sin (� 1) sin (� j; 2) sin (� 2)

�
(� 2) j � � 2

� 2
�
: (3.5)

This metric was chosen in order to properly represent the fact that a small change in the

shape of the dimer near� k = 0 or � k = � could correspond to a large change in� 2. The

scaling factor c is chosen based on the length of the monomer fragments in order toput

distance and angular displacements on equal footing. The local expansion coe�cients cj ; i ,

are then determined at eachab initio point using a linear least squares �t.

3.3.1 Automated surface generation

The IMLS PESs were constructed starting with a low-levelab initio guide surface in order

to know which regions were highly repulsive and thus avoid computing useless high-level

data points. The points chosen for the initial �t were chosen using aradially biased Sobol

sequence[39] towards smallr0, . After this low-level �t was performed, a starting surface

with high-level ab initio points was generated using the same bias towards smallr0 but with

high-energy regions not calculated. A �t was then performed usingboth the full 301 basis

functions, and a smaller 171 basis functions. The error of the �t was then estimated using

the di�erence between these two �ts at 40000 randomly placed points. Conjugate-gradient

optimizations was used to locate the points of maximum squared di�erence. A new batch of

points (equivalent in number to the number of processors used) was then calculated at these

largest error points and used to generate a new �t. If there was symmetry in the molecule,

this new point was also added to the geometry partner(s). This process was repeated until
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the estimated root-mean square error was reduced below the limit speci�ed when the process

began. At no time, were points manually added.

Speci�c properties about the PESs used will be discussed in the relevant chapters.
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Rovibrational Calculations

The coordinates used to perform the calculations are the same used to generate the PES

outlined depicted in Fig. 3.1 and its theoretical and practical implications are referred to

more generally in Section 2.2.1. The three vectors arer0, r1 and r2. Vector r1 is the length

of the �rst monomer in the direction of the most common naming (pointing towards sulphur

in the OCS dimer). Vector r2 is the length of the second monomer.r0 points from the

centre-of-mass of the �rst monomer to the centre-of-mass ofthe second monomer. There are

two angular coordinates� 1 and � 2 de�ned as the angle between ther0, and the r1 and r2

vectors respectively.� 2 de�nes the dihedral angle between ther0 � r1 and r0 � r2 planes. The

r1 and r2 coordinates are held constant. The justi�cation for this is that the intramolecular

vibrations of the monomers are of much higher frequency than theintermolecular vibrations.

The BF frame is attached such that the z-axis is alongr0 and the x-axis is along the vector

(r0 � r1) � r0. These coordinates are the general polar coordinates of Section2.2.1. The

kinetic energy in these coordinates is well known and is given in Ref. [40].

The stretch coordinate (r0) is represented using discrete variable representation (DVR)

functions[32, 31, 33] while the bend (� 1 and � 2) and rotational coordinates use parity adapted

27
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rovibrational functions[41, 42]. For the coordinates� 1; � 2; � 2 in the BF frame, the resulting

basis functions are,

uJMP
l2 l2m2 ;K (� 1; � 2; � 2; �; �;  ) =

r
2J + 1

8� 2
� K � m2

l1 (� 1) Y m2
l2 (� 2; � 2) D J

MK (�; �;  )� (4.1)

with

Y m2
l2 (� 2; � 2) =

1
p

2�
� m2

l1 (� 2) eim 2 � 2 ; (4.2)

� m
l (� ) being the normalized associated Legendre function with (� 1)m Condon-Shortley

phase factor, andD J
MK being the Wigner function of the Euler angles (�; �;  ) which de�ne

the orientation of the BF frame relative to the SF frame. With parity adapted functions,

K � 0 and P=0 and 1 corresponding to even and odd parity respectively.This allows the

even and odd parity functions to be calculated separately. The constraints of m2 � 0 when

K = 0, and (� 1)J + P 6= � 1 when m2 = K = 0, is used during the calculations.l1, l2, and

m2 all have the same maximum value. The complete product basis functions can now be

written as f � 0 (r0) uJMP
l2 l2m2 ;K (� 1; � 2; � 2; �; �;  ), where f � 0 (r0) is the DVR function.

The basis described above in general results in a very large matrix representation of the

Hamiltonian. The overwhelming size causes the use of direct eigenvalue solvers to not be

possible. Therefore, it is necessary to use iterative techniques. The most popular iterative

technique is that of Lanczos[43].

4.1 Lanczos

Lanczos diagonalization is a technique where the Hamiltonian matrix is multiplied to a

starting vector v1 many times until enough of the Hamiltonian matrix has been projected
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onto the Krylov subspace,
�

v1; Hv1; H 2v1; :::; H N v1
	

: (4.3)

which is formed by the recursion relation,

wj = Hv j � � j vj � 1

� j = wT
j vj

wj = wj � � j vj

� j +1 = jjwj jj

vj +1 = wj =� j +1 ; (4.4)

wherev0 and � 1 are zero.

The iterations result in a real symmetric tridiagonal matrix, with diagonal elements

� i and o�-diagonal elements� i , which contains some of the extremal eigenvalues of the

original matrix. The tridiagonal form of the matrix lends itself to �nd ing the eigenvalues

quickly. This method is only e�ective for obtaining extremal eigenvalues and is not e�ective

at �nding interior (or highly excited) states. Theoretically, if a Krylo v subspace were formed

that was as large as the original matrix, all eigenvalues could be found[43]. How quickly

the extremal eigenvalues converge depends on how close two eigenvalues are to each other.

Therefore, a Hamiltonian with a very dense spectrum of eigenvaluescould require many

matrix-vector products to converge the required number of eigenvalues. After a certain

number of iterations, the Lanczos vectors could lose their (semi-)orthogonality which requires

the vectors to be reorthogonalized.
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4.1.1 E�cient Matrix Vector Products

The most computationally expensive and time-consuming portion of Lanczos iterations is

the matrix-vector products. In order to make sure the calculations are done as e�ciently

as possible, the matrix-vector products are performed by exploiting the product nature of

the basis and doing the sums sequentially. For the KEO portion of theHamiltonian, the

terms are a product of di�erent coordinates. For example, a factorisable Hamiltonian with

coordinates (x1; x2; x3) could be represented as

Ĥ =
gX

l=1

fY

k=1

ĥ(k;l ) (xk) (4.5)

where there areg terms that have componentŝh(k;l ) which are functions of only one coordi-

nate, andf is the number of factors in that termg of the Hamiltonian. The matrix element

is formed with the basis

B (x1; x2; :::; xf ) =
fY

k=1

bk (xk) ; (4.6)

where B is the full basis function, andbi (x i ) is the basis function for one dimension. The

matrix-vector product Ĥu = u0 as a sum over all coordinates could be performed naively as,

gX

l=1

nX

i 1

nX

i 2

:::
nX

i N

h(1;l )
i 0
1 ;i 1

h(2;l )
i 0
2 ;i 2

:::h(f;l )
i 0
f ;i f

uf;l
i 1 ;i 2 ;:::;i f

= u0
i 0
1 ;i 0

2 ;:::;i 0
f
; (4.7)

where h(1;l )
i 0
1 ;i 1

is a matrix element of then � n matrix representation of the factorĥ(k;l ) (xk)

involving a single coordinate. This evaluation would have a scaling ofn2f where n is the

number of basis functions in each coordinate. In general, the number of basis functions does

not need to be the same for each coordinate but for simplicity, this assumption is used in

this case.
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That being said, the use of the product basis of Eq. (4.6) and the factorisability of

Eq. (4.5) allows each of the coordinates to be done sequentially as,

gX

l=1

nX

i 1

h(1;l )
i 0
1 ;i 1

nX

i 2

h(2;l )
i 0
2 ;i 2

:::
nX

i N

h(f;l )
i 0
f ;i f

uf;l
i 1 ;i 2 ;:::;i f

= u0
i 0
1 ;i 0

2 ;:::;i 0
f
; (4.8)

which has a far superior scaling ofnf +1 . Almost all kinetic energy operators have this

factorisability. The matrix-vector products are done without ever calculating the full matrix

elements. One only calculates the small one-dimensional matrix elements for each of the

factors of the Hamiltonian and applies those for each of the sequential sums.

The potential term in the Hamiltonian does not in general have the special product

structure of Eq. (4.5). However, potential matrix elements (omitting r0 for simplicity) are

de�ned using quadrature as,

D
uJMP

l0
1 l0

2m0
2 :K

�
�
� V

�
�uJMP

l1 l2m2 :K

�
=

X

� 1 ;� 2

T
(m0

1)
l0
1 ;� 1

T
(m0

2)
l0
2 ;� 2

I � 1 ;� 2
m0

2 ;m2
T (m1 )

l1 ;� 1
T (m2 )

l2 ;� 2
; (4.9)

where theT matrices are as de�ned using Gauss-Legendre quadrature pointsand weights

(z� ; w� ) as

T (m)
l� =

p
w� � m

l (z� ) (4.10)

with basis function numbersl i . The I is equal to integrals of the potential over� 2 with

appropriate volume elements. These integrals are performed usingthe trapezoid rule with

the corresponding quadrature points and weights. The potentialmatrix-vector (x0 = V̂ x)

product can then be written as

x0
l0
1 ;l 0

2 ;m0
2

=
X

� 1

T
(m0

1)
l0
1 ;� 1

X

� 2

T
(m0

2)
l0
2 ;� 2

I � 1 ;� 2
m0

2 ;m2

X

l1

T (m1 )
l1 ;� 1

X

l2

T (m2 )
l2 ;� 2

x0
l1 ;l2 ;m2

: (4.11)
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The sums are once again performed sequentially. This can be thought of as transforming the

vectors from the parity-adapted basis representation to a grid representation, multiplying by

the now diagonal potential matrix elements, and then transforming back. In this thesis, the

integralsI are performed using FFT. It was found that using real-to-complexand complex-to-

real FFT routines from the FFTW library[44] sped up the transformation for one coordinate

by a factor of 2[45]. This was in spite of the fact that more quadrature points are needed to

have similar accuracy of the potential integral with FFT. The reason for the extra points is

that FFT is done more easily with the use of evenly spaced points whichin general are not

ideal.

4.1.2 Symmetry in Lanczos

The method in which symmetries can be exploited in Lanczos calculations is to employ the

symmetry-adapted Lanczos (SAL) method[46]. This is �rst done byforming a symmetry-

adapted basis and performing Lanczos iterations for each irreducible representation. The

iteration scheme of Eq. (4.4) then becomes,

w(m)
j = Hv (m)

j � � (m)
j v(m)

j � 1

� (m)
j = ( w(m)

j )T v(m)
j

w(m)
j = w(m)

j � � (m)
j v(m)

j

� (m)
j +1 = jjw(m)

j jj

v(m)
j +1 = w(m)

j =� (m)
j +1 ; (4.12)

where (m) is the symmetry label. With Eq. (4.12), a separate set of Lanczos iterations

would have to be performed for each symmetry label with the most computational expensive
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portion being the Hv (m)
j term. If a projection operator is de�ned as,

P̂ (m)
ii =

dm

h

X

R

D (m)
ii (R) R̂; (4.13)

where i labels a basis function,� m
i , that transforms like irreducible representationm, R̂

is a symmetry operation in the group,h is the order of the group,dm is the dimension

of the irreducible representationm, and D (m)
ii (R) is the i th diagonal element of the matrix

representation ofR̂ in the � m
i basis. The projection operatorP (m)

ii projects themth symmetry

component from a general vector withN symmetry components, with an example being,

^P (m)
NX

n=1

v(n) = v(m) (4.14)

Since projection operators commute with the Hamiltonian,

Hv (m) = P̂ (m)

"

H
NX

n=1

v(n)

#

; (4.15)

many irreps can be found from one set ofHv products. At each iteration, H is applied to

the sum of Lanczos vectors computed at the previous iteration. The use of the projection

operator to calculated irreps is much less costly than performing a matrix-vector product

for each irrep separately. The two main advantages of using SAL is that: a) the result-

ing rovibrational energy levels come with symmetry labels to help with assignment and b)

separating eigenvalues of di�erent symmetry reduces the densityof the eigenvalue spectrum

making the convergence of individual eigenvalues faster[12].

It is simplest to construct the basis if the symmetry operators apply to only one the
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coordinates[26]. In this case, you can choose VBR functions that have the desired symme-

try properties for each coordinate. When forming a DVR, one can separate the even and

odd parity VBR functions and diagonalize each separately with respect to the appropriate

symmetric operator[31]. Another method is to take the DVR functions formed without the

proper symmetry and use a linear combination of these functions toform the new DVR

with the appropriate symmetry. The advantage of this is that the the DVR functions for

both symmetry blocks are located around the same values of the coordinates. This simpli�es

calculating the integrals of the symmetric and antisymmetric operators used in the SAL

method.

4.2 Obtaining rovibrational wavefunctions

In order to assist in the assignment of energy levels, it is important to be able to make proba-

bility distribution plots of the wavefunctions. These are obtained from the eigenvectors of the

Hamiltonian matrix through a three-step process described by Cullum and Willoughby[43].

The �rst step is to obtain the eigenvalues through a �rst Lanczos calculation. The second

step is to determine the an appropriate number of Lanczos vectors needed to form the eigen-

vectors for each of the desired eigenvalues. This is referred to asthe iteration depth. The

�nal step is to use these iteration depths to obtain the eigenvectors from a second set of

Lanczos iterations[41].

To obtain the iteration depths, a variant of the method described inRef. 43 is used.

