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Abstract

Clustered failure time data often arise in biomedical and clinical studies where poten-
tial correlation among survival times is induced in a cluster. In this thesis, we develop
a class of marginal models for right censored clustered failure time data and propose a
novel generalized estimating equation approach in a likelihood-based context. We first
investigate a semiparametric proportional hazards model for clustered survival data
and derive the large sample properties of the regression estimators. The finite sample
studies demonstrate that the good applicability of the proposed method as well as the
substantial efficiency improvement in comparison with the existing marginal model
for clustered survival data.

Another important feature of failure time data we will consider in this thesis is
a possible fraction of cured subjects. To accommodate the potential cure fraction,
we consider a proportional hazards mixture cure model for clustered survival data
with long-term survivors and develop a set of estimating equations by incorporating
working correlation matrices in an EM algorithm. The dependence among the cure
statuses and among the survival times of uncured patients within clusters are mod-
eled by working correlation matrices in the estimating equations. For the parametric
proportional hazards mixture cure model, we show that the estimators of the regres-

sion parameters and the parameter in the baseline hazard function are consistent
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and asymptotically normal with a sandwich covariance matrix that can be consis-
tently estimated. A numerical study presents that the proposed estimation method
is comparable with the existing parametric marginal method.

We also extend the proposed generalized estimating equation approach to a semi-
parametric proportional hazards mixture cure model where the baseline survival func-
tion is nonparametrically specified. A bootstrap method is used to obtain the vari-
ances of the estimates. The proposed method is evaluated by a simulation study
from which we observe a noticeable efficiency gain of the proposed method over the
existing semiparametric marginal method for clustered failure time data with a cure

fraction.
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Chapter 1

Introduction

1.1 Clustered Failure Time Data

Clustered failure time data are frequently observed in biomedical and epidemiologic
research. For example, times to occurrence of blindness of two eyes from the same
patient with diabetic retinopathy are possibly correlated, ages at diagnosis of breast
cancer from female siblings may be associated due to similar genetic structures, or
failure times of patients from the same community may be related because of shared
environments or treatment resources. Therefore, it is important to take the correlation
into account when analyzing clustered failure times.

In some cancer studies, a fraction of patients may respond favorably to the treat-
ment and have long-term censored survival times. They are often considered cured in
the sense that they will not experience relapse/death due to the cancer even after an
extended follow-up. For example, in breast cancer study (Farewell, 1986) the Kaplan-
Meier survival curves from three treatment groups level off to nonzero proportions
and a number of long-term censored observations appear at the tail of these curves. In
a head and neck cancer study (Taylor, 1995) only between 5 and 50% of patients ex-

perienced local recurrences whereas the remaining patients were free of symptoms of



the cancer at the end of the sufficiently long observation period. Due to the existence
of long-term survivors in some cancer studies, the use of standard survival models,
which assume that all subjects would eventually experience the event of interest, will

not be appropriate for the analysis of the failure time data with a cure proportion.

1.2 Motivating Examples

1.2.1 Diabetic Retinopathy Study

The well-known Diabetic Retinopathy Study (Diabetic Retinopathy Study Research

Group, 1981) was conducted to assess the effectiveness of laser photocoagulation

Survival probabilities
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—— Untreated/Juvenile
Untreated/Adult
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Figure 1.1: Kaplan-Meier survival curves for the time to blindness stratified by treat-
ment and type of diabetes.

in delaying visual loss among patients with diabetic retinopathy. There were 1742
patients entered this study between 1972 to 1975. One eye of each patient was
randomly selected to receive the laser treatment while the other eye was observed

without treatment. The endpoint used to assess the treatment effect is the time (in



months) to the first occurrence of visual acuity less than 5/200. Besides the effects of
treatment, the types of diabetes as well as the interaction between them (Figure 1.1),
we are also interested in the potential dependence between a patients’s two eyes which

form a cluster. This data set will be analyzed in Chapter 3.

1.2.2 The Study of Infections in Kidney Patients

We consider a data set on the recurrence times (in days) of infections, at the point

of insertion of the catheter, for 38 kidney patients using the same type of portable

Survival Probability

Figure 1.2: Kaplan-Meier survival curve and its pointwise 95% confidence interval for
the kidney data.

dialysis equipment (McGilchrist and Aisbett, 1991). Two recurrence times and the
corresponding censoring indicators were recorded for each patient. As introduced
by Cleves et al. (2008), the first recurrence time to infection is measured when a
catheter is inserted. The second recurrence time to infection is measured as time
elapsed between the second insertion and the second infection or censoring. The

primary interest of the study is to assess the factors such as age, gender and the



type of kidney disease to the development of infections. We plot the Kaplan-Meier
survival curve based on 76 observations. Figure 1.2 shows that the patients experience
the infection given sufficient follow-up time. Meanwhile, the correlation between the
recurrence times within each patient is of interest. This data set will be analyzed in

Chapter 3.

1.2.3 Smoking Cessation Study

We consider a data set from a smoking cessation study (Banerjee and Carlin, 2004).
The original data consist of 223 people enrolled in the study between November 1986
and February 1989 from 51 zip codes in the southeastern corner of Minnesota in the

United States. In this study, smokers were randomly assigned to one of two treatment

Survival function
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Figure 1.3: Kaplan-Meier survival curves of smoking cessation data stratified by in-
tervention type and sex.

groups: smoking intervention (SI) group or usual care (UC) group. The survival time
is defined as the time (in years) required for a failed quitter to resume smoking. The

people residing in the area with the same zip code form a cluster and may be spatially



correlated due to the shared environment. Also the data reveals (Murray et al. 1998)
that many former smokers have successfully given up smoking. Therefore, a cure
fraction exists in this data set. We plot the Kaplan-Meier survival curves by sex and

intervention type in Figure 1.3. This data set will be analyzed in Chapter 4.

1.2.4 Multi-Center Clinical Trial of Tonsil Carcinoma

We consider a data set from a tonsil cancer clinical trial study conducted by the
Radiation Therapy Oncology Group in the United States. The survival time is defined
as the time (in days) from diagnosis to death. In this study, patients in one institution
were randomly assigned to one of two treatment groups: radiation therapy alone or
radiation therapy together with a chemotherapeutic agent. A part of the data from

the study is available in Kalbfleisch and Prentice (2002). We plot the Kaplan-Meier

Survival Probability
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Days

Figure 1.4: Kaplan-Meier survival curve and its pointwise 95% confidence interval for
the tonsil data.

survival curve and its pointwise 95% confidence interval in Figure 1.4 and observe

that the curve levels off at about 0.18, which suggests that a cure fraction may be



present in this data and a cure model should be considered. Another important
feature of this data is that the patients are clustered by institutions in this study.
The shared environment and the treatment facilities in one institution may induce
correlation among the cure statuses and among the failure times of uncured patients
in one institution. Therefore, it is important that both the cure fraction and the
cluster effect are considered in the model for the data. This data set will be analyzed

in Chapter 5.

1.2.5 Bone Marrow Transplantation Data

We consider the bone marrow transplantation data (Klein and Moeschberger, 2003).

This multi-center acute leukemia study consists of 137 patients with acute myelocytic

Survival Probability
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Figure 1.5: Kaplan-Meier survival curve and its pointwise 95% confidence interval for
the leukemia data.

leukemia (AML) or acute lymphoblastic leukemia (ALL) aged 7 to 52 from March
1, 1984 to June 30, 1989 at four institutions. The failure time on study is defined

as time (in days) to relapse or death. The Kaplan-Meier survival curve (Figure 1.5)



suggests that the existence of a cure proportion in acute leukemia patients and a cure
model should be applied to the data. In addition, the patients are clustered by four
institutions which may induce correlation among the cure statuses and among the
failure times of uncured patients. Therefore, both the cure fraction and the cluster

effect should be considered. This data set will be analyzed in Chapter 5.

1.3 Organization of This Thesis

The objective in this thesis is to develop new marginal models for analyzing clustered
failure time data with/without a cure fraction to improve the estimation efficiency. In
Chapter 2, two important models including the Cox proportional hazards model and
proportional hazards mixture cure model are presented under correlation structures.
Then we review random effects models and marginal models for clustered failure time
data with/without a cure proportion. The generalized estimating equations, the EM
algorithm, and the ES algorithm are introduced at the end of this chapter.

The Cox proportional hazards model is considered as a standard model for inves-
tigating the classical clustered failure time data which assume that all subjects would
eventually experience the event of interest. In Chapter 3, we revisit the marginal
method developed by Segal and Neuhaus (1993) for classical clustered failure time
data and propose an unbiased weighted estimating function for regression parameters
in a semiparametric proportional hazards model.

When there exists a fraction of cured subjects in the clustered survival data, the
marginal mixture cure model has been received much attention. In Chapter 4, we
propose a new generalized estimating equation approach to modeling the clustered
survival data with a cure fraction through a marginal parametric proportional hazards

mixture cure model.



In Chapter 5, we consider a semiparametric marginal proportional hazards mixture
cure model for clustered failure time data with a cure fraction. A set of generalized
estimating equations are proposed for the regression parameters. We briefly discuss
the iterative algorithm used for solving the equations.

Chapter 6 presents a summary of this dissertation contributions and future re-

search directions.



Chapter 2

Literature Review of Relevant Models and

Methods

In the first two sections of this chapter, we present two important models including the
Cox proportional hazards model and the mixture cure models that will be extended
in the following chapters. Based on these two models, in Section 2.3, we review
the random effects models and marginal models which are commonly used to handle
the potential correlation within clustered survival times. In Section 2.4, we describe
the generalized estimating equation approach which is an extension of generalized
linear models by explicitly incorporating the correlation structure in the estimation
procedure. The EM algorithm is introduced in Section 2.5. A review of the ES
algorithm which is a combination of the EM algorithm and the generalized estimating
equation approach will be given in Section 2.6.

Throughout this thesis, we assume that there are n; individuals in the ith (i =

1.---

, , K) cluster, and K clusters in total. The total number of observations is N =

Zfil n;. The function I(A) = 1 if A is true and 0 otherwise. Let T; and Cj; be the
failure and censoring times for the jth subject in the ith cluster (j = 1, -+ ,n;i =

1,---, K) where Tj; < co. Let Tj; = min(T};,C;;) be the observed failure time and



0ij = 1 (Tw < () be the right censoring indicator. The censoring mechanism is
assumed non-informative. That is, the censoring time is statistically independent
of the failure time given observed covariates. Xj; is a vector of time independent
covariates that may have effect on the failure time distribution. Given Xj;, we assume
that T~ij and f}jr are correlated in a cluster if ;7 # j'. However, T~Z~j and Ti/jf are
independent if 7 # 7'

Although it is common to assume that all subjects would eventually experience the
event of interest, in some social and biomedical studies (see Examples 1.2.3, 1.2.4,
and 1.2.5), a certain fraction of the population may never experience a particular
type of failure and is often considered as cured. Graphically, these fractions are often
characterized by the survival curves being leveled off at nonzero probabilities. Here
we let Y;; denote the cure status of subject j in cluster ¢, that is, Y;; = 1 if the subject
is uncured (susceptible) and 0 otherwise.

Similar to the definition of T,-j, we let T[; be the failure time for the jth subject
which may be cured in the ith cluster (j = 1,--- ,n;,i =1,--- , K) where T;; < 0.
Therefore, the modeling of cure rate is a decomposition of the failure time, i.e.,
T;; = Y;j’fij + (1 — Y;;)o0 where T;; = Tij denotes the failure time of a susceptible

subject and 71’; = oo denotes the event that the individual will not experience relapse

or death from the cause of interest. The observed failure time is T7; = min(7},
Let 1 —m(Z;;) denote the cure probability for the jth individual in the ith cluster. We
define X;; and Z;; as two vectors of time independent covariates (these two vectors
may share some covariates) that may have effects respectively on the failure time
distribution of uncured subjects and the cure probability. It is obvious that if ;; = 1,
then Y;; = 1. However, if §;; = 0, the value of Yj; is unknown and Y;; is a latent
variable. We further assume that given X;; and Z;;, T;;HYZJ =1} and TZ"HYU’ =1},

and Y;; and Y are correlated respectively in a cluster if j # 5. However, T~Z§]{}Q] =1}

10



and Tij/HYz"j’ =1}, and Y;; and Yj/; are respectively independent if i # ’. Note that
if all subjects are assumed to experience the event of interest, the latent variable Y;;
is known and equal to 1 and the cure probability is 0.

Let 0 <14 <1y < -++ < 7, < 00 denote the k distinct ordered event times. Let
ds be the number of deaths at 7, and D, be the set of all individuals who die at time
T, le., Dy = {(i,j) : Tj; = 75,6;5 = L;j = 1,--- ,my,i = 1,--- , K}. The risk set
R is defined by Ry = {(4,7) : Ti; > 7555 = 1,--- ,ny,i = 1,--- , K}, ie., the set
of individuals alive and uncensored just prior to 7. Let & be the set of individuals
with censoring times in [7, Tsy1),8 = 0,--- ,k, where 79 = 0 and 7,41 = o0, i.e.,

Es:{<i,j)ITSSEJ‘<Ts+1,6ijzo;j:1,"' ,ni,izl,--~ ,K}

2.1 Cox Proportional Hazards Model

The Cox proportional hazards model (Cox, 1972) is a multiplicative hazards model
as well as a semiparametric model because a parametric form is assumed only for the
covariate effect and the baseline hazard rate is treated nonparametrically. Given the
classical clustered survival data O = {(7};, 0,5, Xyj),j =1,--- ,n;,i =1,--- | K}, the

hazard rate A(¢; X;;) for the jth individual in the ith cluster is defined by
/\(t, Xz]) = )\0(25) exp(ﬁ’Xw), (21)

where Ag(+) is an unspecified baseline hazard function and S is a px x 1 unknown
parameter vector for X;;.
It is straightforward to extend the partial likelihood proposed by Cox (1975) to

the clustered failure time data under the assumption that the survival times are

11



independent of each other (Wei et al., 1989; Lee et al.,1992; Lin, 1994). That is

B b exp(8'X5)
A= 31:[1 {3 )er, exp(B'Xi;) % (22

where X is the sum of the vectors X;; over all individuals who die at time 7, i.e.,
Xs = 2 (i jep, Xij- Let 8 be the value that maximizes £(3), then the cumulative

baseline hazard function Ag(t) = fg Ao(s)ds could be estimated by

A d
AO(t) = u = , (23)
S;t 2 (i.)er, €xXP(8'Xij)

which is the Breslow’s estimator. We will apply the proportional hazards model for

classical clustered survival data in Chapter 3.