Cullum and Willoughby used a Sturm sequence method to estimate the the number of

iterations needed to converge (M1) the eigenvalue and for a copy (M2) of the eigenvalue to

occur. Their iteration depth is found by choosing one of ten values betweenM1 and M2. For

the calculations in this thesis, the residual error of the calculated eigenvector is approximated
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by,

tM
i = jzM i j � M +1 ; (4.16)

where zM i is the M th (last) component of the i th eigenvector of theM � M tridiagonal

matrix, � M +1 is the subdiagonal element between rowM and columnM +1 of the tridiagonal

matrix. t i is calculated for each eigenvalue wanted starting fromM1 until the error is below

a prede�ned threshold. This method guarantees the minimum number of iterations are

performed to generate the eigenvectors.

4.3 Post-Processing

Once the eigenvalues with symmetry labels are obtained, it is important to recognize that

there are restrictions on the allowed states by quantum statistics. The allowed nuclear

spin states, which are di�erent for each isotopologue of the molecule, determine whether a

calculated eigenstate is allowed. This means that after the calculations have been performed,

some of the calculated eigenvalues could be forbidden due to symmetry restrictions. This

type of post-processing is required in the calculations of the OCS dimer in Chapter 5 and

CO2-CS2 in Chapter 7.

In order for the results of rovibrational calculations to be usefulto experimentalists, it

is often necessary to compute line-intensities along with the line-positions (eigenvalues). In

order for this to be done, it is necessary for a dipole moment surface to be available, or at

minimum, a good representation of it. The dipole moment surface canthen be used with the

rovibrational wavefunctions to obtain approximate line intensities.This step is important

as intensities can have an extremely large range (orders of magnitude).

There are a variety of coordinates used in the calculations of intensities and the �rst is
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de�ned relative to the space-�xed (SF) frame. The dimer-�xed (DF) frame has its z-axis

along the intermonomer vectorr0, and is obtained by rotation of the SF frame about the

z-axis by � , then about the y-axis by � . The � and � angles are simply the standard�

and � angles de�ned in Section 2.2.1. Two Euler angles,� A ; � A , specify the orientation of

monomer A to the DF frame, while� B ; � B , specify the orientation of monomer B to the DF

frame. The frames attached to monomers A and B, are the monomer-�xed (MF) frames,

with z-axes de�ned, alongr1 for monomer A, andr2 for monomer B.

Assuming the radiation is absorbed at a thermal equilibrium temperature T, the dipole

intensity for a transition from state ji i to state jf i is given by

I i;f / (E f � E i ) [exp (� E i =kT) � exp (� E f =kT)] Sif ; (4.17)

whereE j is the energy of statejj i [47]. The line strength is given by

Sif = 3

�
�
�
�
�

X

degen



	 tot

f

�
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0

�
� 	 tot

i

�
�
�
�
�
�

2

; (4.18)

where � SF
0 = � SF

z is the SF dipole moment operator of the molecule and 	i is the rovibra-

tional wavefunction. The dipole model used in this thesis for (N2O)2 and (OCS)2 approxi-

mates� SF
0 with the sum of a term from each monomer. Each term is a dipole that isparallel

to the coordinatesr1 and r2. In the DF frame (which has it's z-axis on ther0 vector) relative

to the MF frames (which have the z-axes on ther1 or r2 vector), the dipole components of

monomer A are,

� DF
0 =

1X

� = � 1

D (1)
�;� 0 (� A ; � A ; 0)� � MF

� 0
; (4.19)
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where two Euler angles (� A ; � A ; 0) relate the MF and DF frame and

� LF
0 =

1X

�;� 0= � 1

D (1)
0;� (�; �; 0)� D (1)

�;� 0 (� A ; � A ; 0)� � MF
� 0

(4.20)

relative to the LF frame with the usual euler angles (�; � ) relating the DF frame to the LF

frame.

The dipole moment for one monomer is on the MF z-axis,� MF
1 = � MF

� 1 = 0 which implies

� MF
0 = � A , and simpli�es Eq. (4.20) to

� SF
0 = � A

1X

� = � 1

D (1)
0;� (�; �; 0)� D (1)

0;� (� A ; � A ; 0)� : (4.21)

The Sif integrals must now be performed with the dipole operator as given in Eq. (4.21)

along with the similar equation for the other monomer. This integral isgiven in Ref. 48.

The computation of intensities in this thesis is done only using the coordinates and basis

functions rather than using dimer-type basis functions. This is performed by writing � SF
0 in

the three-angle BF frame,

� SF
0 =

1X

� = � 1

D (1)
0;� (�; �;  )� � BF

� : (4.22)

This vibrational dipole integral can be evaluated using

� BF
+1 =

� 1
p

2

�
� BF

x + i� BF
y

�

� BF
0 = � BF

z

� BF
� 1 =

1
p

2

�
� BF

x � i� BF
y

�
(4.23)
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with

� BF
x = � 1 sin� 1 + � 2 sin� 2 cos� 2

� BF
y = � 2 sin� 2 sin� 2

� BF
z = � 1 cos� 1 + � 2 cos� 2 cos� 2 (4.24)

where � 1 and � 2 are the dipole moments of monomer 1 and monomer 2 respectively.

Statistical weights are then applied to the calculated intensities to remove quantum-

disallowed transitions.



Chapter 5

OCS dimer

5.1 Historical studies of the OCS dimer

The Van der Waals molecule (OCS)2 has been studied by experimentalists and theorists

since 1981. There was disagreement about the structure of (OCS)2 until it was realized that

di�erent isomers were being probed by di�erent experiments and/or di�erent experimental

conditions (e.g. expansion gas). In 1981, Ono et al. [49] deduced from photoionization

experiments that the two monomers are planar and either parallel or anti-parallel. For

several years thereafter, experimentalists were unsure whether the monomers were parallel

(polar) or anti-parallel (non-polar). According to the infrared spectroscopic work of Randall

et al. (OCS)2 was non-polar. Lobue[50] stated that the OCS dimer must have a permanent

dipole moment, but it was not until 2007, that a polar isomer was discovered by Afshari et

al. [51]. Motivated by this work, a microwave spectrum of the polar isomer was measured

and reported in [52]. Various isotopologues have also been studied. [53, 54]. Fragments of

(OCS)3 that contain two OCS monomers were also observed to be polar. [55,56, 57] These

studies also indicated that a non-planar isomer might also exist.

39
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Employing Moller-Plesset perturbation theory (MP2), Bone looked for and found several

stable isomers. [58] There have been no theoretical calculations since 1993. The geometry of

the non-polar S-in (C2h) isomer that Bone found was in good agreement with the geometry

determined earlier by Randall [59]. Bone's calculations predicted other minima: two sym-

metrically equivalent polar minima, a non-Polar O-in minimum, and a collinear minimum.

To �nd the polar (C s) minimum, Bone constrained the monomers to be parallel. It was later

observed that the polar isomer does not have parallel monomers. [52]

5.2 Calculations

In this section we present a 4-dimensional (4D) PES for the intermolecular motions of

(OCS)2. It is built from ab initio data at the CCSD(T)-F12b/VTZ-F12 level. Th e surface

is made by using an interpolated moving least squares (IMLS) procedure. [60, 36] On this

surface, we computed rovibrational wavefunctions, energies, and line strengths, taking only

the inter-molecular coordinates into account. We �nd that there are localized wavefunctions

in low-lying wells with a \cross" shaped minimum.

5.2.1 Properties of the surface

Minima

The surface has 10 minima, with two symmetrically equivalent polar minima and two sym-

metrically equivalent cross-shaped minima. The geometries of the corresponding isomers

are listed in Table 5.1, where the energies are given relative to the dissociation energy and

relative to the energy of the global minimum (E0). Six minima are low-lying. The bent

minima are signi�cantly higher in energy and are associated with very shallow wells with
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depth less than 10cm� 1.

The global minimum corresponds to the non-polar S-in (C2h) structure that has been

described many times in literature (for example, in Ref.61). The coordinates of the structure

deduced by Randall et al., from their infra-red absorption study, are � 1 = 85:4� , � 2 = 94:6� ,

and r0 = 6:894 Bohr [59]. They are in good agreement with those on this PES surface:

� 1 = 86:8� , � 2 = 93:1� , and r0 = 6:799 Bohr. The non-polar S-in structure of Bone,

computed at the MP2/DZP level [58] has:� 1 = 89:5� , � 2 = 90:5� , and r0 = 6:876 Bohr.

Bone's MP2/TZ2P dissociation energy (De) of 625 cm� 1 is fairly close to our value of 600

cm� 1.

There are two symmetrically equivalent polar minima on the PES (third column of Table

5.1). The structure is just outside the error bounds given in Ref. 52 : � 2 = 58:2� � 0:9� ,

� 1 = 74:2� � 1:6� , and r0 = 7:340� 0:008 Bohr. The polar (Cs) structure inferred by Afshari

[51] from their rotational constants is not as close, but it was based on the assumption that

the monomers were parallel, as had been previously assumed by Bone.

The non-polar O-in (C2h) minimum was predicted by Bone to have coordinates of� 1 =

132:9� , � 2 = 47:1� , and r0 = 8:0368 Bohr with an energy below dissociation of 508 cm� 1.

Our results are similar. Schematics of the polar and two non-polar minima with Van der

Waals radii representations of the monomers are shown in �gure 5.1.

Bone predicted a linear OCS dimer structure with an energy 209 cm� 1 above the global

minimum[58]. Our PES does not have a linear minimum. It does have bent minima that

Bone does not report. These we denote more bent and less bent. There are two symmetrically

equivalent more bent and two symmetrically equivalent less bent structures. On our surface,

there is a linear saddle point between two symmetrically equivalent Less Bent structures.



CHAPTER 5. OCS DIMER 42

Table 5.1: The local minima of the PES surface.

Coordinate
Non-Polar

Polar
Non-Polar Cross- Less More

S-in O-in shaped Bent Bent
r0(Bohr) 6.799 7.256 8.046 6.702 11.240 10.311
� 1(deg) 86.880 75.258 133.679 106.650 7.846 20.132
� 2(deg) 93.119 56.575 46.318 73.350 12.915 38.031
� 2(deg) 180.00 0.00 180.00 85.170 180.00 180.00
E(cm� 1) -600.36 -544.37 -519.81 -500.16 -356.32 -360.89
E � E0(cm� 1) 0.0000 55.999 80.557 100.21 247.79 239.48

All of these bent structures are in very shallow wells.

The IMLS surface has two low-lying symmetrically equivalent and relatively deep minima

that Bone did not report. Each corresponds to the shape that is termed \cross" in Ref. 62.

The energy of the C2 cross structure is only 100 cm� 1 above the global minimum, which

suggests that it could play an important role in the dynamics. Cross-shaped structures

were �rst observed for heterodimers[63]. Later, a cross-shaped structure was observed for

(CS2)2[62]. A schematic of a cross structure for (OCS)2 is shown in �gure 5.2. Although

no previous calculations reveal the existence of a cross shaped minimum, there is a density

functional theory study by Bilalbegovic in 2007 showing that the (OCS)2 anion does have a

stable structure with a cross-like shape[64].
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Figure 5.1: Shapes of the a)Non-Polar S-in, b)Non-Polar O-in, and c)Polar isomers on the
PES surface using for Van der Waals radii of O, C, and S 1.4, 1.5, and 1.85
�A(respectively).

Figure 5.2: Shape of the cross C2 isomer on the PES surface using the van der Waals radii
of O, C, and S being 1.4, 1.5, and 1.85�A.
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Paths between minima

Figure 5.3 shows a 2D PES made by constraining (OCS)2 to be planar and choosingr0

to minimize the energy for each pair of angles� 1; � 2. The axes are the extended angles

de�ned in Ref. 48. The extended angles are de�ned:~� 1 = � 1, ~� 2 = 360� � � 2 if � 2 = 0 �

and ~� 1 = � 1, ~� 2 = � 2 if � 2 = 180� . The top part of the �gure is for � 2 = 0 � ; the bottom

part is for � 2 = 180� . The labels for the di�erent minima are: NS for non-polar S-in (global

minimum), NO for non-polar O-in, P for polar, b for less bent and B formore bent. Note

that every structure appears twice in �gure 5.3. For example, NS2, NO1 are obtained from

NS1, NO2 by a rotation of the entire molecule. The high density of contours around -365

cm� 1 showcases the shallow wells around the two bent minima. Due to the constraint of the

monomers being in the same plane, the cross minimum is not in this �gure.

Similar to the (N2O)2 case discussed in Refs. 36, 48, 65, there are two types of planar

paths that connect the low-lying planar minima, disrotatory paths and a conrotatory path.

Following the disrotatory path, one moves NS1! P1 ! NO2 ! P2 ! NS1. To go from

NO2 to P2, it is necessary to exit the top of the plot and enter the bottom at ~� 1 � 250� . To

go from P2 to NS1, it is necessary to exit at the right of the plot and enter at the left near

~� 2 � 90� . Along the disrotatory path, the barrier from NS1 to P1 is� 320 cm� 1 and the

barrier from P1 to NO2 is � 150 cm� 1. There is a conrotatory path linking NS1 with NO1.

From NS1 to NO1 the barrier is� 290 cm� 1There is a conrotatory path linking P1 with P3

with a barrier of � 260 cm� 1. Judging from the barrier heights, the conrotatory paths may

also play a role in the tunnelling. They are also shorter than their disrotatory counterparts.