2.2 Mixture Cure Models

Mixture cure models (Boag, 1949; Berkson and Gage, 1952) postulating a subpopu-
lation of cured patients are intriguing from both the biological and statistical view-
points. The models are composed by the probability of being a long-term survivor
plus the probability of a death which occurs after time ¢ (Farewell, 1982). They are
often employed to handle the survival data which may contain a cure proportion.
We let S(t; Xij, Zij) and S, (t; X;;) denote the marginal survival functions of T;; and
T;J‘]{Y;j = 1}, respectively. We say that the marginal survival function S(t; X;;, Z;;)

is from a mixture cure model if

12



where the uncure rate 7(Z;;) is considered as the logistic form, i.e.,

exp(y'Zi;)
7T( ]) ( J ]) 1+eXp(")/IZl]) ( )

and v is unknown regression parameter for Z;;. Other link functions such as comple-
mentary log-log, i.e., (Z;;) = exp(—e'%i) or probit function, i.e., 7(Z;;) = ®(v' Zij)
where ® is the cumulative distribution function of the standard normal distribution
may also be applied to describe the effects of covariate Z;; on uncure rate m(Z;;)
(Peng, 2003).

As we discussed in Section 2.1.2, the proportional hazards model is popular in the
analysis of classical clustered survival time data. Similarly, this model can be used
to describe the survival function of uncured patients, i.e., S,(t; X;;), in the mixture

cure model. Therefore, one can assume
Su(t, XZ]) = P(T‘; > t|Y;J = 1?XU) = Su()(t, Oé)eXp(BlXij), (26)

where Sy0(t; @) is the baseline survival function of TZ’;\{Y;] = 1} when X;; = 0 and
a denotes a set of unknown parameters in the baseline distribution. Here (3 is a set
of unknown regression parameters for X;;. Let 0* = (v, 5, ). An alternative to the
commonly-used proportional hazards model for the uncured patients is accelerated
failure time model, i.e., S,(t; X;;) = Suo(te?Xi7) where the baseline survival function
could be an extended generalized gamma distribution (Yamaguchi, 1992), a gener-
alized F' distribution (Peng et al., 1998), or a nonparametric form (Li and Taylor,
2002; Zhang and Peng, 2007). Also a transformation model which accommodates the

proportional hazards model and proportional odds model was considered by Lu and

Ying (2004) to model S, (¢; X;;).

13



The mixture cure model (2.4) composed by the logistic model (2.5) and the pro-
portional hazards model (2.6) is called the proportional hazards mixture cure model.
We will focus on this model for clustered survival data with a cure fraction in Chapters
4 and 5. Under the complete clustered survival data O} = {(T}, di5, Xij, Zij, Yij), J

l,---,n;t = 1,--- K} and the independent observation assumption, an adjusted
likelihood function for § (Peng and Dear, 2000; Sy and Taylor, 2000) could be writ-

ten as

L (B;g"™) = ep(FX,) , 2.7
e 31;[1{Z(i,j)ensgz(;l)eXp(ﬁlXij)}ds >0

where

g = B(Yyler™, 0%
(1 = 8;5)7(Zij) Suo(t;) P EXid)
L= 7T(Zij) + 7T<Zij)Su0< )eXp(ﬁ,XU

= o, + (2.8)

0=0*(m)
where 8*(™) is the current estimate of #* at the mth iteration of the EM algorithm and
= {(T3, 6ij, Xij, Zi), § = 1,--+ ;ngi = 1,--+ K} is the observed cluster failure
time data.
Following the discussion of Kalbfleisch and Prentice (2002, P.115) for the propor-
tional hazards model, the contribution of the likelihood of an individual who fails at

75 18 S(7,) — S(75) and the contribution of a censored observation at time ¢ is S(t).

Then the likelihood function for «, the parameters in the baseline distribution, can
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be rewritten as

Lloyy) = H{ 1T [Su(r s Xi) = Sulrs Xi)] [T Sult Xiy)"}

$= O ('Lv])eps (Z,])Eg
k

= H[ H {)‘u(Ts;Xij) ( exp(ﬁ ng)} H S0 y”expﬂX”)]
=0 (i,)€Ds (i.7)€Es

Furthermore, a discrete proportional hazards model is assumed such that S, (t) has
the product-limit form Syo(t) = [],.,.<; @s. The a’s are nonnegative parameters at
each of the k distinct event times with ap = 1 and 0 < a, < 1. Syo(7,) = Hl e’
and Syuo(7s) = [[12; v Au(7: Xy5) =1 — eXp(B Xi3) is the hazard function given X;;.

Rearranging terms, we obtain

Loiw) = I I (i-azr ﬂ a5y T {[Lape ")
=0

s=0 (4,j)€Ds (i.j)e€s 1=0
_ H[ H (1— aixp(B’Xij))]
s=1 (',j)E'Dg
{ exp (B X,])} { y” exp(B’ X” ]
LT L T
_ ﬁ[ H (1— exp B Xu) ﬁ H i exp(ﬁ’Xz‘j)]
s=1 (i,j)€Ds s=1 (4,j)€ERs—Ds
_ H{ H exp(ﬁ’Xij)) H i exp(ﬁ’Xij)}_
=1 (i,j)€Ds (i,j)€Rs—Ds

After taking derivatives of By (L(c;y;;)) with respect to o, we obtain the estimating

equations for each ay given [ and ~. That is

eB/Xij (m) ,
Tp(ﬁ/)(ij) = Z gij exp(ﬁ Xz]) , S= 1, te ,/{7. (29)

1 —as (i,§)ER

2.

(4,5)€Ds
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These equations are similar to (5) in Sy and Taylor (2000) but with clustered data
settings. Therefore, an approximate estimator for the nonparametric baseline cumu-

lative hazard function AU (¢) can be obtained (Peng and Dear, 2000) by

A d
A =Y : . (2.10)
siTs<t Z(i,j)ens gz(j : exp(8'Xi;)

Note that if all patients are uncured, then gi(;n) = 1, the likelihood function (2.7) for
B reduces to the partial likelihood function (2.2) in the proportional hazards model,

and the estimating function (2.10) reduces to (2.3).

2.3 Existing Methods for Clustered Failure Time Data

To appropriately account for the correlation in a cluster, the two most studied ap-
proaches are random effects models and marginal models. Random effects mod-
els (frailty models, cluster-specific models, conditional models, or multilevel mod-
els) explicitly formulate the underlying dependence via a cluster specific variable
known as the random effect representing the heterogeneity in each cluster. Marginal
(population-averaged) models focus on the population average on the margins of the
joint distribution of data from one cluster, and the correlation is often treated as a
nuisance parameter to reduce the dependence of marginal models on the specification
of unobservable correlation structures of clustered data.

These two models with applications to the proportional hazards model and the
proportional hazards mixture cure model for modeling clustered survival data have
received much attention for the last decades. For classical clustered survival data,
the commonly used proportional hazards frailty model is the so-called shared frailty

model (Klein and Moeschberger, 2003). That is, the hazard rate for the jth subject
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in the 7th cluster is of the multiplicative form
)\Zj(t) = Ao(t)ul exp(B'X,-j),j = ]_, R ,ni,i = ]_, R ,K,

where Ao(t) is an unspecified and arbitrary baseline hazard rate and u; is an unob-
servable random effect (frailty) shared by subjects in the ith cluster. Therefore, the
frailty u; induces the dependence among the failure times in the ith cluster. Note that
the survival times in the ith group are independent of each other given u; and covari-
ates. Usually we assume that the u;’s are an independent and identically distributed
sample from a distribution with mean 1 and some unknown variance.

If g(u) is the density function of the distribution of u;, then the joint unconditional

survival function of the failure times in group i is

S<ti17 e 7t2n1) = P(El > t’ila e ’j:%ni > tznz)

= /exp <—u2A0(tij)eXp(6/Xij)> 9(u)du.

J=1

The frequently used distributions for frailty are the gamma distribution (Clay-
ton, 1978; Clayton and Cuzick, 1985), the inverse Gaussian distribution (Hougaard,
1986a), the positive stable distribution (Hougaard, 1986b), and the log normal dis-
tribution (McGilchrist and Aisbett, 1991). Excellent discussions on the proportional
hazards frailty model can be found in Hougaard (1995, 2000) and Therneau and
Grambsch (2000).

For clustered survival data with a cure fraction, Yau and Ng (2001) considered
the proportional hazards mixture cure model by using two independent normal ran-
dom effects to characterize the correlation among cure statuses and the correlation

among the failure times of uncured patients in a cluster. They proposed a best linear
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unbiased prediction (BLUP) method to estimate the parameters in the model. Lai
and Yau (2008) extended this method by allowing dependent random effects and a
nonparametric baseline distribution in the model. Peng and Taylor (2011) consid-
ered maximum likelihood estimation for the mixture cure model with random effects.
Their method provides flexibility in specifying distribution for the random effects
and is computationally intensive because of the numerical integration involved in the
method.

Chatterjee and Shih (2001) also extended the univariate mixture cure models to
bivariate survival data. They modeled the correlation among the cure statuses and
the failure times of uncured subjects in a familial cluster in a breast cancer study using
pairwise odds ratios and a copula model respectively, and proposed a quasi-likelihood
method to estimate the parameters in the model. Wienke et al. (2003) considered a
full likelihood method with a similar model for bivariate data. Both methods do not
consider covariate effects and the estimation methods become infeasible when cluster
size is large.

As an alternative method to the random effects models, the marginal models take
a population-average approach to model the marginal mean while treating the correla-
tions as nuisance parameters. The proportional hazards model has been investigated
extensively for correlated failure time data with the marginal method. Wei et al.
(1989) introduced a marginal proportional hazards model for the multivariate failure
time observations with respect to different types of failures. Huster et al. (1989) pro-
posed a parametric marginal proportional hazards model for modeling paired survival
data. Lee et al. (1992) analyzed the clustered survival data with the common base-
line hazard function and showed that the regression parameters are consistent and
asymptotically normal. Liang et al. (1993), Lin (1994), Spiekerman and Lin (1998),

and Clegg et al. (1999) independently proposed a marginal mixed baseline hazards
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model where the baseline hazards combine both common and distinguishable base-
lines. Yang and Ying (2001) introduced parametric models for ordered event times
with proper joint density functions and marginal proportional hazards. Chen et al.
(2010) analyzed marginal proportional hazards model based on a linear combination
of martingale residuals.

To further improve the estimation efficiency, an estimating equation approach
has been investigated by Segal and Neuhaus (1993), Cai and Prentice (1995, 1997),
Prentice and Hsu (1997), and Gray and Li (2002), among others. This method clearly
specifies working correlation structures in the estimating equations to accommodate
the dependence of failure times in each cluster. Specifically, Segal and Neuhaus (1993)
developed a synthesis of the Poisson regression model and generalized estimating
equations based on a parametric proportional hazards model for multivariate survival
data. Cai and Prentice (1995, 1997) derived a weighted partial likelihood estimating
equation based on a counting process approach for correlated failure time data. They
developed the asymptotic distribution for the hazard ratio parameter estimates with
different nonparametric baseline specifications. Prentice and Hsu (1997) extended
Cai and Prentice (1995) by developing joint estimating equations for hazard ratio
and pairwise dependence parameters. Gray and Li (2002) considered the optimal
selection of weights in martingale estimating equations for clustered failure time data
based on the marginal proportional hazards model.

For the marginal method in the analysis of clustered failure time data with a cure
fraction, Peng et al. (2007) proposed a semiparametric marginal proportional hazards
mixture cure model to analyze survival data from a multi-institutional study of tonsil
cancer and provided robust variance estimates of parameters. Yu and Peng (2008)
also considered a marginal mixture cure model with Weibull baseline distribution for a

smoking cessation study and provided jackknife variance estimates of the parameters
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in the model. Chen and Lu (2012) further extended the work of Peng et al. (2007) by
considering a transformation model for uncured patients. All these marginal mixture
cure models are robust to misspecification of the correlation structure. However,
when the correlation is of interest and there is partial information available for the
correlation structure, an efficiency loss may be incurred in using the marginal method
for the clustered failure time data with a survival proportion.

Therefore, parallel to the generalized estimating equations approach in the marginal
proportional hazards model, we are interested in developing a marginal method that
accommodates the correlation in clustered failure time data with a cure fraction in

the proportional hazards mixture cure model to improve the estimation efficiency.

2.4 Generalized Estimating Equations

Generalized estimating equations (GEEs) approach is originally proposed for the sit-
uation where it is reasonable to assume that the marginal mean response conforms to
a generalized linear models (GLMs) (Nelder and Wedderburn, 1972; McCullagh and
Nelder, 1989; Dobson, 2002). To handle non-normal longitudinal data, Liang and
Zeger (1986) introduced a working correlation matrix with a set of nuisance param-
eters to avoid the specification of correlation between measurements within clusters.
When the primary interest is on the marginal regression parameters and the depen-
dence among observations in a cluster is nuisance, GEEs provide a useful approach
in the analysis of correlated outcomes.

Let T} = (Tu, e ,TW)' be the n; x 1 vector of outcome values and X; = (X1, -,
Xin,)' be the n; x p covariate matrix for the ith subject (i = 1,--- , K). Here Tj; € R.

Liang and Zeger (1986) assumed that the observations from the distinct subjects are
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independent and the marginal density of Tij is from an exponential family

f(ti;) = exp[{ti;05 — a(6i;) + b(E;;)}/ 9],

where 6,; = h(n;;), n;; = /' X;;, and moreover

da(@ij)
deij

dza(eij)
02,

E(Ty) = =d'(0y),  Var(Ty) = ¢ = a"(0i)0,
where the p x 1 vector [ are regression parameters which embody the relationship
between the responses and the covariates and ¢ is a scale (dispersion) parameter.
Traditionally, we could consider f(#;;) as an exponential family which includes Gaus-
sian, binomial, gamma, inverse Gaussian, Poisson, geometric, and negative binomial
distributions.

Under the working assumption that the repeated observations from a subject

are independent of one another, Liang and Zeger (1986) derived the independent

estimating equations (IEEs), i.e.,

K

Un(B) =Y X['AS; =0, (2.11)
i=1
where A; = diag{d0;;/dn;;} is an n; x n; matrix and S; = T, — a;(0) is of order
n; x 1 for the ¢th subject. When the marginal model is correctly specified, under mild
regularity conditions, the solution of equations (2.11), BI, is a consistent estimate of
3 and var(j3;) can be consistently estimated by

K K K
O XTNANXYD XTASSTAXID) T XTAANXY 5,
=1

i=1 i=1

where A; is a diagonal matrix of order n; x n; with elements a”(6;;). They also showed
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that ﬁ[ are reasonable efficient for a few simple designs such as the true correlation
is moderate or the variation of cluster sizes is small.

However, the use of independent working correlation structure may result in a no-
table loss of efficiency when, for example, the response correlation coefficient is large,
or variation in cluster sizes is large. To accommodate the within-cluster dependence
and improve the efficiency, the diagonal covariance matrix A; in the score equations

(2.11) is replaced by a ‘working’ covariance matrix of order n; X n;

Vi(p) = AZR(p)A%9, (2.12)

which will be cov(T;) if R(p) is the true correlation matrix. Here p is a set of pa-
rameters that fully characterizes the working correlation matrix R(p). Therefore, the

modified score equations, i.e., GEEs, are defined by Liang and Zeger (1986) as

Ua(B) =Y _ DIV (p)S; =0, (2.13)

where D; is the matrix of derivatives of a’(#) with respect to the regression parameters
B, ie., D; = 8{ai(0)}/0p = A;AX;. If R(p) is specified as an identity matrix, equa-
tions (2.13) reduce to the IEEs (2.11). Let B¢ and Vi denote the regression estimates
and the corresponding variance estimates from (2.13). As in the independence case,
the consistency of BG and Vg depend only on the correct specification of the mean
structure, not on the correct choice of R(p) and the estimators for p and ¢ as long as
they are K 2-consistent.

To obtain Bg, the authors suggested an iteration between the Fisher scoring

method for § and the moment method for p and ¢. Given the current estimates
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p and ¢,

5 oUq(B)

Bip1 = Bj— [E(W)]_lUG(ﬁ)bj

~

K K
= B+ DIV B)DiB)Y D DI BV (B)S:(8)}
i=1 i=1
where V;(3) = Vi[8, p{8, 6(8)}]. That is,
By = (D"V DY DTV 2

where D = (DT(p),---, DL(B))T is amatrix of order Nxp, S = (ST(8),---,SL(B))T
is of order N x 1 and V = diag{Vi (), -- - , Vi ()} which is a block diagonal matrix
of order N x N. Vector Z = DS + S is of order N x 1.

At each iteration step, the scale parameter ¢ can be estimated by the moment

method
) K
6=33 02 /(N ), (2.14)

where the current Pearson residual 7;; is {T}; — a'(6;;)}/{a" (éw)}% The estimate
of p varies based on the different choices of R(p). There are a variety of common
correlation structures such as an independent working correlation matrix where R(p)
is an identity matrix; an exchangeable (equicorrelated, compound symmetric) one
where corr(T};, Tj;) = p for all j # j/; a first-order autoregressive (AR-1) one where

- o . :
corr(Ty;, Tiyr) = pl=7'l; and an unstructured one where no restriction for correlation

but n;(n; — 1)/2 correlation parameters are required. For instance, when R(p) has
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an exchangeable correlation structure, given ¢, p can be estimated by

p= 07 SNt Y gmlni— 1)~ b, (2.15)

i=1 j>j'

The variance of ¢ can be consistently estimated by

K K K
Ty -1 —1 Ty/—1 Ty/—1 Ty -1 —1
{Z D;V; Di} {Z D; Vi SiS Vv, DZ}{Z D;V; Di} |(Bg,¢3,ﬁ) :

=1 =1 =1

Generally, GEEs is a marginal approach since the underlying GLMs involve re-
gression models defining the mean of the marginal distribution. As we introduced
above, Liang and Zeger (1986) gave an algorithm for estimating both 5 and p, as
well as established the asymptotic multivariate normal distribution for the regression
parameters given the consistent estimates of the correlation and scale parameters.
The fact that the asymptotic distribution is independent of a specific estimator of
p allows for robustness to misspecification of the working correlation matrix. Qu et
al. (2000) utilized quadratic inference functions which avoid direct estimation of the
correlation parameters. Their method guarantees that the estimator of correlation
always exists and hence solve the issues raised by Crowder (1995) where the esti-
mator of p does not exist in some simple cases of misspecification which results in
inconsistency. Alternatively, Stoner and Leroux (2002) proposed an optimal (in terms
of estimation efficiency) combination of estimating equations approach to model the

correlation structure of the observations in a more efficient manner.

2.5 The EM Algorithm

The expectation maximization (EM) algorithm (Dempster et al., 1977) is a popular

method for maximum likelihood estimation in incomplete-data problems. The EM
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algorithm estimates the parameters of a model iteratively with some initial values.
Specifically, each iteration consists of an expectation (E) step, which calculates the
expected value of the full likelihood function with respect to the unobservable vari-
ables using the current estimates of the parameters, and a maximization (M) step,
which estimates the parameters by maximizing the expected value of the full like-
lihood function derived in the E-step. The EM algorithm is easy to implement in
many applications because of the numerical stability. However, one drawback of the
EM algorithm is that it does not produce valid standard errors directly. To address
this issue, Louis (1982) used the complete log-likelihood to derive the observed in-
formation matrix. That is, let S(y,0) and B(y,6) be the gradient and the negative
of the associated second derivative matrices based on the completely log-likelihood

separately, then the observed information () could be represented by

I1(0) = Eo{B(Y.0)|X € R} — Ep{S(Y,0)S"(Y,0)]Y € R},

where the first term on the right hand side can be viewed as the complete information,
and the second term can be viewed as the missing information (Meng and Rubin,
1991).

Other methods such as using numerical differentiation to obtain the standard
errors in the EM algorithm were also investigated by Meng and Rubin (1991) and
Jamshidian and Jennrich (2000). Their methods are especially useful when the ana-

lytic calculation of derivatives was cumbersome or impossible.

2.6 The ES Algorithm

As an extension of the EM algorithm, Rosen et al. (2000) proposed an Expectation-

Solution (ES) algorithm for mixtures of the generalized linear models where the GEEs
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are embedded into the M-step of the EM algorithm to account for the correlation
among the responses. They defined the marginal probability density of TNZ (here

T} € R) by the mixture density function

Z]‘XU;H Zp er’Xz]a t@]’X’LJMBT7¢7")

where 6, denotes all the parameters; 1, , B, @1, , ¢, and v = (1, -+, Yr—1),
e, is an I* x 1 vector with 1 at the rth position and 0’s elsewhere. For each covari-
ate X;; in the ith cluster, the response T;; is generated from the rth subprocess
(component) p(5|Xi;, B, ¢,) with probability p(e,|X;;,v) = D e =1, T

73 =1 .n;;e =1,--- K. The weights 71'7(«ij) depend on the covariates and are

expressed in a multinomial logit form. Specifically,

i) — eXp(’Y;Xz‘j)
r - I* ’
Zd:1 exp (g Xij)

for each r. For the jth observation in the ith cluster, Zle m(nij) =1 p({*j\Xij, Bry Or)
is assumed to be a member of the exponential family. 7 and p(t ~|Xij,ﬁr,gbr)
may share some covariates. Obviously, the expectation of T;; varies with different
component in the mixture models. Given covariates Xj;, u£ = E(TZ"]‘) which is

described by a function of parameter vector (3, from the rth component, i.e. ,u(” )

h(B.Xi;) and h is a link function.

Suppose that the observed data O, = {(T v X g =1, nyi=1,--- K} are
independent and there are no censored observations, the observed full likelihood is
given by

K n; I*

9 ‘O HHZP er’Xz]afYr (t”’ijaﬂm(br) (216)

i=1 j=1 r=1
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When unobserved indicator vectors y(") = (ygij ), e ,y}ij)) are added to the observa-
tions O, i. = {( s X,y y @), 5 =1,--- i =1,---, K}, the complete full

likelihood, an augmented version of the observed one, can be written as

K n; I*
(i) (i)
L(0s|0;) = HHH{p er| Xij, )} {p(t 'j|Xij76T7¢r>}yr
=1 j=1r=1
K n; I* - )
= HHH{Wﬁw)p(tzﬂﬂX@'jaﬂrvgbr)}yr . (217)
i=1 j=1r=1

The authors used the EM algorithm to derive the maximum likelihood estimate 6.

The E-step consists of calculating the expectation of the log form of (2.17) with

(i5)

respect to yr ' given the current estimate of 0, and the complete data (O,. That is,

1(6,]0,) = B(log L(6,]0,))
K n; I*
= > 3> g logx P +logp(fy| Xij, B b0)}, (218

i=1 j=1 r=1

where

g = E(yl""|0,;0,) = P(yl? = 1|04 0,)
p(t5ler, Xig; 0)p(er| Xij; 0s)
Zi;p@jler,&j;@)p(erlXU;es)
D p(E Xz, By 1)
POl ﬂ(” p(E5|Xij, By &1)

(2.19)

which is the success probability of Bernoulli random variable yfqij). Furthermore,

(6] 0.) can be separated into I* + 1 log likelihood functions including

K n; I*
=> 3 g logxl), (2.20)

i=1 j=1 r=1
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and

186, = ZZg”)logp B X, By ) (r =1, 1), (2.21)

=1 j5=1

The M-step consists of maximizing (2.20) with respect to 7, and maximizing (2.21)
with respect to 3, and ¢, for the fixed { gq(jj )}?:1. To estimate ~y, the Newton-Raphson
method can be applied based on (2.20). The authors proposed I* generalized linear
models with observed data O, to fit 3,. Let pq(j) = (,ugﬂ), e ,MS?””)T, the I* systems

of score equations based on (2.21) are
K
S DIV IGOE ~ ) =0 (=1 1), (2.22)
=1

where GY) = diag(g\"", - - ,grml ), i = diag(¢,v(id™), -+, ¢pv(pd™)), and DY =
o) 108, var, (& ) = o (1. For instance, v(;?)) = /ﬁ«”)(l 1) and ¢, = 1
for Bernoulli outcome data, 'U(u( )) = uﬁ” and ¢, = 1 for Poisson outcome data.
Function (2.20) can be considered as a log likelihood for generalized Bernoulli outcome
data where 327" g8 =1 for given (i, ).

To capture the correlation among the observations from the mixture model, the

authors incorporated the working correlation matrices in (2.22). The GEEs with

respect to 3, are

K
ST DIV () GOE — u) =0 (r=1,- 1), (2.23)
=1

where VO (p,) = 6,(A7)*Ri(pr ) (A7)2, A7) = diag(o(, ™), o(u™)). Rilpr)
is a working correlation matrix depending on the rth component’s association param-

eters p, which is a d,-dimensional vector.
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Rosen et al. (2000) further showed that the estimating functions with respect
to v and § are unbiased. Based on Carroll et al. (1995), the solutions of unbiased
estimating equations are consistent and asymptotically normally distributed as the
sample size K — oo. Under certain regularity conditions (Gallant and White, 1988),

the estimated asymptotic variances of 6, are obtained by

var(0,) = {FYV{F 17, (2.24)
where
K n; I K n;g I* ®2
F=2_2.D Vsilec 0.0y, VZZ{ZZSij(eg;HS,GS)} ,
i=1 j=1 ¢=1 i=1 j=1 ¢c=1
where v® = T for a general column vector v, [Vl = g((;’:)’“l kl=1,---,dg,, and

dp, = dim(6,) = Idim(B,) + Idim(¢,) + (I* — 1)dim(y,) = Idg + Idy + (I* — 1)d,.
SiJ'(eC;ésaés) = qij(ﬁpeﬁés)géi]’) fOI'j - 17 Ny and ¢ = 17 e aK- Qij<£;<j76<;08) is a
dg, x 1 vector for each ( =1,--- , I*,j=1,--- ,n;and i =1,--- , K. The first (Idp)

components are

> IDOLalV O (pe) ™Mol (F — 1)

forr=1,---,I"and [l = 1,--- ,dg. Note that 67, =1 when ¢ = and 0 elsewhere.

The first (/dg) components are corresponding to (2.23). That is, given 4, r and [,

Mg I* n;
SN TSN TIDENalV O (pe) g0ty — 1) = DOT(VE (,)) 1 (E — ).

j=1 ¢=1 u=1
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The middle I* components are
{(B = ") = deo(uf),
forr=1,---,I*. The last (I* — 1)d, components are

. 87T(ij)
(Wéj))_l ¢
a(%")k

forr=1,--- , I* k=1,---,d,.
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Chapter 3

Marginal Proportional Hazards Model

3.1 Introduction

In this chapter, we consider the marginal method developed by Segal and Neuhaus
(1993) for the classical clustered failure time data without a cured fraction. We ob-
serve in numerical studies that, when correlation exists within clusters, the estimating
function proposed by Segal and Neuhaus (1993) for hazards ratio regression param-
eters is biased. Therefore, the estimates from the existing estimating equation are
biased and the variance estimates are unstable. To address this issue, we propose
an unbiased weighted estimating function and show that the estimators based on the
proposed estimating equation are consistent and asymptotically normal. A consistent
estimator of the covariance matrix for regression parameters is also provided. We will
demonstrate via a simulation study that the proposed estimating equation approach
produces unbiased regression estimators as well as improves the estimation efficiency
compared to the existing marginal methods.

The rest of the chapter is organized as follows. In Section 3.2, we propose an
unbiased weighted estimating function for the hazard ratio parameters based on the

marginal semiparametric proportional hazards model. The asymptotic properties of
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the estimators and the variance estimates are obtained in Section 3.3. We perform a
simulation study in Section 3.4 to evaluate the performance of the proposed estimating
equation, and apply this approach in the analysis of Diabetic Retinopathy Study and
in the study of Infection in Kidney Patients in Section 3.5. Finally, we provide

conclusions on the proposed model and estimation method in Section 3.6.

3.2 Model and Estimating Equation

The marginal survival function of Tij is assumed to follow the proportional hazards
model, i.e.,

S(t; X;;) = So(t)o®F X)), (3.1)

where Sy(t) is the baseline survival function of sz when X;; = 0, and has the product-
limit form as we defined in Section 2.2, i.e., Sp(t) = Hs:rsgt os where 0 < a, < 1. If
we ignore the correlation within clusters, the unknown parameters 6 = (5, «) in the
model could be estimated based on a log-likelihood function with the observations

O = {(Ej)éijaX’ij)aj = 1, ,ni,i = ]_, ,K} That iS,

K n;
1(0;0) = log | T T f(t:5; Xis)* S (tiy5 Xig)' %
K n; e
= log [ [ [T {A0(t;) exp(8'X)}™ exp{—Ao(ti;) exp(5' X))}

i=1 j=1

K i Ao(ti; bij
el (353 o
+lOgH1_1 ()‘O(ti]’))éija (3.3)

i=1j=1
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where f(t;;; X;;) is the density function of S(t;;; Xi;), and Ao(t;;) and Ag(t;;) are
the hazard and cumulative hazard functions corresponding to Sy(t;;). Here k;; =
0ij/No(tiz).