Although, as is the case for N2O dimer, the disrotatory path is low-lying, there are, even

lower, out-of-plane, paths that link the polar and non-polar structures via a cross-shaped

minimum. The paths involving cross-shaped structures do not existfor N2O dimer. Paths
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through one cross structure are depicted in �gure 5.4 which traces the energy (relative to the

global minimum) along a cut obtained by �nding values of� 1,� 2, and r0 that minimize the

energy for every value of� 2. As is evident from the �gure, the cross minimum is shallow, but

deeper than the two bent wells. Figure 5.5 shows how� 2 varies along these paths. All of the

minima except the bent states are linked by "channels" that include the cross minima. The

non-planar barrier one must traverse to reach one minimum from another is smaller than the

corresponding planar barrier. The largest non-planar barrier is the barrier one must traverse

to reach a polar minimum from the global minimum (it is� 130 cm� 1).

5.3 Calculating rovibrational levels

The rovibrational Schr•odinger equation was solved using the sameapproach as in Ref.

Refs. 36, 48 and described in Chapter 4. The coordinates can be seen in Figure 3.1. The

calculation is performed with rigid monomers of length~r1 and ~r2. Euler angles specify the

orientation of the monomers in the body-�xed frame, where the z-axis is along~r0 and the

x-axis is along the vector (~r0 � ~r1) � ~r2. For the stretch (~r0) coordinate potential opti-

mized discrete variable representation (PODVR) functions[32, 33,34, 35] were used. The

permutation-inversion (PI) symmetry group for the Hamiltonian weuse isG4, composed of

operationsf E; � xg 
 f E; E � g where � x permutes the monomers. A/B label symmetric and

antisymmetric irreducible representations (irreps) with respect to � x and � label even and

odd parities[47]. There are four PI irreps: (A+ ; B+ ; A� ; B � ).

The monomer rotational constant is taken to be the experimentalground state value of

0.2028567 cm� 1 [66]. The masses 15.9949146221[67] , 12, 31.972071[68] a.m.u. for O,C, and

S, respectively are used to compute the reduced mass for the inter-monomer coordinater0.

The angular basis we use haslmax = mmax = 50 (the samelmax for l1 and l2). With this
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basis we used 51 Gauss-Legendre quadrature points for� 1 and � 2 and 102 trapezoid points

in the range [0, 2� ], with the �rst point at zero, for � 2. For r0 we use 22 PODVR (potential-

optimized DVR) functions. The reference potential that de�nes the PODVR functions is

a cut potential in the range [5.6 Bohr, 20 Bohr] with all other coordinates �xed at their

equilibrium values. Tests with a huge basis, having 200 sin DVR functions for r0 and an

angular basis withlmax = 50, con�rm that this basis set converges levels near 100 cm� 1 above

the zero point energy (ZPE) to better than 0.001 cm� 1. The vibrational even-parity basis

size is 1001572. We do not apply a potential ceiling when calculating potential matrix-vector

products[69], but the potential is limited to 2093.93 cm� 1 on the repulsive wall (beyond the

�tted range).

5.4 Results

5.4.1 Energies and labels for J=0 states.

Table 5.2 lists the lowestJ = 0 energy levels for each irrep of the OCS dimer. They are

labelled: (Type;vt (torsion), vg(geared bend), vr (VdW-stretch), v a (anti-geared bend)). The

geared and anti-geared bends are along disrotatory and conrotatory coordinates. [48] Type

indicates the well(s) above which the wavefunction corresponding to the level is localized.

The wells are represented by NS, P, NO, and C for cross. The torsional fundamental as-

sociated with the NS well is quite low, about 15 cm� 1 (compared to � 37 cm� 1 for the

geared bend,� 44 cm� 1 for the VdW stretch, and � 51 cm� 1 for the anti-geared bend).

Because there are two equivalent polar wells and two equivalent cross wells there could be

observable tunnelling splittings. According to our calculations the tunnelling splittings are

small. This is partly due to the width and height of the barriers and partly due to the large
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mass that must be moved during the tunnelling processes. In the polar ground state the

tunnelling splitting is less than 0.0001 cm� 1. The �rst polar state with a splitting larger

than 0.0001 cm� 1 is (P; 2000). The tunnelling splitting for the cross ground state is� 0:01

cm� 1. Surprisingly, the A� state is lower than theA+ state. This must be due to coupling

of vibrational states.

The vt , vg, vr , va labels are determined in two ways. First, nodal structure in wave-

functions is used. Second, knowing, for each well, the energies of the fundamentals, we can

estimate energies of overtones and combination bands. For example, knowing that in the NS

minimum the vt fundamental is about 15 cm� 1, and the vg fundamental is about 37cm� 1,

we estimate that the state (N1;2100) should be close to 67 cm� 1 and therefore assign the

label (N1;2100) to the level 65.28 cm� 1 above the ZPE.

Probability density (PD) plots were made from the wavefunctions byintegrating over all

but two coordinates. The PDs are normalized with a volume element with a sin� factor for

each� and a r 2
0 factor for r0. Many low-lying states can clearly be associated with a single

well. PD plots for the lowest levels associated with the four lowest wellsare shown in �gure

5.6 and �gure 5.7. These �gures show clean localized non-polar S-in, polar, non-polar O-in,

and cross states. The polar state has amplitude in the two polar wellsat (� 1 � 75� ; � 2 � 60� )

and (� 1 � 120� ; � 2 � 105� ). Figures 5.8(a)/5.8(b) and 5.8(c)/5.8(d) show cleanvt = 1 and

vg = 1 states in the non-polar well. Note that the vt = 1 wavefunction has a node at

� = 180� because the wavefunction with� > 180� (not shown) is obtained by reection.

Figures 5.8(e)/5.8(f) and 5.8(g)/5.8(h) showvr = 1 and va = 1 PDs. They show clear

signs of coupling. One expectsr0 to be coupled to the anti-geared bend coordinate because

the anti-geared motion brings the two monomers closer together.Because the cross well

is separated from the polar and non-polar wells by barriers of less than 30 cm� 1 and the
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Table 5.2: The lowest vibrational levels (in cm� 1) of (OCS)2 for each irrep relative to the
ZPE. The quantum numbers vt (torsion), vg(geared bend), vr (VdW-stretch), v a

(anti-geared bend) are for the four intermolecular modes. The labels for the states
are (Well;vt ,vg,vr ,va)

A+ B+ A- B-
0.0000(NS;0000) 36.7504(NS;0100) 14.6106(NS;1000) 51.5008(NS;1100)

28.7906(NS;2000) 54.5538(P;0000) 42.9222(NS;3000) 67.5798(P;1000)
43.8507(NS;0010) 65.2827(NS;2100) 57.9591(NS;1010) 78.9389(NS;3100)
51.2235(NS;0001) 75.1049(NS;0110) 65.5120(NS;1001) 89.3105(NS;1110)
54.5538(P;0000) 79.3576(P;2000) 67.5798(P;1000) 90.0046(P;3000)
56.2277(NS;4000) 85.7370(NS;0101) 68.7305(NS;5000) 98.4503(P;1100)
71.1553(NS;2010) 85.8312(P;0100) 84.2603(NS;3010) 99.9394(NS;1101)
71.7988(NS;0200) 91.6396(P;0010) 85.4830(C;0000) 103.7671(P;1010)
79.3575(P;2000) 86.3319(NS;1200)
79.3669(NS;2001) 90.0051(P;3000)
80.1446(NS;6000) 90.3966(NS;7000)
81.3824(NO;0000) 91.6749(NO;1000)
85.4970(C;0000) 93.0756(NS;3001)
85.8312(P;0100) 98.4498(P;1100)
86.0658(NS;0020) 99.4759(NS;1020)
91.6396(P;0010) 100.7011(C;1000)
93.0127(NS;0011) 103.7781(P;1010)

...
101.8474(C;1000)

torsional mode in the cross well is at about 15 cm� 1 one expects to see wavefunctions de-

localized in the non-planar channel. Such wavefunctions do indeed exist. An example is

shown in �gure 5.9. The torsion fundamental of the NO isomer is only 10.4 cm� 1 above the

NO ground state. We have not found states localized in the very shallow high-lying bent

minima.
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Figure 5.3: Minimized potential as a function of extended angles
�

~� 1; ~� 2

�
. The contours

correspond to energies of -100, -200, -250, -300, -350, -360,-365, -370, -375, -380,
-400, -450, -500, -520, -540, -560 and -580 cm� 1. The green contours are below
-370cm� 1. Every shape appears twice: P1=P4, P3=P2, NS1=NS2, B3=B4,
B1=B2, b3=b4, b1=b2, NO1=NO2.
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Figure 5.6: (a) The NS ground state of the OCS dimer. (b) The �rst polar state of the OCS
dimer with energy of 54.5538 cm� 1 above the ZPE. (c) The non-polar O-in state
with energy of 81.3824cm� 1 above the ZPE
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Figure 5.7: The �rst cross-shaped state (A+) with energy above ZPE of 85.4970 cm� 1. The
PD also has amplitude in a second equivalent cross-shaped minimum that is not
shown in b).

5.4.2 J > 0 states and rotational constants.

We have also calculatedJ > 0 levels, and there are experimental transition frequencies and

rotational constants that we can compare with. Experimentalistsdetermine rotational con-

stants by adjusting the constants of an e�ective rotational Hamiltonian so that its eigen-

values reproduce the rotational energy levels associated with a particular vibrational state.

We can also compute rotational constants by �tting, as the experimentalists do. In order

for this to be done, we must assume that every wavefunction is nearly a product of a vibra-

tion/tunnelling state and a rotational state and have a means of assigning vibrational and

rotational labels to rovibrational levels. If coupling between rotation and vibration is too

strong this will be impossible. Even when the coupling is weak enough that it is possible

to associate rovibrational states with vibrational states, it will bedi�cult to do so if the

density of vibrational states is high.
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Figure 5.8: (a-b) The (NS;1000) state with energy 14.6109 cm� 1. (c-d) The (NS;0100) state
with energy 36.7500 cm� 1. (e-f) The (NS;0010) state with energy 43.8512 cm� 1.
(g-h) The (NS;0001) state with energy 51.2249 cm� 1.
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Figure 5.9: State 35 of A+ symmetry with energy of 116.9067 cm� 1. It is clearly de-localized
in the entire channel.

To label rovibrational states we use the two ideas presented in Ref. 48. We use line-

strengths calculated from equations in Ref. 48 and a sum-of-dipoles model for the dipole

moment of (OCS)2. Transitions occur in groups that are easily associated with polar orcross

vibrational states. Although the total density of states is so highthat attributing vibrational

labels is impossible, the density of states with appreciable intensity is low enough that

assigning vibrational labels (but not tunnelling labels) to �nal statesof intense transitions

is possible. This enables us to identify polar and cross states embedded in the dense stack

of dark non-polar levels. Note that even thoughB+ and B� states are forbidden because

OCS has zero spin, they still may have appreciable rovibrational intensity and can be used to

attribute vibrational labels. The vibrational labels determined in thisfashion are con�rmed

using vibrational parent analysis (see below). To assign 101 and 111 rotational labels to the

�nal states of bright rovibrational transitions that correspond to polar vibrational states, we
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use the fact that the the �nal rotational states of R(0) transitions are 101(a-type) or 111(b-

type). For polar (case b) states, transitions to 110(c-type) are symmetry forbidden because

of the the dipole transition ruleA+ $ A� and B+ $ B� . To �nd polar vibrational states

with rotational state 110, we compute Q(1) line strengths. Because the b-type transitions

for the Q(1) branch are 110 ! 101 and the a-type are 111 ! 110 we can use the 111 or 101

assignment we obtained from the R(0) bright transitions to �nd the110 state. The Q and R

transitions for polar states are illustrated in �gure 11 of Ref. 48.

Similar ideas are used for cross states, but for the cross structure the dipole moment is

parallel to the b-axis (C2 axis) and therefore only R(0) 111(b-type) transitions are bright.

The C2 axis is parallel to ~r1 + ~r2 and goes through the centre of mass. From R(0) intensity

data we only �nd 111 rotational states. From Q(1) intensity data we can �nd a transition

between 110 and 101 and hence identify 110 and 101 rotational states.

Assignments obtained from intensity data are con�rmed by vibrational parent analysis

(VPA). This entails, re-expanding rovibrational wavefunctions in terms of vibrational wave-

functions. [48] See also Ref. 70. From the VPA we can also obtainadditional information.

Polar vibrational states are split into two very nearly degenerate tunnelling components.

Because the splitting is negligible there are two pairs of nearly degenerate R(0) transitions.

The four Q(1) transitions have the same pattern (See Fig. 11 of Ref. 48). This also occurs

for N2O dimer. For OCS dimer, unlike N2O dimer, one of the two nearly degenerate lines is

actually absent because theB+ and B� states are forbidden, due to the fact that OCS has

zero spin. In the same fashion, each cross rovibrational state is split into two very nearly

degenerate tunnelling components. In this case the tunnelling splitting is larger, two R(0)

transitions occur and there are no Q(1) transitions. This is illustrated in �gure 5.10. It is not

possible to establish tunnelling labels from the intensity data alone (because the tunnelling
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components are too close). Tunnelling labels can be determined fromthe VPA.

Knowing the symmetry of both the total wavefunction and vibration/tunnelling state

one can deduce the symmetry of the rotational state. For NS andNO states the 101; 111; 110

states have symmetry B-, B-,A+. In Ref. 48 this is denoted case a.For polar states we �nd

that the 101; 111; 110 states have symmetry B-, A-,B+. In Ref. 48 this is denoted case b.The

symmetry of the cross rotational states is less clear because forcross states, the vibrational

parentage is in some cases ambiguous. Because there are two tunnelling components there

are 6J = 1 states. The parentage of the lowest two states is unambiguous. Because they are

the lowest they are assumed to be 101. The other four states have about 50 percent of their

parentage from each of theJ = 0 cross-shaped states. The two highest states at 85.6439 and

85.6429 cm� 1 are assumed to have as parent the tunnelling component with the larger energy

(at 85.4970 cm� 1) and to be 110 and 111 rotational states, respectively. The two lower states

at 85.6315 and 85.6305 cm� 1 are assumed to have as parent the tunnelling component with

the smallest energy (at 85.4830 cm� 1) and to be 110 and 111 rotational states, respectively.