Based on (3.2), Segal and Neuhaus (1993) proposed an estimating function (de-

noted by Ugy) for the regression parameters 5. That is

K

Uswv = Y (Usn)i

=1

K
= Z{aﬂsaLﬁ(Xi)}T{A;/QQi(PSN)Ag/%SN}_I{5i —psn(Xa)},  (34)
i=1

where psn(X;) = {psn(Xi1), -+ psn (Xin,)}T with psy(Xi5) = Ao(ts;) exp(8'X;5),
A; = diag{usn (X))}, 6 = (i1, -, 0in,)T, Qi(psn) is the working correlation matrix,
psn is a group of unknown parameters in the correlation matrix, and ¢gy is an un-
known scale parameter. The Newton-Raphson method can be used to solve the equa-
tion Ugy = 0 to obtain the estimate of the regression parameter vector 5. We let Bs N
denote the solution of Usy = 0. As pointed out by Segal and Neuhaus (1993), the ro-
bust variance estimates are obtained from (—ag%)_l (K {Usy}i{Usn 1) (—%)_T.
Different from the Poisson likelihood mentioned above, Lee et al. (1992), based on
the partial likelihood, proposed robust sandwich variance estimates for the regression
parameter § without specifying dependence structure within clusters.

As we discussed in Section 2.3, one attractive property of the GEEs method is
that the estimation efficiency may be improved by using the working correlation
matrix. However, the estimating function (3.4) displays considerable biases that
may lead to biased estimate of 5. This can be seen from a numerical study based

on 1000 data sets generated from the model (3.1) (details for data generation are

given in Section 3.4). By plotting the 1000 values of function (3.4) given the true
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Figure 3.1: The average (black line) of 1000 values of function Ugy/K based on the
correlated failure time (Kendall’s tau=0.8) with binary covariate (left)
and standard normal covariate (right). The regression parameter § =
log(2) and the baseline survival function follows exponential distribution
with parameter a = 2. Here K = 40.

parameter settings, we observe that the average value of function Ugy is -0.072 for
the binary covariate and 0.151 for the continuous covariate when the Kendall’s tau
equals 0.8 (Figure 3.1). Both considerably deviate from 0. Here Kendall’s tau is used
to measure the strength of association among observations in one cluster. The larger
value of Kendall’s tau represents the stronger correlation within clusters. Figure 3.1
shows that the estimating function Ugy is biased when the correlation within a cluster
exists. Consequently, the estimators based on estimating equation Ugy = 0 are biased
and the corresponding variance estimates are unstable as we can observe that in the
simulation study in Section 3.4.

To address this issue, we propose a weighted estimating function for § based on

the log-likelihood (3.3), i.e.,

K (7 K
UNew - Z Z(UNew)ij = Z(UNew)i
i=1 j=1 i=1

K Opnen (X;)
- Z{%}T{Bz'lﬂQi(pNew>Bz‘1/2¢New}_1VVi{’%i_MNew(Xi>}7 (35)
=1
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Figure 3.2: The average (black line) of 1000 values of function Uy, /K based on the
correlated failure time (Kendall’s tau=0.8) with binary covariate (left)
and standard normal covariate (right). The regression parameter § =
log(2) and the baseline survival function follows exponential distribution
with parameter a = 2. Here K = 40.

where fiyew(Xi) = {ftvew(Xir), -+ s ivew(Xin,) }T With fivew (Xi;) = exp(8'Xi;), B; =
diag{pinew (Xi)}, ki = (Kir, - ki) T, Wi = diag(Ao(tin), -+, Moltin,)), Qiprew) 18
the working correlation matrix, and pye, is a group of unknown parameters in the
matrix that needs to be estimated. Similar to function (3.4), the scale parameter
ONew 18 incorporated in the estimating function (3.5) to accommodate the over- or
under-dispersion.

Based on the same data set used in Figure 3.1, we plot the 1000 values of function
(3.5) and observe that the average value of Uy, is much closer to zero than that from
(3.4) for both binary covariate (about -3.178e-05) and continuous covariate (about
3.024e-04) (Figure 3.2). That is, empirically, the function (3.5) tends to be unbiased.
We will show the unbiasedness of the proposed weighted estimating function (3.5)
in Section 3.3. Therefore, by letting Uy, = 0, we establish an unbiased weighted
estimating equation for the hazard ratio parameters in (3.1). We let B New denote the
solution of equation Upye, = 0.

Different from the parametric baseline specified by Segal and Neuhaus (1993), we
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estimate the baseline survival function Sy(t) by using the nonparametric maximum
likelihood estimator (Kalbfleisch and Prentice, 2002). As we discussed in Section

2.1.2, a suitable initial value for Sy(t) could be chosen as

Sot) = exp(= Z > (i.j)er, XP(5'Xi;)

s:Ts <t

). (3.6)

based on the nonparametric estimate of Ag(¢).

To obtain BNew, we suggest a dual iteration algorithm as follows:
1. Set initial values for Bye, and calculate So(t) based on (3.6).

2. Given So(t), calculate the updated estimate of Sy., using Newton-Raphson

method, i.e.,

(a) Given current estimates of pye, and @ney, calculate the updated estimate

of Bnew from (3.5).

(b) Given the estimate of Sxey, calculate the standardized Pearson residuals
. 1
Pij = {Fij — iNew(Xig) }/{lNew(Xij) }2 -

(c) Use the residuals 7;; to estimate pne, and éNew.

(d) Repeat steps (a), (b), and (c) until convergence.
3. Given BNew, update S’O(t).
4. Repeat steps 2 and 3 until convergence.

Here we consider an exchangeable correlation structure for Q;(pnew) as it is often used
for clustered data. Such a correlation structure was also considered in Ugy by Segal
and Neuhaus (1993). As we discussed in Section 2.3, following the formulas (2.14)

and (2.15), the correlation parameter pye, can be estimated from the standardized
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Pearson residuals. That is

PNew = CbNew Z Z TZ]T’L] /{Z nz i pX} (3'7)

=1 j>j'

where ¢yew = SE >y 75 /(N — px) and px is the length of covariate X;.

3.3 Asymptotic Results and Variance Estimation

3.3.1 Asymptotic Properties of Brew

Theorem 3.1. Let 3, be the true parameter of 3 and W (8) = Poew = L S K (Unew)i-
Under the following set of conditions (Yuan and Jennrich, 1998; Liang and Zeger,
1986)

Al. Vg (By) — 0 with probability 1;

A2. There is a neighborhood N of By on which with probability one all Vi (5) are

continuously differentiable and the Jacobians aqlgﬁ(ﬁ) converge uniformly to a

nonstochastic limit which is nonsingular at By;

A3. K'Y?W(By) — N(0,V) in distribution where V = limg_o0(30 ) E((Unew)”
(UNew):)/ K);

A4. 0Vk(Bo)/OpNew — O with probability 1;

A5. K1/2(¢2N6w — ONew) = Op(1) given B;

A6. KY2(pnew — pnew) = Op(1) given B and dnew;

AT. |0p(B, ONew)/OPNew| is bounded by a function H(T, ) which is Oy(1),

the estimator BNew solving (3.5) is a consistent estimator of fy. Also KI/Q(BNW —

Bo) is asymptotically normally distributed with mean vector 0 and with variance
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matriz ¥ = A7)V (Bo) A T(By) where A(By) = —0Unew(Bo)/0B0 and V(By) =
S AUNew(B0)Yi{Unew(B0)}E. Moreover, ¥ can be consistently estimated by ¥ =

- (BNBM)V<BN6’LU>A_T(/8N€’LU) .

Proof. To show the large sample properties of B New, We first consider the unbiased-
ness of {(Unew)ijlcij, 0} Let pij = (finew)i; and Fi;(t) be the distribution function of

Tij. Then we have

E{(Unew)ijlcij, 0}

= / Z Snmuw Xt} Qi pxvew ity * Mo (t) (i — pig)dF5 (t ey, 0)

- {qﬁNewZX@mﬂ Oulowen)sui’?) / Ao(t) (s — piy)AF(t]csy. 6)

= /ij ij — /ng)dﬂj(ﬂcw’ 0)
Opij
= M, / aﬂjuw((S — No(t)pi;)dFy(t]ciz, 0)

= My [ og{Na(t))* exp(—Aa(Byes | dE tci. )
= My [ 108N (6 X exp{=A (6 Xip))dF e, )
= My [ S logl 7 (e 0S5t OAE (e 0)
= Mz‘j{/@j%10gfij(t|%‘79)sz'j(t|Cz‘j79)

0
+/(1_ z])aﬁ logslj(tlcljﬂ )dﬂj(t‘cl]?e)}

= MZ 2 ] dE t i'70
]{/0 fzy(t|01];0) 0/8 J( |C] )

- 1 98y(t]ei;, 0)
dF;;(t|ei;, 0
+/c-- Sij(tlei;, 0) 98 i(tleis, 0)}

“9 0 fij(t]cij, 0) /°° 9Si(t[ciz, 0)
_ N LI\ 7)) — T LA, (t]e;, 0
MZ]{/O 86 + g 85 ’Lj( |Cz]7 )}

0 0
= M 85{ Fij(cijleiz, 0) + Sij(cijleis, 0)} = WijMz'j%(l) =0,
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where Mi; = {o3h, S0y Xatt!*Qilpnew)ir; >/ X} and Qi(pwew) = Q7 (pxew)
and Q;(pnew) 1S an n; X n; working correlation matrix for ¢ = 1,--- | K. Therefore,
E{(UNew)ij|0} = E(E{(Unew)ij|cij, 0}) = 0. That is, Uy, is an unbiased estimating
function.

To prove the asymptotic normality of BNew, we follow the similar discussion in
Liang and Zeger (1986). For simplicity, we let p%..(80) = p(Bo; dnew(Bo)) and U =

Unew- By Taylor expansion, we have

K K

- )
K B = o) 2 [3 = 55-UsBos v (Go)) /KT (3 Ui o (B0)/ K],
i=1 1=1
where
i . * _ i ] * an(/BO:p?Vew(ﬁo)) ap?Vew(ﬂo)
550Ul(607pNew(60>) - aﬁoUz(B()apNew(ﬁO)) + ap*New(ﬂo) (‘)ﬁo
= A+ B;C".

Next we let 5y be fixed and Taylor expansion gives

S Ui(Bos Pvew(B0)) o, Uil Bo, pvew)
K1/2 K1/2

8/0p K Ui(Bo, pvew)
+ K

— A**+B**C**+Op(1),

K1/2(p>’]<\few<50) - pNew) + Op(l)

where B** = 0,(1) by (A4) and

cr = K'? [p(Bo, éNew(ﬂO)) — p(Bo, dnew) + P(Bos ONew) — PNew)

OPAor D) (4, — b5c) + P, brve) — prvew] = Opl1)

K1/2[ 6¢
New

by (A5), (A6) and (A7). Therefore, K255 Ui(Bo, pivew (o)) is asymptotically
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equivalent to A**. From (A3), we know that the asymptotic distribution of A** is mul-
tivariate Gaussian with zero mean and covariance matrix limg o0 (35| E((Unew)T
(Unew)s)/K). Tt is easy to see that 3., Bf/K = 0,(1) and C* = O,(1). There-
fore, S5, %Ui(ﬁo, Piven(50))/K is asymptotically equivalent to S5, A*/K which
converges t0 +0Unew(6o)/000 as K — oo. By Slutsky’s Theorem, as K — 0o, we

have
KY*(Byew — Bo) = N(0,%) in distribution,

where ¥ = A7 (B)V(Bo) AT (o), A(Bo) = —0Unew(Bo)/080 and V(Bo) = 3K,
{UnNew(Bo) }i{Unew(Bo) }F. Furthermore, we have

A - b)) 1/23New - BO . DY
ﬁNew - /BO - K1/2 (K T) - I;gnoo(Kl/z

where Z ~ N(0,1). So Brew—Bo — 0 in distribution by Slutsky’s Theorem. We know
that convergence in distribution to a point is equivalent to convergence in probability,

SO Bnew 18 @ consistent estimator of Sy.

3.3.2 Variance Estimation for BNew and pPyew

The estimating functions of § and « are

K
UNew = Z UNew 1, Z{ }T{B1/2Q (pNew)Bl 2¢New} 1W{K’L (Xz>}>

and

Ua _ Z eXp(ﬁlX’Lj) . Z eXp(ﬁ/Xz])

— — ' X .
wyen, 1Ol o xXPIXy)) 5k,
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Therefore, the derivatives of the estimating functions Uy, and U, with respect

to 0 = (5, ) have four elements including Ugg, Upq,,, Uaya,, and Uy, s. Specifically,

K
aU ew
Uﬁﬁ _ a]g _ Z Agﬁ) [Bl(ﬂ)mcl(ﬁ) _ DEB)WzEZ(B)]y
i=1
where
AE/B) - (Xilw Xi2V7 o 7Xiniu)1><ni ;
B B
Bi(ll) e Bz'(lr)zi
B, B,
Mg XN;
where
1 i~
Bz(n@l - MT(X”TM - inw)(ﬂzm)1/2(ﬂzn) 1/2Qi(pNew)mn
for m # n, otherwise Bfﬁ}m =0,mn=1,2,---,n,.
Ci(ﬁ) = ('%‘1 — Mi1, Rig — H42, " 5 Rin; — Mmi)T,
B B
Dz(n) T Di(h)zi
DWW —
Dy - D).
M Xn;
where

Dz(rl‘iz)n = ¢2_1(Nim)1/2<Min)_1/2Qi<pNew)mn
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for m # n, otherwise Dme Qi(PNew)mm

E(B) T

= (Xilw,uz‘l, Xz‘2w,uz‘2, ce ,Xmiwlim,-) )

and W; = diag(Ao(ti), -+, No(tin,))-

28'X,; — X,
Uapopy = — Z egpﬁ b (”_ A e}zg,(f()z)j))g ,if k' =k, 0 otherwise,
.55, exp(—ay exp ij
Uy = Y SRSy,
(i,j)EDk exXp L €Xp ij
S —ay exp(f'Xj) exp(—ag exp(F'Xyy)))
_ _ ! 2 v
(iDeD (1 — exp(—ay exp(B'Xy;)))
— ) ep(BX) Xy,
(4,4)ERy,

Uﬂak = = Z (Z le,uzll/2ﬂz]1/2Ql<pNew)l]) eXp(ﬂ Xzy)

(’i,j):tij >7, =1

We consider a bootstrap method (Efron and Tibshirani, 1993; Monaco et al., 2005)
to obtain the variance estimates of the correlation coefficient pye.,. The bootstrap
sample is obtained from sampling clusters with replacement and is fitted with the
proposed method to obtain the parameter estimates, denoted as p,. The variance

estimates can be estimated by Zl 1(pl(f) Zf 1 Py )/B) /(B — 1), where B is the

number of bootstrap samples for each simulated data set.
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3.4 A Simulation Study

We conduct a simulation study to investigate the performances of the proposed
method (denoted as New in the following tables) and to compare the results with
those from Lee et al. (1992) (denoted as LWA in the following tables) and Segal
and Neuhaus (1993) (denoted as SN in the following tables). The classical clustered
survival data in the simulation study are generated from the proportional hazards
model (3.1) with the exchangeable correlation structure. In particular, we consider
a single binary covariate (mean=0.5) with value 0 for a control group and 1 for a
treatment group, and a single continuous covariate with values generated from the
standard normal distribution. Note that Segal and Neuhaus (1993) only considered
the standard normal covariate in their simulation study. The effect of the covariate
on S(t; X;;) is specified by 5 = log(2) and the baseline distribution is the exponential
distribution, i.e., So(t; ) = e~ where o = 2.