With this choice the two cross tunnelling components have similar rotational constants. We

�nd that for cross states the 101; 111; 110 states have symmetry B-, A+, B-. We refer to

this as case c. The bright R(0) transitions between cross-shapedtunnelling components are

\across" i.e. from upper to lower or from lower to upper. See �gure5.10.

Being able to attribute vibrational parents makes it possible to extract rotational con-

stants from our rovibrational energy levels. Rotational constants for the lowest vibra-

tional states that can be associated with each of the minima are reported in Table 5.3

Experimental and theoretical rotational constants di�er by lessthan 0.001 cm� 1, indi-

cating that the minimum geometries and the well shapes on the new potential are accu-

rate. Rigid rotor rotational constants computed from the positions of the minima are:
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A = 0:1023; B = 0:0433; C = 0:0304 cm� 1 for the non-polar global minimum; andA =

0:1345; B = 0:0349; C = 0:0277 cm� 1 for the polar S-in minima. This indicates that to

achieve excellent agreement with experiment it is imperative to account for the motion of

the nuclei. Rotational constants computed from the rigid geometries determined by Bone,

the only previous ab initio calculation, also agree less well with experiment. For the NS min-

imum, Bone �nds A = 0:0998; B = 0:0425; C = 0:0298 cm� 1 . For the polar well, he �nds

A = 0:1350; B = 0:0322; C = 0:0260 cm� 1 . Rovibrational levels and rotational constants

for the fundamentals with energy less than 100cm� 1 are given in Table 5.4. All of these

rotational constants were calculated usingJ = 1 levels.

In Tables 5.3 and 5.4 the theoretical rotational constants are determined from the the

J = 1 levels, but the experimental rotational constants of Minei andNovick [52] were

obtained by �tting eigenvalues of a spectroscopic Hamiltonian to experimental levels with

higher J values. We have �t computed rovibrational levels using the same spectroscopic

Hamiltonian and levels with J < 5. To do this, it is necessary to assign the corresponding

rovibrational states. Table 5.5 compares the spectroscopic parameters we obtain with their

experimental counterparts. The agreement with experiment is once again very good. The

only parameter that is signi�cantly di�erent is � K which has error in the �rst digit. The

rotational constants are little changed by �tting more levels and adding more spectroscopic

parameters to the e�ective Hamiltonian.
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Table 5.3: J = 1 rotational levels (in cm� 1) for the lowest states localized in each of the
minima. Rotational constants (in cm� 1) are derived fromJ = 1 levels.

J = 0 (S;vt ,vg,vr ,va) 101(sym) 111(sym) 110(sym) A B C
0.0000(NS;0000)(A+) 0.0719(B� ) 0.1324(B� ) 0.1447(A+) 0.1026 0.0421 0.0298

NS[59] 0.1023 0.0420 0.0298
54.5538(P;0000)(A+) 54.6152(B� ) 54.7147(A� ) 54.7217(B+) 0.1337 0.0342 0.0272
54.5538(P;0000)(B+) 54.6152(A� ) 54.7147(B� ) 54.7217(A+) 0.1337 0.0342 0.0272

P[51, 52] 0.1329 0.0344 0.0273
81.3825(NO;0000)(A+) 81.4321(B� ) 81.6278(B� ) 81.6306(A+) 0.2219 0.0262 0.0235
85.4970(C;0000)(A+) 85.5673(B� ) 85.6429(A+) 85.6439(B� ) 0.1112 0.0357 0.0346
85.4830(C;0000)(A� ) 85.5533(B+) 85.6305(A� ) 85.6315(B+) 0.1129 0.0357 0.0346

Table 5.4: J = 1 rotational levels (in cm� 1) for the ground state and the fundamentals with
energy less than 100 cm� 1. Rotational constants (in cm� 1) are derived fromJ = 1
levels.

J=0 (S;vt ,vg,vr ,va) 101(sym) 111(sym) 110(sym) A B C
0.0000(NS;0000)(A+) 0.0719(B� ) 0.1324(B� ) 0.1447(A+) 0.1026 0.0421 0.0298

14.6106(NS;1000)(A� ) 14.6823(B+) 14.7430(B+) 14.7548(A� ) 0.1024 0.0417 0.0300
36.7504(NS;0100)(B+) 36.8208(A� ) 36.8831(A� ) 36.8951(B+) 0.1035 0.0412 0.0292
43.8507(NS;0010)(A+) 43.9211(B� ) 43.9833(B� ) 43.9953(A+) 0.1033 0.0412 0.0292
51.2235(NS;0001)(A+) 51.2928(B� ) 51.3556(B� ) 51.3649(A+) 0.1021 0.0393 0.0301
54.5538(P;0000)(A+) 54.6152(B� ) 54.7147(A� ) 54.7217(B+) 0.1337 0.0342 0.0272
67.5798(P;1000)(A� ) 67.6414(B+) 67.7385(A+) 67.7452(B� ) 0.1312 0.0342 0.0274
85.8312(P;0100)(A+) 85.8914(B� ) 85.9946(A� ) 86.0014(B+) 0.1367 0.0335 0.0267
91.6396(P;0010)(A+) 91.7000(B� ) 91.8022(A� ) 91.8090(B+) 0.1358 0.0336 0.0268
54.5538(P;0000)(B+) 54.6152(A� ) 54.7147(B� ) 54.7217(A+) 0.1337 0.0342 0.0272
67.5798(P;1000)(B� ) 67.6414(A+) 67.7385(B+) 67.7452(A� ) 0.1312 0.0342 0.0274
85.8312(P;0100)(B+) 85.8913(A� ) 85.9946(B� ) 86.0014(A+) 0.1367 0.0335 0.0267
91.6396(P;0010)(B+) 91.7000(A� ) 91.8022(B� ) 91.8090(A+) 0.1358 0.0336 0.0268
81.3824(NO;0000)(A+) 81.4321(B� ) 81.6278(B� ) 81.6306(A+) 0.2219 0.0262 0.0235
91.6749(NO;1000)(A� ) 91.7250(B+) 91.9087(B+) 91.9113(A� ) 0.2101 0.0264 0.0237
85.4970(C;0000)(A+) 85.5673(B� ) 85.6429(A+) 85.6439(B� ) 0.1112 0.0357 0.0346
85.4830(C;0000)(A� ) 85.5533(B+) 85.6305(A� ) 85.6315(B+) 0.1129 0.0357 0.0346
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Table 5.5: Comparison of spectroscopic constants of the polar state with those of reference
[52]. Constants were obtained from a �t to levels withJ � 4. Values are in cm� 1.
The bracketed number is one standard deviation in units of the last digit.

Parameter Ref. [52] This Work
A 0.1329371(6) 0.1337048(4)
B 0.03436352(6) 0.034235(1)
C 0.0272855(8) 0.027235(1)

� J 7.131(8)� 10� 8 7.3(2)� 10� 8

� JK -1.712(1)� 10� 7 -1.91(7)� 10� 7

� K 1.401(7)� 10� 6 1.391(6)� 10� 6

� J 1.781(7)� 10� 8 2.0(4)� 10� 8

� K 2.27(2)� 10� 7 3.3(6)� 10� 7

5.4.3 Transitions with line strength greater than one

Frequencies for the most intense transitions are reported in Table5.6. All line strengths

in this paper are reported in units of the OCS dipole. Comparing the bright transitions of

Table 5.6 and the assigned parents of Table 5.3, it is clear that polar transitions can occur

across or within tunnelling pairs. The only transitions visible for the cross-shaped tunnelling

pairs occur across. Transitions that include B states are not shown as they do not exist.

The brightest transitions are all within a vibrational state. Table 5.7shows line strengths

of some of the strongest transitions between di�erent vibrational states. They are all weaker

than those of transitions within a vibrational state. According to previous calculations for

(N2O)2, a transition from the ground state to the non-polar+torsion state had an appreciable

line strength (3.3 � 10� 2) [48]. This transition is observable [71] and it is therefore possible

that NS and NO transitions in Table 5.7 might also be observable. It alsomay be possible

to observe the Cross to Cross+Torsion transitions as its line strength is about half the

magnitude of the transitions for the Non-Polar states. The intensity of the Polar transitions



CHAPTER 5. OCS DIMER 60

Table 5.6: Bright transitions for the OCS dimer for J� 1

Lower Upper J 00
K 00

a K 00
c

! J 0
K 0

a K 0
c

Freq(MHz) Line strength
(P;0000)

54.5538(A+) 54.6152(A� ) 000! 101 1842.8 1.14
54.5538(A+) 54.7147(A� ) 000! 111 4824.8 2.71
54.6152(A� ) 54.7217(A+) 101! 110 3191.8 4.07
54.7147(A� ) 54.7217(A+) 111! 110 209.8 1.72

(P;1000)
67.5798(A� ) 67.6414(A+) 000! 101 1847.9 1.07
67.5798(A� ) 67.7385(A+) 000! 111 4756.8 2.71
67.6414(A+) 67.7452(A� ) 101! 110 3111.7 4.07
67.7385(A+) 67.7452(A� ) 111! 110 202.8 1.60

(P;0100)
85.8312(A+) 85.8913(A� ) 000! 101 1801.4 1.15
85.8312(A+) 85.9946(A� ) 000! 111 4897.4 2.66
85.8913(A� ) 86.0014(A+) 101! 110 3300.8 3.99
85.9946(A� ) 86.0014(A+) 111! 110 204.8 1.73

(P;0010)
91.6396(A+) 91.7000(A� ) 000! 101 1811.1 1.19
91.6396(A+) 91.8022(A� ) 000! 111 4874.2 2.67
91.7000(A� ) 91.8090(A+) 101! 110 3267.0 4.01
91.8022(A� ) 91.8090(A+) 111! 110 203.9 1.79

(C;0000)
85.4970(A+) 85.6305(A� ) 000! 111 4001.9 1.97
85.4830(A� ) 85.6429(A+) 000! 111 4792.1 1.97
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Table 5.7: R(0) transitions from the ground state to other vibrational states.

Lower Upper J 00
K 00

a K 00
c
! J 0

K 0
a K 0

c
�E (cm � 1) Line Strength

(NS;0000) (A+) (NS;1000) (A� ) 000! 110 14.7548 2.8� 10� 2

(NS;0000) (A+) (NS;0100) (A� ) 000! 101 36.8208 1.0� 10� 2

(NS;0000) (A+) (NS;0100) (A� ) 000! 111 36.8831 1.2� 10� 4

(P;0000) (A+) (P;1000) (A� ) 000! 110 13.1915 1.5� 10� 4

(P;0000) (A+) (P;0100) (A� ) 000! 101 31.3376 0.2� 10� 4

(P;0000) (A+) (P;0010) (A� ) 000! 101 37.1463 1.7� 10� 3

(P;0000) (A+) (P;0010) (A� ) 000! 111 37.2484 6.0� 10� 4

(NO;0000) (A+) (NO;1000) (A� ) 000! 110 10.5289 4.0� 10� 2

(C;0000) (A+) (C;1000) (A� ) 000! 111 15.6902 9.8� 10� 3

(C;0000) (A� ) (C;1000) (A+) 0 00! 111 16.2250 8.3� 10� 3

is orders of magnitude smaller, so it is unlikely that these inter-vibrational bands would be

visible.

5.4.4 Comparison to observed microwave transitions

Rovibrational states localized in the polar well were calculated forJ = 1; 2; 3; 4; 8, and 9.

Computed transition frequencies and their experimental counterparts [52] are compared in

Table 5.8 in the Supplementary material. The agreement is quite good with the maximum

error being 138.9 MHz (0.0046cm� 1). This shows that the quality of the computed frequen-

cies degrades very little asJ is increased. However, the calculation of higherJ levels did

take signi�cantly more time. Using 4 Quad-Core Opteron 8350 2GHz processors in parallel,

computing the J = 0 energies took about an hour, compared to about a day forJ = 9 levels.
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Table 5.8: Comparison to observed transitions in the supplementarydata of reference [52].