For each data set, we consider the following pairs of the number of clusters and the
cluster size: (40,10), (80,5), and (200,2). For each cluster in a data set, the correlated

failure times are generated by using the Clayton copula model (Clayton, 1978),

P(Ty > ti, - 7ﬂni > tin,

Xl]aj: 17 7n2)

= {Z S(tiz; Xi) ™8 —my + 1375,
=1

where S(t;;; X;;) is the marginal survival function given by (3.1). The value of &
measures the degree of dependence among the failure times within cluster ¢ and it
relates to Kendall’s tau by 7 = £/(€ 4+ 2). We set £ = 8,2, and 0. The corresponding
values of 7 are 0.8, 0.5 and 0 respectively, and the larger value the stronger correlation

of the failure times. When & = 0 or 7 = 0, it implies the independence among
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the failure times. The censoring times are non-informative and generated from the
uniform distribution in (0, c¢) with ¢ chosen to produce about 10%, 30%, and 50%
censoring.

For each setting above, we generate 1000 data sets and fit each data set with the
marginal model using the proposed estimating function (3.5) with an exchangeable
working correlation matrix. As a comparison, we also estimate the parameters in
the marginal model using the robust sandwich methods in Lee et al. (1992), i.e.,
estimating function (3.4) or (3.5) with an identity working correlation matrix, and in
Segal and Neuhaus (1993), i.e., estimating function (3.4) with exchangeable working
correlation matrix. The biases, empirical variances (Var), the averages of estimated
variances (Var*), and the coverage probabilities (CP) of 95% confidence intervals of
the parameter estimates based on the above three methods are reported in Tables
3.1, 3.2, and 3.3 for different censoring rates.

The simulation results indicate that the proposed estimation method outperforms
the existing estimation methods. The average estimated variances of the regression
parameters from the proposed method are close to their empirical variances, and
the 95% confidence interval coverage rates are satisfactory and close to the nominal
level. When the failure times within a cluster are correlated, the variances from the
proposed method are consistently smaller than those from the Lee et al.’s method
(1992). We notice that Segal et al.’s method (1993) also improves the estimation
efficiency when the correlation exists within clusters. However, the biases of BSN
based on the estimating equation Ugy = 0 are obvious and significantly affect the
coverage probability, especially when the correlation is strong and the cluster size is
large. When the correlation reduces to zero, the empirical variances based on the
proposed method and Lee et al.’s method are comparable.

To further evaluate the efficiency gains from the proposed method, we calculate

44



Table 3.1: Bias, empirical variance (Var), average of estimated variance (Var*), cov-
erage percentage (CP) of 95% confidence intervals of the estimate of g
with censoring rate equals 0.5.

n;/ K 40/10 80/5 200/2

LWA SN New LWA SN  New LWA SN  New

binary covariate
7=0.8
Bias 0.021 -0.153 0.019 0.005 -0.147 0.004 0.002 -0.096 0.001
Var 0.032 0.026 0.021 0.027 0.017 0.016 0.022 0.016 0.018
Var* 0.030 0.012 0.019 0.025 0.009 0.015 0.022 0.008 0.018
CP 94.8 60.2 93.8 93.9 57.4  93.8 94.2 73.3 944
7=20.5
Bias 0.011 -0.535 0.011 0.011 -0.428 0.010 0.000 -0.224 0.000
Var 0.023 0.022 0.018 0.024 0.020 0.019 0.020 0.019 0.019
Var* 0.024 0.017 0.018 0.023 0.013 0.018 0.022 0.010 0.020
Cp 94.3 2.6 95.4 94.5 6.3 95.5 95.7 41.4  95.6
7=0
Bias -0.002 -0.540 -0.003 0.002 -0.297 0.003 0.008 -0.085 0.008
Var 0.023 0.038 0.023 0.020 0.038 0.020 0.020 0.029 0.021
Var* 0.021 0.013 0.021 0.021 0.010 0.021 0.021 0.009 0.021
CpP 92.8 4.3 92.6 95.5 26.3  95.7 95.9 66.3 95.4
continuous covariate

7=0.8
Bias 0.015 0.104 0.016 0.009 0.088 0.009 0.006 0.057 0.005
Var 0.014 0.010 0.011 0.010 0.007 0.007 0.007 0.005 0.006
Var* 0.013 0.004 0.011 0.010 0.003 0.007 0.007 0.004 0.006
Cp 95.1 57.1 94.9 94.2 58.9 94.5 94.3 75.8  94.2
7=20.5
Bias 0.019 0.034 0.017 0.003 0.022 0.003 0.008 0.016 0.007
Var 0.010 0.007 0.008 0.007 0.005 0.006 0.006 0.005 0.006
Var* 0.009 0.005 0.007 0.007 0.005 0.006 0.006  0.005 0.006
Cp 92.9 87.4 92.3 94.3 90.5 93.6 94.4 91.4 94.6
T =
Bias 0.006 -0.042 0.005 0.005 -0.022 0.005 0.004 -0.004 0.004
Var 0.006 0.006 0.006 0.006 0.007 0.006 0.006 0.006 0.006
Var* 0.006 0.006 0.006 0.006 0.005 0.006 0.006  0.005 0.006
Cp 94.3 90.0 94.5 92.8 89.7  92.9 94.4 92.0 94.3
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Table 3.2: Bias, empirical variance (Var), average of estimated variance (Var*), cov-
erage percentage (CP) of 95% confidence intervals of the estimate of g
with censoring rate equals 0.3.

ni/ K 40/10 80/5 200,72

LWA SN New LWA SN New LWA SN New

binary covariate

7=0.8

Bias 0.033 -0.121 0.031 0.015 -0.117 0.014 0.007 -0.085 0.005
Var 0.023 0.016 0.014 0.019 0.011 0.011 0.016 0.010 0.012
Var* 0.022 0.007 0.014 0.018 0.005 0.011 0.016  0.005 0.012
CP 95.0 57.4  94.2 94.7 56.9  95.2 94.8 69.3 95.0
7=20.5

Bias 0.023 -0.475 0.023 0.000 -0.394 0.000 0.012 -0.214 0.011
Var 0.020 0.015 0.014 0.016 0.026 0.016 0.015 0.014 0.014
Var* 0.019 0.011 0.013 0.015 0.008 0.015 0.016 0.007 0.014
CpP 92.8 0.9 93.5 94.5 7.3 944 95.6 32.7 95.9
7=0

Bias 0.001 -0.642 0.002 0.004 -0.387 0.004 0.008 -0.124 0.008
Var 0.014 0.025 0.015 0.015 0.026 0.015 0.016 0.023 0.016
Var* 0.015 0.011 0.015 0.015 0.008 0.015 0.015 0.007 0.015
CpP 94.5 0.3 94.6 95.4 82 951 94.0 56.2 94.0

continuous covariate

7=0.8

Bias 0.022  0.092 0.024 0.015 0.072 0.013 0.002 0.046 0.002
Var 0.012  0.009 0.010 0.008  0.005 0.006 0.006  0.004 0.005
Var* 0.011  0.002 0.009 0.007  0.002 0.005 0.005 0.002 0.004

Cp 93.7 45.3  94.9 93.4 52.7  95.2 91.9 75.1 925
7=20.5

Bias 0.018 0.046 0.017 0.010 0.032 0.009 0.002 0.017 0.002
Var 0.009 0.006 0.007 0.007 0.005 0.005 0.005 0.004 0.004
Var* 0.008 0.003 0.006 0.006 0.003 0.005 0.005 0.003 0.004
Cp 91.4 76.9  92.7 93.2 82.7 927 94.6 89.9  94.7
=

Bias 0.003 -0.034 0.003 0.004 -0.019 0.004 0.001 -0.006 0.001
Var 0.004 0.004 0.004 0.005 0.005 0.005 0.004 0.004 0.004
Var* 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.005
Cp 95.7 94.0 95.3 93.8 91.8 93.5 96.0 94.0 96.0

46



Table 3.3: Bias, empirical variance (Var), average of estimated variance (Var*), cov-
erage percentage (CP) of 95% confidence intervals of the estimate of g
with censoring rate equals 0.1.

ni/ K 40/10 80/5 200,72

LWA SN New LWA SN New LWA SN New

binary covariate

7=0.8

Bias 0.041 -0.137 0.040 0.010 -0.135 0.015 0.003 -0.103 0.002
Var 0.023 0.014 0.013 0.016 0.007 0.008 0.013 0.006 0.009
Var* 0.019 0.004 0.011 0.015 0.003 0.008 0.013 0.003 0.009
CP 90.0 39.5 93.5 93.4 33.3  93.2 93.6 55.6  93.9
7=20.5

Bias 0.035 -0.466 0.034 0.016 -0.391 0.016 0.015 -0.218 0.014
Var 0.018 0.012 0.012 0.015 0.009 0.011 0.012 0.009 0.011
Var* 0.016 0.008 0.010 0.014 0.006 0.010 0.013 0.005 0.011
CpP 91.7 04 91.7 92.7 0.3 93.1 944 21.6 945
7=0

Bias 0.002 -0.741 0.002 0.003 -0.469 0.003 0.001 -0.167 0.001
Var 0.013 0.020 0.013 0.012 0.018 0.012 0.012 0.018 0.012
Var* 0.012 0.011 0.012 0.012 0.007 0.012 0.012 0.006 0.012
CpP 93.5 0.0 93.1 94.3 0.9 94.0 95.5 42.3 955

continuous covariate

7=0.8

Bias 0.028 0.056 0.031 0.016 0.038 0.014 0.003 0.021 0.004
Var 0.012  0.008 0.010 0.007  0.004 0.005 0.004 0.003 0.004
Var* 0.010  0.001 0.009 0.007  0.001 0.005 0.004 0.001 0.003

Cp 92.6 385 934 93.3 51.3  93.5 94.2 76.0 94.2
7=20.5

Bias 0.025 0.034 0.026 0.011  0.021 0.009 0.007 0.012 0.006
Var 0.008 0.006 0.007 0.006 0.004 0.005 0.004 0.004 0.004
Var* 0.007 0.002 0.006 0.005 0.002 0.004 0.004 0.002 0.004
Cp 91.7 67.8 923 92.2 79.0  93.0 94.9 85.4 94.4
=

Bias 0.004 -0.012 0.004 0.002 -0.008 0.003 0.000 -0.004 0.000
Var 0.004 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004
Var* 0.004 0.005 0.004 0.004 0.004 0.004 0.004 0.003 0.004
Cp 93.6 93.2 93.7 95.4 94.0 95.5 94.2 90.8 94.1
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Table 3.4: Relative efficiency of BNew VS B WA

RE = MSE(Byew)/MSE(Brwa)
Binary Normal
T 40/10 80/5 200/2 40/10 80/5 200/2
censoring=0.5
0.8 0.658 0.593 0.818 0.791 0.702 0.856
0.5 0.784 0.792 0.950 0.800 0.857 0.998
0 1.000 1.000 1.050 0.998 1.000 1.000
censoring=0.3
0.8 0.621 0.582 0.749 0.847 0.750 0.833
0.5 0.708 1.000 0.932 0.782 0.716 0.800
0 1.072 1.000 1.000 1.000 1.000 1.000
censoring=0.1
0.8 0.592 0.511 0.692 0.857 0.716 1.002
0.5 0.684 0.738 0.916 0.890 0.830 0.997
0 1.000 1.000 1.000 1.000 1.001 1.000

the relative efficiency (RE) defined as the ratio of mean squared error of the es-
timate from the proposed method to that from the Lee et al.’s method, i.e. RE =
MSE(Bnew)/MSE(BLw 4), and report them in Table 3.4. The results indicate that the
proposed method can achieve considerable efficiency gain for regression parameters
when the correlation is strong and the cluster size is large, and it is still comparable
with the Lee et al.’s method when the correlation is weak or cluster size is small. For
example, when 7 = 0.8 and K/n; = 80/5, the REs of § can be as low as 0.511 for
binary covariate, and 0.702 for continuous covariate. The REs tend to approach 1
when the correlation decreases to zero.

Table 3.5 shows the estimate of pney,, and their empirical variances and the av-
erages of 100 bootstrap variances. To save time, we computed bootstrap variances
of pnew only for 100 randomly selected data sets from the 1000 simulated data sets
based on B = 100. The similarity of the empirical variances and the bootstrap vari-

ances indicates that the bootstrap variance estimator works well for calculating the
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Table 3.5: Mean, empirical variance (Var), average of estimated variance (Var*) of

ﬁNe'w
Type of 10/40 5/30 27200
covariate Mean Var  Var* Mean Var  Var* Mean Var Var*
censoring rate = 0.5
7=0.8
discrete 0.173 0.005 0.005 0.180 0.007 0.006 0.179 0.014 0.013
continuous  0.173 0.007 0.006 0.175 0.008 0.007 0.181 0.017 0.015
7=0.5
discrete 0.081 0.002 0.002 0.084 0.003 0.003 0.086 0.007 0.006
continuous  0.081 0.002 0.002 0.083 0.002 0.003 0.082 0.006 0.004
7T=0
discrete 0.029 0.003 0.003 0.027 0.0006 0.0007 0.028 0.002 0.002

continuous  0.028 0.003 0.003  0.027 0.0001 0.0001  0.031 0.004 0.002
censoring rate = 0.3

7=0.8
discrete 0.178 0.006 0.005 0.185 0.006 0.006 0.188 0.015 0.013
continuous  0.180 0.007 0.007 0.184 0.008 0.006 0.188 0.016 0.014
7=0.5
discrete 0.087 0.001 0.002 0.032 0.0007 0.0006 0.094 0.009 0.009
continuous  0.086 0.002 0.002 0.090 0.003 0.002 0.092 0.008 0.007
7=0
discrete 0.033 0.0004 0.0003 0.032 0.0008 0.0006 0.032 0.002 0.002

continuous  0.033 0.0003 0.0004  0.033 0.0009 0.0007  0.032 0.003 0.001
censoring rate = 0.1

7=0.8
discrete 0.181 0.005 0.005 0.186 0.006 0.007 0.189 0.014 0.012
continuous  0.182 0.007 0.006 0.191 0.009 0.008 0.192 0.017 0.016
7=0.5
discrete 0.091 0.001 0.002 0.094 0.002 0.003 0.094 0.006 0.005
continuous  0.093 0.002 0.002 0.092 0.003 0.003 0.092 0.007 0.006
T=0
discrete 0.035 0.0003 0.0003 0.034 0.0006 0.0007 0.035 0.003 0.002

continuous ~ 0.036 0.0004 0.0005  0.036 0.0007 0.0007  0.036 0.002 0.002
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variance estimate of pyey. Although pye, does not correspond to the correlation
measure 7 in the data generation, Table 3.5 shows that the estimated value of pyew
agrees well with the value 7 used in the data generation in the sense that when the
latter decreases, the former tends to decrease too. When there is no correlation in

clusters, the estimate of pye, is very close to zero.

3.5 Applications

3.5.1 The Diabetic Retinopathy Study

We consider a data set from a Diabetic Retinopathy study which was conducted by the
National Eye Institute (Section 1.2.1). One objective of this study is to evaluate the
effectiveness of laser photocoagulation in delaying the onset of blindness in patients
with diabetic retinopathy. In our analysis, we consider 197 patients coming from 50%
random sample of the patients with “high-risk” diabetic retinopathy as defined by
the Diabetic Retinopathy Study criteria. By the end of the study, 54 treated and
101 control eyes in this group of patients had developed blindness. This data set has
been widely analyzed in the literature with respect to the marginal method (Huster
et al., 1989; Lee et al., 1992; Liang et al., 1993; Lin, 1994; and Segal et al., 1997).
The Kaplan-Meier survival curves by treatment and type of diabetes (Figure 1.1)
show that the treatment is more effective for adult diabetes patients than for juvenile
diabetes whereas in the untreated group, juvenile patients tend to have higher survival
probabilities than the adult patients. Since these two age groups have very different
patterns, we include the interaction term between treatment and the type of diabetes
in our analysis. Therefore, we consider three covariates, i.e., treatment (1 for treated
and 0 otherwise), type of diabetes (1 for adult and 0 otherwise) and the interaction

between them. Additionally, we are also interested in investigating the correlation
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Table 3.6: Estimated parameters from fitting the marginal proportional hazards
model to the Diabetic data using Lee et al.’s method (LWA), Segal et
al.’s method (SN) and the proposed method (New). The standard error
estimates are given in parentheses.

Covariate Methods
LWA SN New
Treatment -0.425 -0.784 -0.425
(0.185) (0.250) (0.184)
Diabetic Type 0.341 0.034 0.341
(0.196) (0.247) (0.195)
Interaction -0.846 -0.646 -0.846
(0.304) (0.362) (0.303)
PSN 0.215 -
(0.072) -
PNew - 0.033
- (0.031)

that may exist between two eyes of a patient.

We fit the survival data with Lee et al.’s method (1992), Segal et al.’s method
(1993), and the proposed method, respectively. We use the nonparametric estimate
of the baseline survival function as in (3.6). The parameter estimates are summarized
in Table 3.6. Note that the standard errors of the estimated correlation parameters
Pnew and pgy in the table are obtained from 500 bootstrap samples separately.

From Table 3.6, we conclude that the estimates from the proposed method are
similar to the results from Lee et al.’s method. In addition, we observe a positive
correlation (pne, = 0.033) between two eyes for each patient by incorporating an
exchangeable working correlation structure in estimating function (3.5). The vari-
ances of the estimates in the proposed method are a little bit smaller than those
in Lee et al.’s method (1992) although the significance of the regression parameters

do not change in these two methods. Based on Segal et al.’s method (1993) with
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exchangeable working correlation matrix, we also obtain a positive correlation esti-
mate (psy = 0.215) which is similar to the dependence estimate based on the design
effect method (Segal et al., 1997). It is worth to note that we did not observe non-
convergence in the regression parameters as they mentioned when using the Poisson
likelihood. In addition, due to the bias of Segal et al.’s estimating function (3.4), the
estimates of the regression parameters are biased although the correlation estimate

psn is significant.

3.5.2 The Study of Infections in Kidney Patients

We consider a data set from the kidney infection study (Section 1.2.2). Two recurrence
times (731, Tio) (defined in Section 1.2.2) and the corresponding censoring indicators
(01, 042) were recorded for the ith patient (i = 1,---,38). Other variables include
age (in years), gender (1 for female and 0 for male) and type of kidney disease (0 for
glomerulo nephritis (GN), 1 for acute nephritis (AN), 2 for polycystic kidney disease
(PKD), and 3 otherwise). This data set has been analyzed by using a multiplicative
frailty model (McGilchrist and Aisbett, 1991; McGilchrist, 1993) as well as a marginal
model (Chen et al., 2010).

The primary interest of the kidney patients study is to assess the the factors
such as age, gender and the type of kidney disease to the development of infections.
Meanwhile, we are also interested in investigating whether the recurrence times within
one patient are related. We fit the survival data with Lee et al.’s method, Segal et al.’s
method and the proposed method, respectively. To compare with a frailty model, we
also report the results based on the ML and REML estimation with log-normal frailty
for analyzing kidney patients data (McGilchrist, 1993). The parameter estimates are
summarized in Table 3.7. Note that the standard errors of the estimated correlation

parameters in the table are obtained from 500 bootstrap samples.
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Table 3.7: Estimated parameters from fitting the marginal proportional hazards
model to the Kidney Infections data using the robust method (LWA),
Segal’s method (SN), proposed method (New) as well as McGilchrist’s
methods (ML and REML). The standard error estimates are given in

parentheses.
Covariate Methods
LWA SN New ML REML
Age 0.003 -0.003 0.003 0.004 0.005
(0.007) (0.007) (0.006) 0.013 (0.015)
Sex -1.483 -0.241 -1.471 -1.605 -1.740
(0.401) (0.307) (0.345) (0.407) (0.472)
GN 0.088 0.025 0.090 0.132 0.186
(0.287) (0.277) (0.285) (0.461) (0.552)
AN 0.351 0.042 0.353 0.357 0.392
(0.275) (0.383) (0.279) (0.458) (0.553)
PKD -1.431 -0.034 -1.427 -1.295 -1.143
(0.871) (0.563) (0.834) (0.724) (0.829)
PSN - 0.301 - _
- (0.144) - -
PNew - - 0.057 -
- - (0.097) -
Onrr - . i 0.179 i
- - - (0.120) -
OrEnr - - - - 0.546
- - - - (0.310)

The results from the five methods show some substantial differences. For example,
the effect of PKD disease is marginally significant in our method (p-value=0.087) and
in ML method (p-value=0.074) while it is insignificant in other three methods. That
is, the patients with PKD tend to have lower infection risk than those without PKD.
All methods except Segal et al.’s method (1993) show that gender is a significant
factor, indicating that male patients are about four to five times more likely than
female patients to experience infections. Age appears to have no association with risk

of infection, after adjusting for gender and type of disease. Both the proposed method
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and Segal et al.’s method obtain a positive correlation between the failure times to
infection measured on each patient. Different from the strong correlation estimate
(psny = 0.301) in Segal et al.’s method, the association estimate (pye, = 0.057) in our
method is weak. From McGilchrist (1993), we know that the variance of log-normal
frailty 0 is insignificant (p-value=0.136) in ML method and marginally significant
(p-value=0.078) in REML method. We also notice that the regression estimates are

similar between the proposed method and Lee et al.’s method.

3.6 Conclusions

Segal and Neuhaus (1993) considered a parametric marginal proportional hazards
model with Weibull baseline assumption for multivariate failure time data. However,
due to the bias of their estimating function, the corresponding regression estimators
are biased and the variance estimates are unstable. They also observed nonconver-
gence (Segal and Neuhaus,1993; Segal et al., 1997) in the regression parameters when
using the exchangeable working correlation matrix in their estimating equation. In
this chapter, we considered a semiparametric marginal proportional hazards model
and proposed an unbiased weighted estimating function for clustered survival data to
accommodate the correlation within clusters. The estimates of the regression parame-
ters are shown to be consistent and asymptotically normal under regularity conditions,
and their variances can be consistently estimated by a sandwich variance estimator.
The proposed estimating equation is easily implemented. Our numerical study shows
that the proposed method substantially improves the estimation efficiency of the re-
gression parameters, especially when the correlation within clusters is strong and the
cluster size is large, comparing with the existing marginal method (Lee et al., 1992).

The large sample approximation is reliable for the practical sample sizes. Therefore,
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the proposed marginal proportional hazards model could be considered as an alter-
native approach to the existing marginal models for classical clustered survival data.
In kidney infection study, we further compared the proposed marginal model with a
frailty model (McGlichrist, 1993), the results demonstrate that both models reveal a
correlation between two consecutive infection times measured on the same patient.
Note that although we considered paired survival times in applications, the proposed

method can readily be applied to studies with larger and unequal cluster sizes.
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Chapter 4

Parametric Marginal Proportional

Hazards Mixture Cure Model

4.1 Introduction

In this chapter, we consider a parametric marginal mixture cure model for clustered
survival data in which individuals may have long-term censored survival times and
there may also be correlations between individuals. We propose a generalized estimat-
ing equation approach by incorporating working correlation matrices into the M-step
of the EM algorithm to estimate the regression coefficients and the baseline hazard
function in the marginal model. The estimators of the regression parameters and the
baseline hazard function are shown to be consistent and asymptotically normal, and
their variances can be consistently estimated by a sandwich estimator. We conduct a
simulation study to assess finite sample properties and illustrate the proposed method
with an application to the analysis of a smoking cessation study.

This chapter is organized as follows. In Section 4.2, we introduce the marginal
proportional hazards mixture cure model and propose a set of estimating equations

for clustered survival data with a cure fraction. The asymptotic properties of the
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estimators are investigated in Section 4.3. We conduct a simulation study to evaluate
the finite sample performance of the proposed estimation method in Section 4.4,
and illustrate this method by analyzing the smoking cessation data in Section 4.5.

Conclusions and discussions are presented in Section 4.6.

4.2 Model and Estimation Method

We assume that the marginal survival function of TZ’; is from a parametric proportional

hazards mixture cure model, i.e.,

where 7(Z,;;) = P(Y;; = 1; Z;;) is in a logistic regression form

exp(v'Zi;)
(Zz> - ,] T\
1+ exp(y'Z;j)

(4.2)

and S,(t; X;;) = P(Tj; > t|Yi; = 1, X;;) is specified by the proportional hazards
model

Su(t; Xij) = Suo(t; a)CXp(B/X”), (4.3)

and Syo(t; @), the baseline survival function of T;;HY;] = 1} when X;; = 0, is assumed
to follow Weibull distribution with S,o(t; @) = exp(—t®). Note that we use two-
parameter Weibull distribution where the scale parameter is considered as an intercept
term in the proportional hazards model. Here $ and v are px +1 and pz 4 1 unknown

regression parameters for X;; and Z;,

and « is an unknown parameter in the baseline
distribution.
If we ignore the correlation within clusters, the unknown parameters in the model

are often estimated using the EM algorithm based on a complete log-likelihood
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function from the augmented data OF = {(T7,6;;, Xij, Zij, Yi;), 7 = 1,-- ,ni, 0 =

ijs Yigyr “igy “igs

1,--+,K}. That is

1(650%) = le(v, B,a; OF)
K n;
= IOgHHﬂ' yz] ].—7T(Zz‘j)}1_yij
i=1 j=1
K n;
+1og [T T Auo(t: @) exp(8'X:5) Y exp{—Auo(t]j; o) exp(8/X,5) ¥
=1 j=1
K n;
= log [TTT (2 {1 = m(Zip)}'
=1 j5=1
K n;
+1og [T T lexp(8'X5)" exp{— exp(8/X;) )"
i=1 j=1
K n;

+ logH H (ot~ o) (4.4)

=1 j=1

where \yo(t7;; @) = aty; @1 and Awo(ti;; a) = t75 are the hazard and cumulative haz-

150

ard functions corresponding to Syo(t];;

@), and ki = 6;;/ti. Equation (4.4) consists
of three terms. The first term corresponds to a log-likelihood function of v based on a
logistic regression for y;; only. The second term can be viewed as a log-likelihood func-
tion for #. The third term only contains the information about «. By differentiating

l.(0%; OF) with respect to 6%, we obtain the following three estimating equations,

K
U’YEM = Z ’YEM ZZ 'YE‘M
=1 =1 j=1
5 on(Z)
= YA A A - w20} =0, (45)
=1
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K

K
Uspny = Z U/BE]M ZZ UﬁEM
=1

=1 j=1

_ Z{ }T{BI/QI Bl/2} IW{/@ w(X)} =0, (4.6)

K K
UaEl\/I = z : aE}M z : z : aE]\l
i=1 j=1

1= =1
K

= Z it log (t5){ky — 1(Xis)} + 65/a] = 0, (4.7)
=1 j5=1

where y; = (i, s Yin,) ", ©(Zs) = {n(Zan), - ,7(Zin)}T, A; = diag[n(Z;1){1 —
m(Zin)}, o, W(Zin )L = 7(Zin )}, w0 = (Kiso k)T, 0(Xa) = {u(Xa), -,
(1(Xin ) }T with p(Xi;) = exp(B'Xyj), Bi = diag{pu(Xu), -+, (Xin,) }, Wi = diag(yati{',
“ Yin,tin:), and I; is an n; X n; identity matrix. Note that diag(A) implies a di-
agonal matrix with diagonal elements from the vector A. The E-step computes the
conditional expectation of [.(6*; O}) with respect to Y;; given the observed data and
the current estimates of the parameters. If the current estimates are denoted by

0*m) = (v Bm) (™)) then the E-step is equivalent to computing

g = B(Yyle™,0%)

1 — 65;)m(Zij) Suo(t;) P Xi)
i (1= 6i))m(Ziy) Suo (£) | (48)
1= 7(Zy) + 7(Z >Suo<t;z>exp<ﬂ R P

where O* = {(T3, 6ij, Xij, Zij), j = 1,- -+ ,ng,i = 1,--- , K} is the observed data, and
the M-step is equivalent to solving equations (4.5), (4.6) and (4.7) after substituting
gl] ) for yi; in the equations. We denote the estimator * solving equations (4.5), (4.6)
and (4.7) as 05,

When the correlation within clusters is present, we show in Theorem 4.1 that
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the above estimating equations are unbiased if the marginals are correctly specified.
However, the estimates may not be efficient (Peng et al. 2007; Yu and Peng, 2008).
To increase the estimation efficiency of the method above, we follow the idea of the
generalized estimating equations for the generalized linear models (Liang and Zeger,
1986; Rosen et al., 2000) and propose to replace the identity matrix ; in equations
(4.5) and (4.6) with working correlation matrices to account for the potential corre-
lations between cure statuses and between the failure times of uncured subjects in

each cluster. That is, the proposed estimating equations for v and [ are

K
Upps = Z 'YES ZZ ’YES
i=1 i=1 j=1
= Z{ }T{A”Q@Z(m) Doy My —w(Z)y =0,  (49)

=1

K K

Upps = Z UﬁEs ZZ UﬂEs
=1 i=1 j=1

Z{ }T{B”Q (p2)B)* 62} Wil — u(X,)} =0, (4.10)

where Q;(p1) = (qjx(p1))n;xn; and Q;(p2) = (qjk(p2))n,xn; are the working correlation
matrices, and p; and ps are unknown parameters in the matrices that need to be esti-
mated. The scale parameters ¢, and ¢, are incorporated in the estimating equations
to accommodate potential over- or under-dispersion.