J 00
K 00

a K 00
c
! J 0

K 0
a K 0

c
vcal (MHz) vobs(MHz) jvcal � vobsj(MHz)

313! 212 5207.4 5219.5 12.1
303! 202 5486.2 5500.5 14.3
322! 221 5528.2 5544.5 16.3
321! 220 5570.1 5588.4 18.3
312! 211 5837.0 5855.5 18.0
212! 101 6458.7 6438.4 20.3
414! 313 6931.2 6947.2 16.0
431! 330 7395.9 7415.7 19.8
422! 321 7467.8 7492.2 24.4
826! 817 7746.6 7689.3 57.4
413! 312 7767.6 7793.4 25.8
927! 918 7947.5 7905.6 42.0
313! 202 7989.5 7972.6 16.9
817! 808 8232.3 8279.9 47.6
422! 413 8391.8 8304.8 86.4
321! 312 8691.1 8605.9 85.1
220! 211 8957.2 8873.0 84.2
414! 303 9434.5 9419.2 25.3
221! 212 9577.5 9498.4 79.1
918! 909 9740.3 9807.6 67.3
322! 313 9823.4 9896.1 72.7
423! 414 10327.9 10260.1 67.7
221! 110 12843.4 12770.5 72.9
220! 111 13062.2 12993.7 68.6
322! 211 14474.0 14406.5 67.5
909! 818 14791.8 14846.8 55.0
321! 212 15157.5 15097.8 59.7
431! 422 15313.4 15174.5 138.9
330! 321 15385.3 15251.0 134.3
909! 808 15628.2 15654.8 26.6
423! 312 15999.9 15934.9 65.0
919! 808 16236.8 16238.4 2.4
928! 827 16389.6 16433.4 43.8
918! 817 17136.1 17398.7 46.3
927! 826 17337.0 17182.4 61.7
422! 313 17417.9 17370.5 47.4
331! 220 20955.5 20839.0 116.5
330! 221 20967.5 20850.4 117.1
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Figure 5.10: Bright R(0) and Q(1) transitions for the cross-shaped state of the OCS dimer.
All bright transitions are b-type due to the orientation of the dipole. The levels
associated with the symmetric and anti-symmetric tunnelling statesare on the
left (solid lines) and right (dashed lines), respectively. Transitions indicated
with dotted arrows do not occur because the B states do not exist. Transitions
indicated with dashed arrows are symmetry allowed but weak because they are
not b-type. (As a result, there are noQ(1) lines.) Based on the symmetry of
the J = 1 rotational factors, the case here is de�ned as case (c).



Chapter 6

NNO dimer

6.1 Historical studies of the N 2O dimer

There have been various studies of the nitrous oxide dimer (N2O)2 appearing in literature

since 1978.[72, 73, 74, 75, 76, 77, 78] In 2007, a polar isomer was found[79, 80, 81] which

garnered renewed interest in (N2O)2. This was later followed by a study by Dehghanyet al.

that focused on the isotopologues of (N2O)2[82].

6.2 Transformation of potential

Most theoretical rovibrational calculations are performed using the most abundant isotopo-

logue of the system. This was the case in the earlierab initio study of (N2O)2 non-polar[36]

and, polar and t-shaped[48] isomers. However, there are many examples of experimentalists

producing results for a wide variety of isotopologues. This chapterstudies the e�cacy of us-

ing the Potential Energy Surface (PES)[36] calculated for the most common isotopologue of

the nitrous oxide dimer (14N2O)2 for calculations of di�erent isotopologues. In other terms,

64
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we are testing the approximation that

Vb ( �rb) = Va (Tb! a ( �rb)) ; (6.1)

where Vi is a potential explicitly calculated for isotopologuei , and T is de�ned as the

transformation that transforms the mass-weighted coordinates between two isotopologues �r i

and �r j such that,

�r j = Ti ! j ( �r i ) : (6.2)

6.3 Calculating rovibrational levels

q1

q2

f 2

r0

r2

r1

Figure 6.1: (N2O)2 coordinates. O is red and N is blue.

The rovibrational Schr•odinger equation was solved using the sameapproach of Refs. 36

and 48 and described in Chapter 4. The coordinates used are shownschematically in Figure
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6.1. The calculation is performed with rigid monomers of length~r1 and ~r2. Euler angles spec-

ify the orientation of the monomers in the body-�xed frame, wherethe z-axis is along~r0 and

the x-axis is along the vector~r0 � ~r1 � ~r2. For the stretch (~r0) coordinate potential optimized

discrete variable representation (PODVR) functions[32, 33, 34, 35] were used. The bend

(� 2) and rotation (� 1; � 1) coordinates used parity-adapted rovibrational functions[41, 42].

In the calculations, the angular quantum numbers of the bend-rotation functions, l1, l2,

and m2, all have the same maximum value. The use of the parity adapted-basis makes it

possible to do even and odd parity levels separately. When the monomers were di�erent

((14N2O)(15N14NO) and (15N2O)(14N2O)), the labelling of the states was even (+) or odd

(� ) parity. When the monomers were identical ((15N2O)2 and (15N14NO)2), a symmetry

adapted variant of the Cullum and Willoughby Lanczos[46, 83] methodwas implemented

to calculate energy levels. This allowed the labelling of even and odd states with respect

to the permuting of the monomers. The four permutation-inversion (PI) symmetry groups

were (A+,B+,A � ,B� ) where A/B is to label symmetric and antisymmetric irreducible rep-

resentations of the permutation of the monomers. Quadrature was used for the potential

integrals. Matrix-vector products required for Lanczos were computed sequentially using

techniques described in Refs. 31 and 40, 69, 84, 45. The wavefunctions were obtained from

the eigenvectors of the Hamiltonian matrix using methods describedpreviously[41, 45].

The various monomer rotational constants for the di�erent isotopologues are taken to be

the experimental ground state values found in Ref.85. The massesused for calculating the

reduced mass of inter-monomer distance (~r0) are taken to be 14.0030740052, 15.0001, and

15.9949146221 for N14, N15, and O respectively. As in previous calculations on ((14N2O)2)[36],

the angular basis hadlmax = mmax = 44, 45 Gauss-Legendre quadrature points for� 1 and

� 2, and 90 equally spaced trapezoid points in the range [0; 2� ] for � 2, with zero being the
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�rst point. For r0, 25 PODVR functions were used. The reference potential used was a

cut de�ned in the range [4.5 Bohr, 18.0 Bohr]. Tests performed on (14N2O)2 con�rm that

the energy levels are converged to better than 0.001 cm� 1. The vibration even-parity basis

is about 628 000. A potential ceiling was used to reduce the spectral range with about 82

percent of the quadrature points below the ceiling value of 5240 cm� 1.

The PES used for the rovibrational calculations of each of the isotopologues was the same.

However, the quadrature and DVR points where the PES was sampled were dependent on

the isomer being calculated. Looking to Eq. (6.1),a refers to (14N2O)2 and b refers to the

isotopologue being calculated.

6.4 Results

6.4.1 Energies and labels for J=0.

The low lying states for the isotopologues with equivalent and di�erent monomers are shown

in Tables 6.1 and 6.2 respectively. The labels for the states are of theform (Type;vt (torsion),

vg(geared bend), vr (VdW-stretch), v a (anti-geared bend)). Where the Type is the well from

which the wavefunction is localized. For this paper, N is the label for the Non-Polar well and

P is the label for the Polar wells. When the monomers are equivalent, the Polar wells are

equivalent in energy to less than 0.0001 cm� 1 according to calculations in this and previous

work[48]. This is not the case for isotopologues with di�erent monomers. In this case, the

polar wells were labelled as Pa and Pb as was done in Ref. 81. The geared and anti-geared

bends are along disrotatory and conrotatory coordinates[48].
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Table 6.1: The lowest vibrational levels (in cm1) of (15N2O)2 and (15N14NO)2 for each ir-
rep relative to the ZPE. The quantum numbers vt (torsion), vg(geared bend),
vr (VdW-stretch), v a (anti-geared bend) are for the four intermolecular modes.
The labels are (Well;vt ,vg,vr ,va)

A+ B+ A- B-

(15N2O)2

0.0000(N;0000) 41.2860(N;0100) 25.3644(N;1000) 64.7030(N;1100)
49.9506(N;2000) 85.4353(N;0110) 73.3442(N;3000) 108.2692(N;1110)
51.6079(N;0010) 89.0123(N;2100) 75.8042(N;1010) 112.2575(N;3100)
79.2953(N;0200) 112.5860(N;0300) 102.5049(N;1200) 136.6005(N;1300)
96.3946(N;0001) 126.6917(N;0120) 119.2646(N;5000) 149.5334(N;1101)
97.0473(N;2010) 130.9050(N;2110) 120.2643(N;1001) 152.3685(N;3110)
99.2091(N;4000) 134.2485(N;0101) 122.4350(N;3010) 156.2541(N;1101)

100.0734(N;0020) 135.3983(N;4100) 123.0847(N;1020) 157.4220(N;5100)
114.9930(N;0210) 141.8673(N;0310) 139.1094(N;1210) 164.7427(P;1000)
126.0668(N;2200) 143.6184(P;0000) 148.1570(N;3200)
138.5227(N;0400) 162.0301(N;1220)
141.4709(N;6000) 162.3369(N;7000)
142.4823(N;4100) 164.3517(N;5010)
143.4326(N;2001) 164.7427(P;1000)
143.6184(P;0000)
145.0899(N;4010)

(15N14NO)2

0.0000(N;0000) 41.2680(N;0100) 25.3588(N;1000) 64.6846(N;1100)
49.9675(N;2000) 85.7062(N;0110) 73.3787(N;3000) 108.5322(N;1110)
52.0146(N;0010) 89.0003(N;2100) 76.1595(N;1010) 112.2495(N;3100)
79.3263(N;0200) 112.7371(N;0300) 102.5525(N;1200) 136.7507(N;1300)
96.4881(N;4000) 126.9851(N;0120) 119.3375(N;5000) 149.8323(N;1101)
97.2825(N;0001) 131.1331(N;2110) 120.5656(N;1001) 152.6032(N;3110)
99.7066(N;2010) 134.3627(N;4100) 122.7463(N;3010) 156.3860(N;1101)

100.5825(N) 135.5489(N;2110) 123.6696(N;1020) 157.5508(N;5100)
115.2980(N;0210) 142.2876(N;0310) 139.4306(N;1210) 164.6524(P;1000)
126.1184(N;2200) 143.5421(P;0000) 148.2189(N;3200)
138.8338(N;0400) 162.3374(N;1220)
141.5690(N;6000) 162.4907(N;1400)
142.8702(N;2001) 164.6059(N;5010)
143.5421(P;0000) 164.6524(P;1000)
143.9925(N;2020)
145.3756(N;4010)
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Table 6.2: The lowest vibrational levels (in cm1) of (15N2O)(14N2O) and (14N2O)(15N14NO)
for each irrep relative to the ZPE. The quantum numbers vt (torsion), vg(geared
bend), vr (VdW-stretch), v a (anti-geared bend) are for the four intermolecular
modes. Labels are (Well;vt ,vg,vr ,va)

(15N2O)(14N2O) (14N2O)(15N14NO)
+ - + -

0.0000(N;0000) 25.5633(N;1000) 0.0000(N;0000) 25.3616(N;1000)
41.5622(N;0100) 65.1628(N;1100) 41.2770(N;0100) 64.6939(N;1100)
50.3619(N;2000) 73.9607(N;2000) 49.9607(N;2000) 73.3634(N;3000)
52.1829(N;0010) 76.5263(N;1010) 51.8109(N;0010) 75.9811(N;1010)
79.8488(N;0200) 103.2642(N;1200) 79.3109(N;0200) 102.5288(N;1200)
86.0754(N;0110) 109.0939(N;1110) 85.5722(N;0110) 108.4023(N;1110)
89.6615(N;2100) 113.0766(N;3100) 89.0062(N;2100) 112.2532(N;3100)
97.0954(N;4000) 120.2743(N;5000) 96.4496(N;0001) 119.3078(N;5000)
97.5212(N;2010) 120.9602(N;1001) 97.1600(N;2010) 120.4127(N;1001)

100.0950(N;0001) 123.2806(N;3010) 99.4651(N;4000) 122.5906(N;3010)
100.9912(N;0020) 124.1664(N;1020) 100.3217(N;0020) 123.3769(N;1020)
113.3456(N;0300) 137.5527(N;1300) 112.6620(N;0300) 136.6762(N;1300)
115.7763(N;0210) 140.0932(N;1210) 115.1456(N;0210) 139.2704(N;1210)
126.9810(N;2200) 149.2077(N;3200) 126.0928(N;2200) 148.1881(N;3200)
127.5780(N;0120) 150.6002 126.8406(N;0120) 149.6858
131.8370(N;2110) 153.4455(N;3110) 131.0207(N;2110) 152.4866(N;3110)
134.9051(N;0101) 157.0064(N;1110) 134.3082(N;0101) 156.3220(N;1101)
136.2647(N;4100) 158.4987(N;5100) 135.4704(N;4100) 157.4839(N;5100)
139.3919(N;0400) 163.1215(N;1220) 138.6809(N;0400) 162.1979
142.6528(N;6000) 163.5925(N;7000) 141.5287(N;6000) 162.4099(N;7000)
142.8227(N;0301) 164.5742(pa;1000) 142.0781(N;0301) 164.4812(N;5010)
143.3244(Pa;0000) 165.0866(pb;1000) 142.6808(N;4100) 164.6898(Pa;1000)
143.4453(N;4100) 165.4413(N;5010) 143.5725(Pa;0000) 164.7056(Pb;1000)
143.8133(pb;0000) 166.4028 143.5882(Pb;0000) 165.5514
144.3945(N;2001) 166.5662 143.7067(N;2001) 165.6570
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In order to label the states, plots of the J=0 wavefunctions weremade. The probability

density (PD) plots were made from the wave functions by integrating over all but two

coordinates. The PDs are normalized with a volume element with a sin� factor for each

angle and anr 2
0 factor for ~r0. The �rst step in labelling states, was to recognize which well

the wavefunction was localized in. There are no states that have localization in two wells

except for the degenerate Polar states with identical isomers. Labelling fundamentals was

done by looking at nodal structure to determine thevt = 1, vg = 1, vr = 1, and va = 1 labels.

Four distinct single node wavefunctions were observed so the labelling of the fundamentals

is good. The �gures forvt = 1, vg = 1, vr = 1, and va = 1 of ( 14N2O)2 are shown in Ref.

36. For combination bands and overtones, labelling the states was not always obvious. In

order to assist the labelling of states, the energy of the fundamental was noted and could

be used to check whether a label made energetic sense. For example, the (N;1100) level of

(15N2O)2 could be approximated as a sum of the energy ofvt = 1 of � 25:4 cm� 1 and vg = 1

of � 41:3 cm� 1 which would give the (N;1100) state an energy of� 66:7 cm� 1. The labelled

state for this has an energy of 64:7030 cm� 1 and thus is a reasonable label. The strategy of

using fundamental energies is more important when labelling the anti-gear or VdW stretch

as these states are coupled[36, 48].

The �rst comparison to experiment that can be made is to the observed frequencies

of the fundamentals. The �rst fundamental observed was the torsional frequency[65] which

was originally done for (14N2O)2 but later updated to include the frequency for (15N2O)2[86].

For (14N2O)2, the torsional frequency was found to be 27:3(1:0) cm� 1 compared to 25:7599

cm� 1 from the rovibrational calculations done previously[36]. For (15N2O)2, the experimental

frequency was found to be 26:9(1:0) cm� 1 compared to 25:3644 cm� 1 calculated in this work.

Although the calculated frequencies themselves do not agree, thechange in the torsional
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frequency between the two isotopologues is 0:4 cm� 1 for both experiment and theory. For

the geared (disrotatory) bend fundamental, the (14N2O)2 frequency was found to be 42:3(1:0)

cm� 1[82, 65] compared to the calculated 41:8609(1) cm� 1. For (15N2O)2, the experimental

value was found to be 41:6(1:0) cm� 1 compared to 41:2860(1) cm� 1 in this work. Here the

frequencies do agree to the experimental values within the error.The change in the frequency

found from the experiment is� 0:7 cm� 1 compared to� 0:6 cm� 1 suggested by the theoretical

calculations. Recently, the anti-gear fundamental was observedto be 96:0926(1) cm� 1 and

95:4913(1) cm� 1 for (14N2O)2 and (15N2O)2 respectively[86]. This compares to the calculated

values of 97:5221 cm� 1 and 96:3946 cm� 1. In this case, the theoretical calculations predict

a signi�cantly larger change in the frequency than is observed experimentally ( � 1:1 cm� 1

compared to� 0:6 cm� 1).

6.4.2 J > 0 energy levels and rotational constants of fundamentals

for ( 15N 2O) 2

J> 0 levels have also been calculated for each isotopologue. The J=1 energies and rota-

tional constants, for non-polar and polar levels are shown in Tables6.3 and 6.4 respectively.

Where possible, comparisons have been made to experimental rotational constants. The

experimentalists determine rotational constants by adjusting the constants of an e�ective

rotational Hamiltonian so that its eigenvalues reproduce the rotational energy levels, asso-

ciated with a particular vibrational state. Likewise, in this and previous papers[36, 48], the

rotational constants are found by assuming that every wavefunction is nearly a product of

vibration/tunnelling states and a rotational state. This means that coupling between rota-

tion and vibration must be small. It is then required for vibration and rotation labels to be

assigned to wavefunctions.
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Table 6.3: J = 1 rotational levels and rotational constants (in cm� 1) for each isotopologue's
ground and fundamentals in the non-polar well.

J=0 101 111 110 A B C
(W;vt ,vg,vr ,va)(sym) (sym) (sym) (sym)

(15N2O)2

0.0000(N;0000)(A+) 0.1036(B� ) 0.3424(B� ) 0.3515(A+) 0.2952 0.0564 0.0473
(N;0000)[80] 0.2940 0.0564 0.0472

25.3645(N;1000)(A� ) 25.4680(B+) 25.6966(B+) 25.7051(A� ) 0.2846 0.0560 0.0475
41.2860(N;0100)(B+) 41.3873(A� ) 41.6414(A� ) 41.6504(B+) 0.3092 0.0552 0.0462
51.6079(N;0010)(A+) 51.7089(B� ) 51.9543(B� ) 51.9630(A+) 0.3003 0.0548 0.0461
96.3946(N;0001)(A+) 96.4968(B� ) 96.7044(B� ) 96.7113(A+) 0.2621 0.0546 0.0477

(15N14NO)2

0.0000(N;0000)(A+) 0.1056(B� ) 0.3437(B� ) 0.3532(A+) 0.2957 0.0575 0.0481
(N;0000)[76] 0.2944 0.0575 0.0480

25.3588(N;1000)(A� ) 25.4643(B+) 25.6921(B+) 25.7009(A� ) 0.2850 0.0571 0.0483
41.2680(N;0100)(B+) 41.3713(A� ) 41.6248(A� ) 41.6342(B+) 0.3098 0.0563 0.0470
52.0146(N;0010)(A+) 52.1173(B� ) 52.3624(B� ) 52.3714(A+) 0.3009 0.0559 0.0469
97.2825(N;0001)(A+) 97.3865(B� ) 97.6172(B� ) 97.6263(A+) 0.2873 0.0566 0.0474

(15N2O)(14N2O)
0.0000(N;0000)(+) 0.1067(� ) 0.3464(� ) 0.3559(+) 0.2978 0.0581 0.0485

(N;0000)[82] 0.2966 0.0581 0.0485
25.5633(N;1000)(� ) 25.6698(+) 25.8993(+) 25.9082(� ) 0.2872 0.0577 0.0488
41.5622(N;0100)(+) 41.6666(� ) 41.9217(� ) 41.9312(+) 0.3120 0.0569 0.0474
52.1829(N;0010)(+) 52.2867(� ) 52.5335(� ) 52.5426(+) 0.3032 0.0564 0.0474

100.0950(N;0001)(+) 100.1961(� ) 100.4171(� ) 100.4242(+) 0.2751 0.0542 0.0470

(14N2O)(15N14NO)
0.0000(N;0000)(+) 0.1046(� ) 0.3431(� ) 0.3524(+) 0.2954 0.0570 0.0477

25.3616(N;1000)(� ) 25.4661(+) 25.6943(+) 25.7030(� ) 0.2848 0.0566 0.0479
41.2770(N;0100)(+) 41.3793(� ) 41.6331(� ) 41.6423(+) 0.3095 0.0558 0.0466
51.8109(N;0010)(+) 51.9127(� ) 52.1581(� ) 52.1669(+) 0.3006 0.0553 0.0465
96.4496(N;0001)(+) 96.5530(� ) 96.7582(� ) 96.7650(+) 0.2603 0.0551 0.0483
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To make these assignments, it is �rst necessary to make assignments of the J = 0 energy

levels as was described in Section 6.4.1. Following this, it is necessary touse the two methods

described in Ref. 48. The �rst is to use line-strengths calculated from a sum-of-dipoles model

for the dipole moment of (N2O)2. Transitions that occur within states that have a permanent

dipole (polar) are easily assigned as they are bright. If there are nostates with a permanent

dipole with similar energy nearby, higher J states with the same vibration label are easily

assigned. This is successful, even if these polar states are embedded in a high density region

of non-polar (dark) energies. However, the distinction between adegenerate tunnelling pair

is not resolved using this technique.

As the dipole moment is in the plane perpendicular to the c-axis, only a-type and b-type

transitions will be bright. C-type transitions are also symmetry forbidden as onlyA+ $ A�

and B+ $ B� are permitted. Therefore, the R(0) branch can give information about the 101

and 111 J=1 states only. The 110 states can be assigned through examining Q(1) transitions.

Fig. 11 of Ref. 48 illustrates these transitions.

The second method is vibrational parent analysis (VPA). This is performed by re-

expanding the calculated rovibrational wavefunctions into vibrational wavefunctions[48, 70].

From this analysis, we can not only con�rm the assignments from theintensity analysis, we

can also resolve, from which tunnelling pair, a J> 1 energy level belongs. It also enables

the assignment of non-polar (dark) states. From this, the symmetry of the rotational states

relative to the J=0 state can be made. For states localized in the non-polar well, the sym-

metries of 101, 111, and 110 are B� , B� , and A+ respectively. This is denoted as case a[48].

For polar states, the symmetry is B� , A� , and B+ which is denoted as case b.
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Table 6.4: J = 1 rotational levels and rotational constants (in cm� 1) for each isotopologue's
ground and torsional fundamental in the polar well.

J=0 101 111 110 A B C
(W;vt ,vg,vr ,va)(sym) (sym) (sym) (sym)

(15N2O)2

143.6184(P;0000)(A+)143.7147(B� ) 143.9598(A� ) 143.9677(B+) 0.2972 0.0521 0.0442
143.6184(P;0000)(B+)143.7147(A� ) 143.9598(B� ) 143.9677(A+) 0.2972 0.0521 0.0442

(P;0000)[81, 79] 0.2981 0.0518 0.0440
164.7427(P;1000)(A� )164.8430(B+) 165.1925(A+) 165.2010(B� ) 0.4039 0.0544 0.0459
164.7427(P;1000)(B� )164.8430(A+) 165.1925(B+) 165.2010(A� ) 0.4039 0.0544 0.0459

(15N14NO)2

143.5421(P;0000)(A+)143.6402(B� ) 143.8849(A� ) 143.8931(B+) 0.2979 0.0531 0.0450
143.5421(P;0000)(B+)143.6402(A� ) 143.8849(B� ) 143.8931(A+) 0.2979 0.0531 0.0450
164.6524(P;1000)(A� )164.7546(B+) 165.1047(A+) 165.1135(B� ) 0.4056 0.0555 0.0467
164.6524(P;1000)(B� )164.7546(A+) 165.1047(B+) 165.1135(A� ) 0.4056 0.0555 0.0467

(15N2O)(14N2O)
143.3244(Pa;0000)(+) 143.4236(� ) 143.6706(� ) 143.6789(+) 0.3007 0.0537 0.0454

(Pa;0000)[81] 0.3004 0.0533 0.0452
143.8133(Pb;0000)(+) 143.9111(� ) 144.1629(� ) 144.1709(+) 0.3047 0.0528 0.0449

(Pb;0000)[81] 0.3063 0.0524 0.0447
164.5742(Pa;1000)(� ) 164.6777(+) 165.0326(+) 165.0414(� ) 0.4110 0.0562 0.0473
165.0866(Pb;1000)(� ) 165.1881(+) 165.5436(+) 165.5522(� ) 0.4106 0.0550 0.0465

(14N2O)(15N14NO)
143.5725(Pa;0000)(+) 143.6698(� ) 143.9146(� ) 143.9226(+) 0.2975 0.0526 0.0446

(Pa;0000)[81] 0.2981 0.0523 0.0444
143.5882(Pb;0000)(+) 143.6854(� ) 143.9304(� ) 143.9385(+) 0.2977 0.0526 0.0446

(Pb;0000)[81] 0.2983 0.0523 0.0443
164.6898(Pa;1000)(� ) 164.7911(+) 165.1408(+) 165.1494(� ) 0.4046 0.0549 0.0463
164.7056(Pb;1000)(� ) 164.8068(+) 165.1567(+) 165.1653(� ) 0.4049 0.0549 0.0463
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From these assignments, rotational constants can be extracted from the rovibrational

energy levels. The rotational constants listed in Tables 6.3 and 6.4 are derived from the J=1

levels only. For the ground non-polar state, comparisons to experimental values can be made

for (15N2O)2, (15N14NO)2 and (15N2O)(14N2O). The discrepancy between the theoretical

calculations and the �tted experimental values are all very similar. The rotational constant

A is underestimated by 0:0012 or 0:0013 cm� 1, the B constants are equivalent within the error

of the calculations, and the C constants are di�erent by� 0:0001 cm� 1. These di�erences

are all the same as reported in Ref. [36]. For the ground polar states, the discrepancy is is

more varied. For the equivalent-monomer isotopologue (15N2O)2, the di�erence of � 0:0009

cm� 1, +0:0003 cm� 1, and +0:0002 cm� 1 is equivalent to that of Ref. [48]. This is also similar

to discrepancy in (14N2O)(15N14NO). For the (15N2O)(14N2O) isotopologue, the rotational

constants B and C also di�er from experiment by similar values as the other isotopologues.

However, while the rotational constant A for the (Pa;0000) state only di�ers by +0:0003

cm� 1, the constant A for (Pb;0000) di�ers by � 0:0016 cm� 1.

Ref. [81] also gave some observed transitions for various isotopologues from which com-

parisons can be made. Table 6.5 shows the comparison between the calculated and observed

transitions. The di�erence between the calculated and observed transitions frequencies is

fairly constant for all observed transitions. Once again, the error in the observed transitions

for Pa and Pb is very similar for (14N2O)(15N14NO) but quite di�erent for P a and Pb of

(15N2O)(14N2O).
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Table 6.5: Comparison to observed transitions in the supplementarydata of Ref. 81.

Polar J 00
K 00

a K 00
c
! J 0

K 0
a K 0

c
vcal(MHz) vobs(MHz) vcal � vobs(MHz)

(15N2O)2

110! 101 7586.3 7618.3 32.0
000! 111 10236.2 10256.8 20.6
212! 111 5537.2 5510.8 26.9
202! 101 5768.5 5738.8 29.7
211! 110 6010.8 5978.4 32.4
211! 202 7827.6 7857.8 30.2
212! 101 12885.1 12895.4 10.3
313! 212 8262.5 8301.3 39.2
303! 202 8594.1 8637.0 42.9
312! 211 8963.5 9014.8 51.3
312! 303 8227.2 8205.3 21.9

(15N2O)(14N2O)
a 000! 111 10377.7 10368.6 9.1
b 000! 111 10480.2 10529.4 49.2

(14N2O)(15N14NO)
a 000! 111 10254.8 10275.2 20.4
b 000! 111 10259.6 10280.2 20.6
a 110! 101 7581.7 7613.5 31.8
b 110! 101 7587.5 7619.9 32.4



Chapter 7

CO 2-CS2 complex

7.1 Historical studies of dimers involving CO 2

The CO2-CS2 complex had not been studied in great detail until 1998 when Duttonet

al.[63] performed an infrared study of this non-polar dimer system. Although few studies

had been performed on CO2-CS2, there was interest in the study of it. This was mainly

due to the wide variety of orientations that dimers with a CO2 monomer were found to

possess. For HCl[87, 88] and HF[89, 88] with CO2, the most stable structure is linear (or

nearly linear) but HBr[88] prefers a T-shaped conformation. However, the CO2-Br2[90] was

found to have the linear orientation. CO2-HCN is found to have both nearly linear[91] and

T-shaped[91, 92] conformations. Slipped parallel structures were found for CO2 combined

with itself[93], N2O[94], acetylene[95], and OCS[96].