In this chapter, we consider the exchangeable correlation structure for both Q;(p1)
and Q;(p2) as it is often used for clustered data. Such a correlation structure was also
considered by Segal and Neuhaus (1993) and Chatterjee and Shih (2001). Following

the moment method in Liang and Zeger (1986), p; and ps can be estimated from the
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standardized Pearson residuals. That is

= 3D PN 1), 1)

%ZZwmﬁjm s — 1), (4.12)
where #1) = {"™ — 7(Z;)}/[r(2){1 — 7(Zij)}]}, and

ZZ{T@)} /(N —px —1), (4.13)

i=1 j=1
K K 1
2= 03" YD i D Gnilni = 1) = px — 1}, (4.14)
i=1 j>j’ i=1

D=

where 7;; . Note that gg-n) is used to estimate p;, which

i = Lk — n(Xi) }Hm(Xiy)}
plays the role of y;;.
We summarize the steps to obtain an estimate of * in this modified EM algorithm

as follows.

1. The E-step stays the same;

2. The M-step starts with an initial value of #*. We then obtain the estimates of
®1, p1, ¢2, and py from equations (4.11), (4.12), (4.13), and (4.14), which in
turn lead to a new estimate of 6* from equations (4.7), (4.9) and (4.10) after
substituting gw ™ for y;; in the equations. This step is iterated until convergence

to complete the M-step.

The E-step and the M-step are iterated until the EM algorithm converges to obtain
0*. Following Rosen et al. (2000), we name this modified EM algorithm the ES
algorithm and denote the estimator 6* solving equations (4.7), (4.9) and (4.10) as 0%.

It is obvious that 6% = 6%,, when the working correlation matrices are the identity
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matrix and the scale parameters ¢; and ¢, are equal to 1. Due to the modifications
in the M-step, some useful properties of the EM algorithm are not available in the
ES algorithm. However, in Theorem 4.1, we can show that both é}ijs and é*EM are

consistent and asymptotically normal estimators.

4.3 Asymptotic Properties and Variance Estimation

4.3.1 Asymptotic Properties of é*Es and é’fEM

Theorem 4.1. Let 0] be the true value of 0*. Under some regularity conditions,
(a) both O and 0%,, are consistent estimators of 07,
(b) K2(0hs —0;) = N(0,Sgs) and K2 (0, — 05) — N(0,Sgy) (in distribution)
as K — oo, where

Ses = AT OVIOD){AT(05)Y Sea = A (05)Va(05){ A (65)}

and A1 (65) = E{B1(05)}—E{S1(65)ST (65)}, Vi (65) = 201y E{Su(05) Y E{SL(6:)},
As(03) = E{By(63)} — E{S2(63)57 (65)}, Val05) = o1y E{Sui(63) Y E{SL(65)},
S1(07) = (Uyss Usiss Unia)s Br(07) = =255 and $1(0%) = (Ussy, Upisy:
Unpns()> S2(0%) = (Usns Usongs Ui ), Ba(0%) = =227 and 85:(6%) = (Us i)

UﬁEM(i)’ UaEM(i))7
(¢c) YXgs and Xy can be consistently estimated by Sps = Afl(é*ES)Vl(é*ES){AII(é*ES)}T

and Spy = A;l(é}gM)Vg(éfEM){Agl(égM)}T respectively.

Proof. Given the regularity conditions (Huber, 1967), we adapt the proof in Rosen
et al. (2000) for censored data. Let (S, Fy,w), (Se, Fe, ) and (Sy, F,, v) be o-finite

measure spaces, with a product measure space (S;®S.® Sy, i@ F, @ F,,w @ u®v),

62



where S; € R%, S. C R% and S, C R%. We assume a marginal probability model
pij(t, ¢, y|0%) for (t3;, cij, vij) € Sy ® S ® Sy, which are strictly positive on S; ® 5. ® S,
and may depend on subscripts ¢ and j via covariates, for each j = 1,--- ,n;,i =
1,---, K, associated with the product measure w®@pu®v. Here 6* is some vector-valued
parameter in a subset © of R%* with dp- = dim(0*), and p;;(¢, ¢, y|) is continuously
differentiable on © for each (t;, cij, yij) € Sy ® Se ® Sy. Let pi;(y|ti;, cij,07) be the

conditional probability model for all y;; € S,. That is
pij (ylti;, cij, 07) :pij(t:jacijuyw*)//s pij(ti;, cij, w0 )dv(u).

Let g;j(-,-, ;) be a dp« x 1 vector-valued function composed by {(U, )i, (Upys)is,
(Uagy)ij}E- Tt is defined on S; ® S. ® S, ® © + R%* such that g;;(-,-,;¢) : S, ®
S.® S, — R%" is measurable and integrable with respect to p;;(-,-,-|0*) for each
¢ € O, and ¢;(t,c,y;+) © O — R%- is continuously differentiable on © for each
(3, cij» Yij) € St ®S.® S,. We then define a bivariate function H(-|]-) : ©® O — R%"
by

(|6 ZZ/ i ( z],czg,y|go)pw(y|1t”,c,m9* ).

i=1 j=1
The E-step of the ES algorithm computes H(]60*(™), and the S-step solves for ¢ =
0*m+1) from the equation H(p|#*™) = 0. Furthermore, we require the following

proposition given by Rosen et al. (2000).
Proposition 4.1. Assuming that the following conditions hold:
(a) H(-|-) is a bivariate continuous function on © ® ©, where © C R%* | and

(b) qi;(+, -, ;) is an unbiased estimating function satisfying E{q;(t};, cij, vij; 0°)|0"} =
0 forall0* €O andallj=1,--- ,n; andi=1,--- | K.

63



If there exists a point 0* € © such that lim,,_.. 5™ = 6%, where 8™ is q sequence

generated by the Expectation-Solution algorithm for m =0,1,2,---, then
(i) 0% satisfies the estimating equation Q/(é*) = H(é*|é*) =0;

(i) V(%) = Zfil Z;”:l ¢i; = 0 is an unbiased estimating equation, satisfying
E{U(0*)|60*} =0 for each 6* € O.

We now show that H(-|-) and g¢;;(-, -, -; -) satisfy conditions (a) and (b). Condition

(a) holds since

K n;
H(50|6‘*(m)) = Z Z E{Qz] (t:ja Cijs Yigs 90) ‘t;(j? Cig» 6*(m)}

i=1 j=1

K n
B Z Z Z i (tzj’ Cij, Yij> @)pij(yiﬂt;‘j’ Cij, 9*(”1))’

=1 j=1 yij;

where

. «(m T(Z355) S (t5;) PP Xi3)
pij(yig = 1t5;, ¢, 0°) = {5"1 + (1 —3dy) - : ’
p=0(m)

1 —m(Zyj) + m(Zij) Suo(ti;) PO Xis)

pij (yi; = Olt3;, i, 070) = 4 (1= 6;5) P v—T ;
S 7 71— m(Zij) + W(Zij)suo(tij) p(5'Xi) g—pg(m)

and the g;;(t, ¢, y; -)’s and py;(t, ¢, y|-)’s are continuous functions for each (¢};, cij, ;) €
St ® S, ® Sy

To prove condition (b) holds, i.e.,
E{qij(ti;, cij i 07)|07 } = //Zpij(y|taca 07)qij (t, ¢, y; 07 )dFy;(t|c, 07 )dFij(c|0”) = 0,
y

we first investigate the unbiasedness of the components of g;(t};, cij, yi;; 0F) corre-

sponding to 7.
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Let m;; = m(Z;;). Then

B{(Usss )"} = BIB((Uss, )l 67}

- // Sl .6 S 60 Zalma(1 — ) G (o)
g1 = 7)) Vg — )t )

= oYz [ [ S potult.ct)mat = m} Qi
x{w:f )y — Ay (e )E, el

= ¢ ZZzz{sz 1—ma) 12 Qi(pr )i {miy (1 — i)} /2

x{//Zyp” ylt, .0 )AL (tle, 67)dFL (cl6) — mis)

= ¢ Z Za{ma(1 = ma) }'2Qi( 1)y {mis (L = i)} gy — 75} = 0
=1

where Qi(pl) = Q;'(p1) and Qi(p1) is an n; x n; working correlation matrix for
i=1,-- K.
To prove the unbiasedness of the components of g;;(t;;, cij, yij; 0*) corresponding

to B, let p;; = p(X;;). We first look at the unbiasedness of {(Ug,g)ij|vij, Cij. 0%}

E{(UﬁES)ij’yij7 Cij» 9*}
N /Z% 1lelm pQ)l]:uzj V2 Yit® (Kij — pig)dE; (tyij, cij, 07)

= oS X0 ) / Uit (s; — sy} AFs (g i, 0°)

=1
= Mij/Xl-ijta(mj — pij)dFij(tlyij, cij, 0%)
8/%] 1
B

N Mij/%bg[{m}j exp(—t* i) YV (1% ) 9| d Fy (yij, cij, 07)

= M;; Yii (03 — % 1ij )AF;; (tyij, cij, 07)
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:ul i *
= 0y [ ol{( ) exp () (LA )

ij

= My / a8 log([\05 (t; Xij) exp{—Nu(t; Xij) 1Y )dEy (t|yij, cij, 07)

My [ 55108l (5 Xo) expl = Ault X iyl .6,

where Mj; = {65 S0, Xup!? Q’(p?)lj,u;jl/Q/Xij} and Qi(p2) = Q7 '(p2) and Qi(p2)

is an n; X n; working correlation matrix for ¢ = 1,--- , K. Therefore

E{(Usgs)ijlcij, 07}
= me y|cz]7 E{(UﬁES)Uly?CU’Q*}

= Y pij(ylei;, 0 )Mijy/%log[)‘fj] (tlcij, 07) exp{—=Au(tlcij, 0) }dFi; (tly, cij, 07)

)

0 . e rlG . N
B WUMM/a_ﬁ[log{qu”(ﬂcij,@ )Sy % (t]eiy, 0°) Y dFu(tcij, 07)
0 * *
= WijMij{/éij%1ngu<t|cij>0 )dFu(ﬂCijve )
0 * *
+/(1 — 35) 3 log Sultle, 07) APt 07))

1 8fu(t’CU,9*)
Trl] {/ fu t‘CzJ, 6* 8ﬁ d U(t‘cl]? 0 )

1 0Su(t|ci;, 0%)
dF,(t|c;;, 0"
*/,, ST 0D ot )

= ﬂ-ijMij%{/ fu(t|CU,9*)dt+/ )\u(t|cw,9*)Su(t|c”,9*)dt}

« . 0
= T lJaB{F (czj\c”,@ ) + Su (C”LJ|CZJ76 )} :WijMij%(l) =0.

ij

Since the component of g;;(t};, cij, yij; 0*) corresponding to « is a score function

based on the complete log likelihood function [, following the same idea used in the
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unbiasedness of {(Ug,)ij|cij, 0}, we can show that

E{<U04EM)ij|cij7 9*} = Zpij (ylcij’ Q)E{(UaEAI>ij|y7 Cijs 9*} = 07

Yy
K z
where Uny,, = 322y 2521 (Uag,, )ij- Therefore, we have

K ny

SN E{ay(ty, cij yigi 0107} = E[E{qi(£5;, ¢ij, yi3: 07)]cij, 0°}07] = 0,

i=1 j=1
and this completes the verification of condition (b) of Proposition 4.1. That is, we
prove that if the ES algorithm converges, éEs is a solution of unbiased estimating
equations W(0*) of §*. Therefore, based on the regularity conditions, the asymptotic
normality of éfEs and its covariance estimation follow from the result of Huber (1967)
as the number of clusters K — oc.

The consistency and asymptotic normality of é*EM can be established similarly
after replacing the working correlation structures with the identity matrix and re-
placing ¢; and ¢ with 1 in the estimating functions (4.9) and (4.10), which reduce
to (4.5) and (4.6).

A ~

4.3.2 Variance Estimation for 05,4, 0%,,, p1 and ps

The variance and standard error of é*ES can be obtained based on Theorem 4.1 (c).
Obtaining V; (0%) is straightforward. We need to find E{Sy;(f5q)} = {E(Ussy)
E(Usps i), E(Uapy )} for i = 1, K and calculate Vi (6%) = Y10, B{Su(054)}
E{ST(0%¢)}. Here we provide some details for calculating A;(6*). To simplify the

notations, we let (U, Us,Us) = (Uype, Uspey Unpy, ). The first term in A; (6%),
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E(By (%)), can be written as

Uw Uvﬁ Uw Uw 0 0
E(Bl(A*ES)) =—F Ug'y Ug@ Uﬂa =-F 0 Ugﬁ Uga
Ua'y Uaﬁ Uaa 0 Uaﬁ Uaa

The (v,w) {w,v = 1,2,--- ,dim(~)} element in the first dim(y)xdim(y) matrix

U,, is
K
ZA(-’Y)(B-(’Y)C-(’Y) . D(’Y)E(’Y))
=1

where AEV) = (Zilln Zigy, "+ 7Ziniz/>1><ni7

B B

iln;
B —
BY, ... BY

Mg XNy

with BY, = 52-{ Zimuw(1 = 2im) = Zinwo(1 = 2730) Him (1 = i) /2 {0 (1 = m30) } 1/

imn
()
imm

@i(pl)mn for m # n, otherwise B =0, mn=12---,n,. C’Zm = (Y — T, Yio —

T
T2y s Ying — 7Tini) )

Dy o DY),
DY) —
DY, e D,

T Xn;
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with D = ¢r (1 = i) P2 (1 = )} 2Q; (91 )i for m # n, other-

mn

wise D) — Qi (P1) mm- Eim = {Ziwmit(1 = mi1), ZigwTio(1 — Ti2), - -+, ZinyuoTin, (1 —

mm

T
Trinz’) 1xn;

The (v,w) {w,v =1,2,--- ,dim(f)} element in the second block diagonal dim(f3)
x dim(f) matrix Ugg is

where Agﬂ) = (Xilw Xi21/7 e >Xini1/)1><ni7

8 5
B} B,
BW —
Bi2, B{l.,

Mn; XNy,

with Bz(;i)n = ﬁ(Ximw—me)(uim)l/Q(/Lm)_l/%?i(pg)mn for m # n, otherwise BY

mm

0,mn=12--- n,. CZ@ = (K'il — i1, Ri2 — W2, 5 Ring — ,umi)T,

8 8
D D,
DB _
Dy Dih,

Mg XNy

with Dg;i)n = ¢2_1(/Lim)1/2(,Uin)_1/2c?i(p2)mn for m # n, otherwise Dl(fl)m = Qi(,og)mm.