Non-planar structures have also been found for CO2 with other monomers. The structure

with SH2[97] is such that the plane of the S-CO2 is perpendicular to the plane of the H2S

monomer. The structure with OCS also forms a cross-shaped structure[98]. And most

relevantly, the CO2-SO2 dimer forms a cross-shaped con�guration. From the many studies

77
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Table 7.1: The local minima of the CO2-CS2 PES surface.

Coordinate
Slipped Cross

Bent
Parallel Shaped

r0(Bohr) 6.946 6.292 11.180
� 1(deg) 114.103 90.000 19.463
� 2(deg) 70.021 90.000 8.410
� 2(deg) 180.00 90.000 180.00
E(cm� 1) -539.03 -541.67 -314.94
E � E0(cm� 1) 2.64 0.00 226.73

of VdW dimers involving CO2, it is clear there is no simplea priori way to determine what

the most stable structures will be. The only experimental study ofthe CO2-CS2 was that

of Dutton et al.[63] where it was determined that the cross-shaped structure was the most

energetically favourable.

7.2 Properties of the PES

7.2.1 Minima

This PES surface has 8 wells with: 4 symmetrically equivalent slipped-parallel wells, 2

symmetrically equivalent cross-shaped wells, and 2 symmetrically equivalent bent wells. The

geometries of the corresponding energies relative to dissociation are given in Table 7.1. It

can be seen that the cross-shaped well is only slightly more energetically favourable to the

slipped-parallel well. The di�erence in the minimum between the two wellsis 2.64 cm� 1.

The Bent well is signi�cantly higher than the other two wells and also has a depth of less

than 10 cm� 1. It is also notable that that the slipped-parallel structure is not exactly parallel

as � 1 + � 2 6= 180� . Schematics of the cross-shaped and slipped-parallel structures are given

in Figure 7.1.
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Figure 7.1: The shape of the left)cross-shaped and right)slipped-parallel isomers of the CO2-
CS2 dimer on the PES surface for Van der Waals radii of O(red), C(grey), and
S(yellow) of 1.4, 1.5, and 1.85�A(respectively).

The only one of the three distinct structures observed experimentally is that of the cross-

shaped well. Dutton et al. gave the structure as� 1; � 2; � 2 = 90 deg and r0 = 6:410 Bohr

. The � 1 ,� 2 , and � 2 coordinates of Table 7.1 are exactly the same as given in Ref. 63,

and the experimentalr0 value is close to the value given in Table 7.1 with a discrepancy of

0.108 Bohr. Dutton et al. claimed that the atom-atom interactions were responsible for the

cross-shaped structure while multipole interactions would suggesta planar shape, like most

of the other dimers including CO2. Dutton et al. suggested that the atom-atom interactions

were larger than the multipole interactions which explains the shape.However, the PES

presented here suggests the two shapes are actually very close inenergy.
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7.2.2 Paths between minima

Figure 7.2 shows a 2D contour image of the PES made by constraining CO2-CS2 to be

planar and choosingr0 to minimise the energy for each pair of angles� 1; � 2. The axes are the

extended angles de�ned in Ref. 48. The extended angles are de�ned: ~� 1 = � 1, ~� 2 = 360� � � 2

if � 2 = 0 � and ~� 1 = � 1, ~� 2 = � 2 if � 2 = 180� . The top part of the �gure is for � 2 = 0 � ; the

bottom part is for � 2 = 180� .

The labels for the di�erent wells are SP for the slipped parallel and B for the bent wells.

Every structure in the molecule is labelled twice. For example SP1 is obtained from SP2 by

rotating the entire molecule. There is also a small circle around the position where a linear

con�guration would be, but the depth of the well is less than the RMSerror of the PES.



CHAPTER 7. CO2-CS2 COMPLEX 81

In (N 2O)2 discussed in Refs. 36, 48, 65, and (OCS)2 in Chapter 5, there are two types of

planar paths that connect the low-lying planar minima, disrotatory paths and a conrotatory

path. For CO2-CS2, the disrotatory path is closed between SP7 and SP3. Therefore,the

only types of paths between di�erent con�gurations are conrotatory. The conrotatory path

between SP7 and SP1 has a barrier of about 155 cm� 1. The transition state on this path

is the parallel structure. The conrotatory path between SP1 andSP6 has a barrier of 255

cm� 1 with the transition state being T-shaped.

To get between SP2 and B2, the CO2 monomer rotates and ips. The barrier for this

path is about 240 cm� 1. The well depth is less than 10 cm� 1 between the bent con�gurations

and the height of the well relative to the slipped parallel states is about 15 cm� 1. Because

the bent states are high and very shallow, no energy levels or wavefunctions were calculated

for this structure.

Although some of the conrotatory and disrotatory paths are quite low-lying, the CO2-

CS2 dimer has an even lower lying path in the out of plane coordinate� 2. Figure 7.3 shows

the transition from SP1 or SP7 to SP4 or SP6 through the cross-shaped well (in the centre)

rotating through � 2. It is obtained by minimizing r0, � 1, and � 2 at each � 2 value. The

�rst thing that can be noticed from Figure 7.3 is that the slipped parallel and cross wells

have very similar energy with only a di�erence of about 3 cm� 1. The barrier between SP

and cross wells is also very small at about 40 cm� 1. This is much smaller than the barriers

when both monomers are in the same plane. Therefore, it is more probable that transitions

between di�erent SP con�gurations occurs by rotating through� 2 than the conrotatory

cycles previously discussed.
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Figure 7.2: Potential as a function of extended angles
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�
by minimizing with respect

to r0. The contours correspond to energies of -100, -150, -200, -250, -300, -307.5,
-320, -330, -350, -360, -380, -400, -450, -500, -520 cm� 1. Green contours are those
below -380 cm� 1.
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Figure 7.3: Barrier in� 2 direction found by minimizing � 2; � 2; r0 while changing� 2. The mid-
dle well corresponds to the cross-shaped well while the outside wellscorrespond
to two SP wells each.

7.3 Rovibrational calculations

The rovibrational energy levels were found the same way as described in Ref. Refs. 36, 48 and

in Chapter 4. The coordinates used are shown schematically in Figure7.4. The monomer ro-

tational constant is taken to be the experimental ground state value of 0.3902184cm� 1[99] for

CO2 and 0.109159873cm� 1[100] for CS2. The masses 15.9949146221[67] , 12, 31.972071[68]

a.m.u. for O, C, and S, respectively are used to compute the reduced mass for the inter-

monomer coordinater0, and are equivalent to the ones used to generate the PES.

A large basis was needed to calculated the energy levels. The angularbasis we use has

lmax = mmax = 52 (the samelmax for l1 and l2). With this basis we used 53 Gauss-Legendre

quadrature points for � 1 and � 2 and 106 trapezoid points in the range [0, 2� ], with the �rst

point at zero, for � 2.
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Figure 7.4: A schematic of the coordinates used for rovibrational calculations of CO2-CS2 as
an example. O is red, C is grey, and S is yellow.

For r0 we use 25 PODVR (potential-optimized DVR) functions[32, 33, 34, 35]. The

reference potential that de�nes the PODVR functions is a cut potential in the range [5.6

Bohr, 20 Bohr] with all other coordinates �xed at their equilibrium values in the cross-shaped

well. The vibrational even-parity basis size is 1275975. Tests with a huge basis, having 200

sin DVR functions for r0 and an angular basis withlmax = 52, con�rm that this basis set

converges levels near 50 cm� 1 above the zero point energy (ZPE) to better than 0.001 cm� 1.

We apply a ceiling just below the ceiling used in the generation of the PESsurface. This

reduces the number of points referenced in the potential by approximately half. The ceiling

was applied to reduce the spectral range[69].

The monomers are symmetric about their centre of mass, and as such, there is no obvious
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way that the r1 and r2 vectors could be uniquely described. Therefore the calculations have

been performed with exchange of the S and O atoms accounted for. The permutation-

inversion (PI) symmetry group for the Hamiltonian we use isG8, composed of operations

f E; E � g
 f E; � O ; � S; � O � Sg where� O ; � S permutes the O and S atoms. e/o label symmetric

and antisymmetric irreducible-representations irreps with respect to � i and � label even and

odd parities. This results in 8 distinct parity blocks (+ee,+eo,+oe,+oo,-ee,-eo,-oe,-oo) in

which the energy levels are labelled as (E � � O � S). The use of a parity-adapted basis makes

it possible to calculate all the parity block calculations separately.

7.4 Results

7.4.1 Energies and labels for J=0 plus rotational constants from

J=1 of ground states of each low lying minima.

Table 7.2 lists the lowestJ = 0 energy levels for each irrep of the CO2-CS2 dimer. The

labelling of the states is done in the form (Type;vt (torsion), vg(geared bend), va (anti-

geared bend), vr (VdW-stretch)) for the SP states, and (Type; vt (torsion), vS(CS2 monomer

bend), vO (CO2 monomer bend), vr (VdW-stretch)) for the cross states. The type indicates

the well(s) over which the wavefunction is localized. The wells are represented by C for

the cross, and SP for slipped-parallel. The SP well has the same types of fundamentals

as (N2O)2 and (OCS)2. For the cross isomer, the fundamentals have the same torsion and

stretch behaviour but the gear and anti-gear bends are replacedby bends for the individual

monomers. Conveniently, this means that there is very little couplingbetween coordinates

and di�erent fundamentals are easily assigned.
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Table 7.2: The lowest vibrational levels (in cm1) of (CO2)(CS2) for each irrep relative to the
ZPE. The quantum numbers vt (torsion), vg(geared bend), va (anti-geared bend),
vr (VdW-stretch) are for the four intermolecular modes. The parities (eo) are for
monomers 1 and 2 respectively.

+ �
0.0000(C;0000)(ee) 0.0000(C;0000)(oo)
8.2478(SP;0000)(oo) 15.2571(C;1000)(ee)
8.2479(SP;0000)(ee) 19.0753(SP;1000)(oo)
8.2480(SP;0000)(oe) 19.0794(SP;1000)(oe)
8.2480(SP;0000)(eo) 19.0799(SP;1000)(eo)

15.2596(C;1000)(oo) 19.0872(SP;1000)(ee)
26.6014(C;0100)(eo) 26.7388(C;0100)(oe)
27.4004(ee) 28.2567(C;2000)(oo)
28.1279(SP;2000)(oe) 31.4974(C)(eo)
28.2798(SP;2000)(oo) 35.0505(ee)
28.5009(SP;2000)(eo) 35.6139(oe)
29.4709(ee) 36.9500(C)(oo)

...
...

41.9149(C;0010)(oe) 44.3713(C;0010)(eo)
... 45.6746(C;0001)(oo)

45.9463(C;0001)(ee)
...
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As there are four equivalent SP wells and two equivalent cross wells, itcould be possible to

have splittings for the various levels. According to our calculations the tunnelling splittings

are small. This is partly due to the width and height of the barriers andpartly due to

the large mass that must be moved during the tunnelling processes.For the cross-shaped

well, the �rst state that has tunnelling greater than 0.0001 cm� 1 is (C;1000). For the SP

structures, there is splitting greater than 0.0001 cm� 1 for the ground state (SP;0000). As

with the OCS dimer cross states, the (C;1000) and (C;0010) even parity state has a higher

energy than the odd parity state. This must be once again due to coupling.

Probability density (PD) plots were made from the wavefunctions byintegrating over all

but two coordinates. The PDs are normalized with a volume element with a sin� factor

for each � and a r 2
0 factor for r0. Many low-lying states can clearly be associated with a

single well. The +ee (SP;0000) and (C;0000) states are shown in Figure7.5 and Figure 7.6

respectively. The SP states clearly show amplitude in all four SP wells,while the cross states

have amplitude in the two cross wells.
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Figure 7.5: The (C;0000)(ee) wavefunction.
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Figure 7.6: The (SP;0000)(ee) wavefunction. There is amplitude in allfour symmetrically
equivalent SP wells.

The vt , vg, vr , va, vS, vO labels are determined by using the nodal structure of the

wavefunctions. As the barrier between SP and cross wells is only 40 cm� 1, the labelling

of states becomes di�cult and ambiguous for most states with energies 30 cm� 1 above the

ZPE. The reason for this is that wavefunctions show amplitude in both SP and cross wells.

PD plots of the fundamentals of the cross isomer are shown in Appendix A.1. The

torsional fundamental associated with the cross well is quite low, about 15 cm� 1 (compared

to � 26 cm� 1 for the CS2 bend, � 43 cm� 1 for the CO2 bend and and� 45 cm� 1 for the
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VdW stretch). The PD plots of these four fundamentals are shownin Appendix A.1. The

tunnelling pairs of (C;1000) and (C;0100) states look quite similar. Both these states are

also far enough below the barrier height to be localized in the cross well. The energies and

wavefunctions of the (C;0010) state are both quite di�erent. As can be seen from Figure A.3,

the (C;0010)(+oe) with energy 41.9147 cm� 1 has signi�cant amplitude in regions outside the

cross well. The (C;0010)(-eo) state (with energy 44.3708 cm� 1) on the other hand, is quite

well localized in the cross well. It is suspected that at least some of the large disparity in

the energies of this tunnelling pair is due to coupling of the two (C;0010) states with states

of similar energy. Surprisingly, the VdW stretch fundamental tunnelling pair looks quite

similar and is well localized despite having an energy higher than the barrier of around 45

cm� 1.

For the SP well, only the ground (SP;0000) and torsion (SP;1000) states are localized,

and uncoupled from other states well enough, to obtain any meaningful data. The PD plot

for all four (SP;1000) states is shown in Figure A.5. As you can see from Table 7.2, there

are only three (SP;2000) states labelled where symmetry would require four. The reason

for this is that both the 27:4004 cm� 1(ee) and 29:4709 cm� 1(ee) states could reasonably be

assigned as the fourth (SP;2000) or the second (C;2000) state. They both have the proper

parity and approximately correct energy to represent either state. However, when looking

at the PD plots, neither seem to have the appropriate nodes to be assigned as (SP;2000) or

(C;2000). The assignment is therefore left blank. This type of ambiguity in nodes continues

for all higher wavefunctions in the SP well and most of the wavefunctions in the cross well.
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7.4.2 J > 0 states and rotational constants

Rovibrational levels forJ > 0 have also been calculated and have been compared with ex-

periments where applicable. Experimentalists determine rotationalconstants by adjusting

the constants of an e�ective rotational Hamiltonian so that its eigenvalues reproduce the

rotational energy levels associated with a particular vibrational state. To do this �t, we

must assume that every wavefunction is nearly a product of a vibration/tunnelling state and

a rotational state and have a means of assigning vibrational and rotational labels to rovibra-

tional levels. If coupling between rotation and vibration is too strong this will be impossible.

Even when the coupling is weak enough that it is possible to associate rovibrational states

with vibrational states, it will be di�cult to do so if the density of vibra tional states is high.

In this section, a �t is performed to compare the results of Ref. 63for the ground cross state.

To label rovibrational states, only vibrational parent analysis (VPA) from Ref. 48 was

used. VPA involves re-expanding the the rovibrational wavefunctions in terms of vibrational

wavefunctions. In the study of (OCS)2, and (N2O)2 isotopologues, intensity calculations

were also used to assign rovibrational states. This was not used here because neither CO2

or CS2 is a polar monomer so the use of intensities is not as straightforward.

It is possible to arti�cially assign a dipole moment to one (or both) of the monomers to

assist in the assignment ofJ > 0 states. This was done with an arti�cial dipole attached

to the lighter CO2 monomer, to simulate how the infrared spectra of Duttonet al.. The

asymmetric stretch of the CO2 monomer was used there.

Both O and S have zero spin, so only the (ee) states actually exist. Although this is the

case, the (eo,oe,oo) states can still be used to determine rotational constants. The labels

are also useful for determining the symmetry of a rotational state. For the cross states, the

101; 111; 110 states have symmetry� ee, +oe, � oe, while SP has symmetry� ee, � oe, +oe.
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Unfortunately, no bright transitions were found for the only allowed transitions of � ee to

+ee within the calculated J < 3.

Being able to attribute vibrational parents makes it possible to extract rotational con-

stants for the calculated rovibrational energy levels. A, B, and C rotational constants for

the lowest vibrational states associated with cross and SP wells arereported in Table 7.3.

Using the minimum geometry from the PES for the cross-shaped con�guration to calculate

rigid rotor rotational constants results in A=0.0849, B=0.0479, and C=0.0363. This has an

error on the order of 0.001 cm� 1 while the rotational constants presented in Table 7.3 have

an error on the order of 0.0001 cm� 1. This indicates that accounting for the motion of the

nuclei is imperative to achieve excellent agreement with experiment.

There is a clear failure of the model Hamiltonian used to �t the vibrational levels for

states near (and above) the barrier between SP and cross wells. This presents itself in the

cross states as a divergence of the rotational constant A between a tunnelling pair. One

of the tunnelling pair's energies will �t to a constant A that is much larger than would be

suggested by the geometry of the molecule. The other tunnelling pair will have energies

corresponding to a much smaller (or even negative!) rotational constant A. It is suspected

that this is due to the internal rotation[101] of the molecule aroundthe A-axis, which for the

cross states is parallel to ther0 vector. In order to properly assign rotational constants, it

would be necessary to include an extra term to the �t to account for this internal rotation.

Dutton et al. assigned and �t energy levels to a model Hamiltonian for the cross ground

state. Similarly, a �t with J = 1; 2 rovibrational levels has been performed and the compari-

son between the experimental and two (C;0000) states rotational constants is made in Table

7.4. The A,B, and C rotational constants are all in excellent agreement with each other with
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Table 7.3: J = 1 rotational levels and constants for ground and vt , vS, and vr fundamentals
of cross as well as the ground and vt fundamental for SP. Rotational constants
are derived fromJ = 1 energy levels.

J=0 (S;vt ,vg,vr ,va) 101(sym) 111(sym) 110(sym) A B C
0.0000(C;0000)(+ee) 0.0818(� ee) 0.1212(+oe) 0.1323(� oe) 0.0858 0.0464 0.0354
0.0000(C;0000)(� oo) 0.0818(+oo) 0.1212(� eo) 0.1323(+eo) 0.0858 0.0464 0.0354

Cexp 0.0859 0.0463 0.0355
8.2478(SP;0000)(+oo) 8.3162(� oo) 8.3845(� eo) 8.3951(+eo) 0.1078 0.0395 0.0289
8.2479(SP;0000)(+ee) 8.3163(� ee) 8.3844(� oe) 8.3950(+oe) 0.1076 0.0395 0.0289
8.2480(SP;0000)(+oe) 8.3164(� oe) 8.3846(� ee) 8.3952(+ee) 0.1077 0.0395 0.0289
8.2480(SP;0000)(+eo) 8.3164(� eo) 8.3846(� oo) 8.3952(+oo) 0.1077 0.0395 0.0289

15.2596(C;1000)(+oo) 15.3406(� oo) 15.3783(+eo) 15.3894(� eo) 0.0837 0.0461 0.0349
15.2571(C;1000)(� ee) 15.3381(+ee) 15.3803(� oe) 15.3914(+oe) 0.0883 0.0460 0.0349
26.6014(C;0100)(+eo) 26.6813(� eo) 26.8438(+oo) 26.8545(� oo) 0.2078 0.0453 0.0346
26.7388(C;0100)(� oe) 26.8191(+oe) 26.7359(� ee) 26.7475(+ee) -0.0374 0.0460 0.0343
45.9463(C;0001)(+ee) 46.0261(� ee) 45.7551(+oe) 45.7656(� oe) -0.2259 0.0451 0.0346
19.0753(SP;1000)(� oo)19.1449(+oo) 19.2196(+eo) 19.2308(� eo) 0.1151 0.0404 0.0292
19.0794(SP;1000)(� oe)19.1482(+oe) 19.2151(+ee) 19.2248(� ee) 0.1061 0.0392 0.0296
19.0799(SP;1000)(� eo)19.1497(+eo) 19.2133(+oo) 19.2244(� oo) 0.1040 0.0404 0.0293
19.0872(SP;1000)(� ee)19.1554(+ee) 19.2112(+oe) 19.2214(� oe) 0.0950 0.0392 0.0289
45.6746(C;0001)(� oo) 45.7543(+oo) 46.0902(� eo) 46.1010(+eo) 0.3811 0.0453 0.0345
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Table 7.4: Comparison of spectroscopic constants of the cross state with those of reference
63. Constants were obtained from a �t to levels withJ � 2. Values are in cm� 1.
The bracketed number is one standard deviation in units of the last digit.

Parameter Ref. 63 This Work (+ee) This Work (-oo)
A 0.08590(1) 0.0858418(2) 0.0858403(2)
B 0.04634(1) 0.0464293(2) 0.0464293(2)
C 0.03546(2) 0.0354059(1) 0.0354059(2)

� J -1.37(65)� 10� 7 1.11(32)� 10� 7 1.11(32)� 10� 7

� JK -1.01(22)� 10� 6 1.02(7)� 10� 6 1.02(7)� 10� 6

� K 1.06(23)� 10� 6 -0.92(3)� 10� 6 -1.28(3)� 10� 6

an error of less than 0.0001 cm� 1. The � J , � JK , and � K constants on the other hand are

the same magnitude but opposite sign. In future work,J > 2 levels will be calculated to see

if that corrects the sign problem.



Chapter 8

Summary and Conclusions

8.1 Summary

Accurate PESs for (OCS)2, (N2O)2, and CO2-CS2 VdW dimers have been used to calculate

rovibrational spectra. The PESs were made fromab initio data at the CCSD(T)-F12b/VTZ-

F12 level and an IMLS interpolation method. The error of the IMLS error is small so

results obtained from the potential should be accurate. This is con�rmed in all rovibrational

calculations performed with these PESs.

To do the rovibrational calculations, matrix elements are not computed or stored but the

Lanczos algorithm is used. Kinetic energy elements of the Hamiltonianare performed by

performing each coordinate sequentially, while potential matrix elements are performed with

quadrature by doing sums sequentially. These calculations with the rigid monomers are not

especially di�cult even though the basis size needed can be larger than a million. Obtaining

a good PES and analyzing the functions and energy level patterns isfar more di�cult. This

analysis was done for (OCS)2, four isotopologues of (N2O)2, and CO2-CS2. In order to

assignJ = 0 vibrational energy levels, probability distribution plots were madefor each
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of the low-lying energies. Nodal counting was used to assign fundamentals and overtones.

The knowledge of fundamental energies was also useful in assigningcombination states. For

J > 0, two techniques were used to assign energy levels. The �rst was the calculations of line

strengths to identify bright transitions. The second was vibrational parent analysis which

expands the the rovibrational states in terms of the vibrational wavefunctions.

For the (OCS)2 dimer, rotational constants agree with experimental results to within

0.001 cm� 1 for the non-polar S-in and Polar isomers. The rotational constants of the non-

polar O-in as well as the never before seen cross-shaped isomer has also been calculated. A

comparison of observed rovibrational transitions also showed excellent agreement.

The rotational constants calculated for the isotopologues of (N2O)2 agreement with ex-

periment is similar to the results calculated for the most abundant isotope (14N2
16O)2 for

the cases when the two monomers were equivalent. In the case where the two monomers

were di�erent, the non-polar states had similar agreement to experimentally determined con-

stants. For the polar wells where the two wells were no longer identical, the accuracy of the

results depended on which polar well was examined.

Calculations for the CO2-CS2 dimer agreed with experiment well for the global minimum

cross-shaped structure. This is the only experimental structure observed. Higher vibrational

states seemed to su�er from a failure of the model Hamiltonian to which the energy levels

were �t to. This is thought to be because of a missing term that wouldaccount for internal

rotation of the dimer due to the low barrier between states.

8.2 Future Work

The next step is to determine an appropriate Hamiltonian for which the rovibrational energy

levels of CO2-CS2 could be �t to. There are also many more rigid monomer Van der Waals
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complexes that could be examined using the techniques outlined in thisthesis.

In a broader context, it would be useful to develop techniques in order to make it feasible

to study larger molecules. This could involve the use of more localized basis functions and

pruning of higher energy basis functions.
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Appendix A

Wavefunctions of CO 2-CS2

fundamentals

A.1 Figures of Cross fundamentals

Figure A.1 shows the standard torsional fundamental. Figure A.2 shows the (C;0100) fun-

damental where there is only a node in� 2. This implies that the CO2 monomer is fairly

stationary while the CS2 monomer vibrates. Likewise for (C;0010), there is only a node in

� 1. Therefore, the CO2 monomer is vibrating while the CS2 monomer is fairly stationary.

Unlike in previous studies of dimers, the VdW stretch (C;0001) stateis not coupled.

As mentioned in Chapter 7 and can be seen in Figure 7.3, the barrier between the cross

and the slipped parallel states is only about 40cm� 1. Therefore, there is non-negligible

amount of the probability distributions of the (C;0010) and (C;0001)states outside of the

cross well. This makes the assignment of the J> 0 states trickier because the parentage is

not as de�nite.
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Figure A.1: a-b) The (C;1000)(+oo) state of the CO2-CS2 complex at 15.2598cm� 1

. c-d) The (C;1000)(-ee) state of the CO2-CS2 complex at 15.2573cm� 1

A.2 Figure of (SP;1000)

Due to di�culty in assigning the SP states, only the (SP;1000) was assigned de�nitively. As

can be seen from Figure A.5, all of these SP states look very similar even though the energies

are slightly di�erent.
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Figure A.2: a-b) The (C;0100)(+eo) state of the CO2-CS2 complex at 26.6018cm� 1. c-d)
The (C;0100)(-oe) state of the CO2-CS2 complex at 26.7393cm� 1
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Figure A.3: a-b) The (C;0010)(+oe) state of the CO2-CS2 complex at 41.9147cm� 1. c-d)
The (C;0010)(-eo) state of the CO2-CS2 complex at 44.3708cm� 1
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Figure A.4: a-b) The (C;0001)(+ee) state of the CO2-CS2 complex at 45.9462cm� 1. c-d)
The (C;0001)(-oo) state of the CO2-CS2 complex at 45.6747cm� 1
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Figure A.5: The a-b)(SP;0001)(oo), c-d)(SP;0001)(oe), e-f)(SP;0001)(eo), and g-
h)(SP;0001)(ee) states.