Ei(ﬁ) = (Xitwhtit, Xizwttiz, > Xingwlting)* > and Wi = diag(yatiy, viotis -+ Yin 1),

iTLi
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The last diagonal element U,,, is

- Z Z [yi{log(ts; }2tzgﬂw + 5@']’/0‘2]'

=1 j=1

The off-diagonal element Ug,, a matrix of order dim(f) x 1, is
K
-3 4P DO,

where F{” = {11 10g(t1), 2 10g(15), -+, tin, Log(t5,)}" -
The off-diagonal 1xdim(f) matrix U,s has elements

K

i Z A@)WiF-(ﬁ)
=1

Next we compute the second term of A; (%), i.e.,

UU, UUs U,U,
E{S8:(035)S] (035)} = E | UU, UsUs UsU, |-
UaUry UaUﬂ Uanz

where
E(U’YU’Y> - E{Z R Vlz )}2
= E{Z RUV (yi — 90) (wi — 90)" Vi T R}

= ZR 111E{ )(yi—gi)T}VﬁTRlu
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K
EUsUs) = E{Z RV (yi — 9i) (65 — 6% 1i) ¥

K
= E{Z R,V H(yi = 90) (0 = ;%) (60 — 5% 1) " (i — 90)" Vi " Ras }

= ZR Vi E{(ys — 9:) (65 — 67 1) (8 = 7%13)" (s — 9:)"}Vai " R,
E(U.U) = [Z{log( D0 =t )Y (v — 9

= ZﬂOg V(6 — 5% m) Y (yi — 9i) (yi — g4) " log (£) (8 — 7% 1ss)]

= Z{log(tf)(&-—tf“ui)}TE{(yi—gi)(yi g:)" Hlog(t5)(6; — 7% i),

K K
EUUs) = E{)_ RLVi'(yi— ) > RV (yi — 9)(6 — %)}
i=1 i=1

K
- E{Z REVE (i = 90)(0 = 67%00) " (yi — 6:) "V " Rai}

= ZR Vi " E{(yi — 9:) (6 — ;% 11) " (i — 9:)" }Va; " Ra;,
K

E(U,U.) = E[)_ RLVy 'y — gi Z{log )6 — %)} (i — 94)]
=1

= E{ZREvl?(yi—gi)(yz- g:)" log () (6; — 7% 1;) }

= ZR Vi B (i — g0) (i — 07} log(£7)(6; — ;% 1s),
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K

E(Ugla) = E[ZRE%Zl(yi—gi)(@—t*“ i) Y _{log(t) (8 — ;%)Y (v — 9:)]

1=1

E[ZRi‘éZl(yi—gi)(&—t?”‘ui)(yi )" {log(t7)(0: — t;“u) }]

ZR Vi "E{(yi — 9) (6 — ;%) (ys — 90)" Hlog(t7) (6 — £ 1) }.

Here I, = %WZO’VU = A;%Qi(p1) A% b1, Rai = M and Va; = B2Q;(p2) B} ¢,

i = (givs+  gin) T 00 = (i1, 0) T, 60 = (G- )T and s = (pars - i)

For #%,,,, the formulas for variance estimation are similar. Note that Yu and Peng
(2008) also provided a jackknife variance estimate for é*E M-

To obtain the variance estimates of the correlation coefficients p; and py, we
consider a bootstrap method which is similar to the method we used for pye, in
Section 3.3.2. That is, a bootstrap sample is obtained from sampling clusters with
replacement and is fitted with the proposed method to obtain the parameter estimates
p1p and pop, separately. Then the variance estimates of p; and p; can be estimated
by 20 — X0 A5 /B)?/(B—1) and 7 (%) — 37, p /B)?/(B = 1), where

B is the number of bootstrap samples for each simulated data set.

4.4 A Simulation Study

We conduct an extensive simulation study to investigate the performance of the pro-
posed method and to compare its estimates with those from existing methods. The
study considers various cluster sizes with different correlation settings for both dis-
crete and continuous covariates.

The data in the simulation are generated from the marginal proportional hazards
mixture cure model (4.1), (4.2) and (4.3) with a single covariate in both X and Z. The

parameters in the model are set to 6* = (0,71, 5o, f1, ) = (0.4, —1,1og(2), —1,1).
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The single covariate is either a binary covariate generated from the Bernoulli distri-
bution with mean 0.5 or a continuous covariate generated from the standard normal
distribution.

For each data set, we consider the following pairs of the number of clusters and the
cluster size: (40,10), (80,5), and (200,2). For each cluster in a data set, correlated Y;;’s
and Tj}’s given Y;; = 1 are generated. Specifically, to generate the Y;; and Y;; that
satisty P(Y;; = 1; Z;;) = n(Zi;), P(Yiy = 1; Z;j1) = n(Z;j) and corr(Y;, i) = ¢, we
adopt the method proposed by Emrich and Piedmonte (1991). That is, given 7(Z;;),

7(Z;j) and ¢, we solve for p;;;» through

Cl{en(ziy), 2r(z0 s Pisy) — T(Zig)7(Zigr)
m(Zij)m(Zij) {1 — m(Zij) {1 — 7(Zij) } 7

where ®(-, p;;;7) is the standard bivariate normal distribution function with the cor-
relation coefficient equal to p;;;». After obtaining p;;; for the ith cluster, we use them
to form a correlation matrix 3; and then generate (z;1,-- - , 2i,,) from the multivari-
ate normal distribution N (0, X;). The correlated Y;;’s in the cluster with specified
correlation ¢ can be obtained from (z;1,--- ,2m,) via Yi; = I{z; < zx(z,)}, where
Zr(z,) 18 the 7(Z;;)th quantile of the standard normal distribution. An R software
package “mvtBinaryEP” (By and Qaqishi, 2011) is available to produce binary data
following the procedure above.
To generate the correlated failure times for uncured patients with the given marginal

survival function in (4.3), we use the Clayton copula model (Clayton, 1978),

P(,fz*l >ty 7j121 >tmi Y;j:LXija.j:L'" 7”1’)

= {Z Su(tyy; Xij) ™8 —mi + 13715,
j=1
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where £ measures the degree of dependence among the failure times of uncured pa-
tients within cluster ¢ and it relates to Kendall’s tau by ¢ = 27/(1 — 7). When 7
takes 0.8, 0.5 and 0, the corresponding values of ¢ are 8, 2 and 0, respectively, and
they correspond to strong, weak and zero correlation.

We consider three configurations of (¢,7): (0.4,0.8), (0.2,0.5) and (0,0). A pair
of larger values of (¢, 7) imply a stronger correlation of the cure status and the failure
times of uncured patients in a cluster. When (¢,7) = (0,0), clustering does not
produce correlations. Finally, the censoring times are generated independently from
the uniform distribution in (0,12).

For each setting above, we generate 1000 data sets and fit each data set with
the marginal model using the proposed estimation equations. As a comparison, we
also estimate the parameters in the marginal model using the EM algorithm (Yu
and Peng, 2008). The initial value of #* in our simulation study is set to 0. The
biases, empirical variances (Var), the averages of estimated variances (Var*), and the
coverage probabilities of 95% confidence intervals of the parameter estimates, under
each method, are reported in Table 4.1 and Table 4.2 for the binary and continuous
covariate cases, respectively.

The results indicate that the proposed ES estimation method outperforms the
existing EM estimation method. The average estimated variances of the regression
parameters from the ES method are close to their empirical variances in all cases, and
the 95% confidence interval coverage rates are satisfactory and close to the nominal
level. When the correlation within a cluster is strong and the cluster size is large, the
biases and variances, particularly the variances of v, and gy, from the ES method are
smaller than those from the EM method. Given the same sample size, the variances
of the parameters except v; tend to decrease as the cluster size decreases or as the

correlation decreases. When the correlation reduces to zero, the biases and empirical
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Table 4.1: Bias, empirical variance (Var), average of estimated variance (Var*), cov-
erage percentage (CP) of 95% confidence intervals of the estimate of
0* = (70,7, Po, P1, @) with binary covariate.

n; / K EM ES
70 71 Bo b1 Q 70 71 Bo b1 67

(C.7) = (0.4,08)
10/40 Bias 0.005 -0.019 0.031 -0.047 0.045 0.004 -0.017 0.030 -0.046 0.044
Var 0.061 0.048 0.043 0.057 0.022 0.055 0.034 0.041 0.047 0.022
Var* 0.061 0.055 0.040 0.057 0.020 0.052 0.038 0.038 0.042 0.022
Cp 95.2 95.1 922 93.2 93.0 94.2 956 925 93.1 944
5/80 Bias 0.012 -0.013 0.021 -0.028 0.026  0.011 -0.012 0.020 -0.027 0.025
Var 0.040 0.052 0.024 0.044 0.012 0.038 0.040 0.023 0.038 0.012
Var®* 0.040 0.051 0.022 0.043 0.010 0.035 0.047 0.022 0.039 0.012
Cp 94.9 951 923 926 927 94.1 96.0 93.0 93.7 93.5
2/200 Bias 0.008 0.002 0.011 -0.013 0.018 0.008 0.003 0.010 -0.013 0.017
Var 0.025 0.046 0.014 0.038 0.006 0.024 0.040 0.014 0.036 0.006
Var* 0.027 0.051 0.013 0.037 0.006 0.026 0.048 0.013 0.035 0.006
CP 960 960 929 938 938 960 966 929 943 946

(C.7) = (0.2,05)
10/40 Bias -0.005 0.005 0.026 -0.038 0.035 -0.006 0.006 0.025 -0.036 0.035
Var 0.040 0.050 0.034 0.043 0.011  0.038 0.044 0.033 0.039 0.011
Var* 0.041 0.051 0.031 0.041 0.010 0.038 0.052 0.029 0.039 0.011
Cp 959 955 929 93.6 93.8 95.2 96.7 91.3 923 934
5/80 Bias -0.003 -0.008 0.015 -0.012 0.017 -0.004 -0.006 0.015 -0.012 0.016
Var  0.032 0.048 0.021 0.038 0.007 0.031 0.044 0.020 0.035 0.007
Var®* 0.031 0.051 0.019 0.039 0.006 0.029 0.049 0.019 0.036 0.007
Cp 94.9 95.0 92.0 93.6 93.8 93.8 955 93.1 946 944
2/200 Bias 0.001 0.002 0.013 -0.007 0.014 0.001 0.002 0.013 -0.006 0.014
Var 0.025 0.051 0.013 0.033 0.005 0.025 0.049 0.013 0.032 0.005
Var* 0.025 0.051 0.012 0.036 0.004 0.024 0.050 0.012 0.034 0.004
CP 952 949 939 953 942 957 951 939 96.1 94.2

(¢, 7) = (0,0)

10/40 Bias -0.002 0.002 0.007 -0.003 0.011 -0.003 0.002 0.006 -0.002 0.011
Var 0.021 0.047 0.011 0.034 0.004 0.021 0.047 0.011 0.034 0.004
Var* 0.022 0.050 0.010 0.034 0.004 0.022 0.049 0.010 0.033 0.004
CP 95.0 953 932 934 93.2 95.1 949 936 932 93.2

5/80 Bias 0.005 -0.006 0.005 -0.004 0.008  0.005 -0.006 0.005 -0.003 0.008
Var  0.023 0.048 0.011 0.034 0.004 0.023 0.048 0.011 0.034 0.004
Var* 0.023 0.051 0.010 0.035 0.004 0.023 0.050 0.010 0.033 0.004
CP 95.3 96.2 932 939 949 954 95.7 934 931 949

2/200 Bias 0.003 -0.006 0.013 -0.015 0.010  0.003 -0.007 0.013 -0.015 0.010
Var 0.023 0.047 0.011 0.035 0.004 0.023 0.047 0.011 0.035 0.004
Var®* 0.023 0.051 0.010 0.035 0.004 0.023 0.050 0.010 0.033 0.004
CP 952 953 936 939 94.5 95.1 954 936 946 943
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Table 4.2: Bias, empirical variance (Var), average of estimated variance (Var*), cov-
erage percentage (CP) of 95% confidence intervals of the estimate of
0* = (70,7, Po, P1, @) with continuous covariate.

n; / K EM ES
70 71 Bo b1 Q 70 71 Bo b1 67

(C.7) = (0.4,08)
10/40 Bias 0.003 -0.027 0.037 -0.047 0.040  0.003 -0.024 0.035 -0.036 0.037
Var 0.052 0.074 0.044 0.048 0.019 0.052 0.034 0.043 0.032 0.019
Var* 0.053 0.065 0.039 0.046 0.017 0.048 0.043 0.037 0.033 0.018
Cp 95.0 914 920 92.7 921 93.2 96.2 90.8 93.8 93.3
5/80 Bias 0.000 -0.007 0.019 -0.027 0.025 0.000 -0.008 0.018 -0.020 0.023
Var 0.033 0.044 0.021 0.028 0.010 0.032 0.030 0.021 0.020 0.010
Var®* 0.032 0.045 0.019 0.027 0.009 0.029 0.034 0.018 0.020 0.009
Cp 94.4 954 921 93.2 93.3 93.5 96.0 924 93.8 94.2
2/200 Bias -0.001 -0.006 0.014 -0.019 0.016 -0.001 -0.003 0.013 -0.016 0.014
Var 0.018 0.027 0.011 0.014 0.004 0.018 0.025 0.011 0.012 0.004
Var* 0.018 0.029 0.010 0.014 0.004 0.018 0.027 0.010 0.014 0.005
CP 955 969 933 940 945 948 958 930 950 95.0

(C.7) = (0.2,05)
10/40 Bias 0.001 -0.021 0.028 -0.031 0.031 -0.001 -0.021 0.028 -0.029 0.030
Var 0.036 0.025 0.029 0.022 0.011 0.036 0.022 0.028 0.019 0.011
Var* 0.035 0.025 0.026 0.019 0.009 0.032 0.025 0.026 0.017 0.009
Cp 949 94.0 922 929 922 93.8 96.2 91.3 91.8 919
5/80 Bias 0.004 -0.014 0.021 -0.021 0.018 0.003 -0.013 0.021 -0.017 0.017
Var  0.023 0.025 0.017 0.014 0.006 0.023 0.023 0.017 0.013 0.006
Var®* 0.023 0.024 0.016 0.013 0.005 0.022 0.023 0.015 0.012 0.006
Cp 94.9 942 915 923 939 94.8 953 921 940 94.2
2/200 Bias 0.002 -0.013 0.009 -0.012 0.011  0.002 -0.013 0.009 -0.011 0.011
Var 0.016 0.023 0.010 0.011 0.004 0.016 0.022 0.010 0.010 0.004
Var* 0.017 0.022 0.009 0.010 0.004 0.016 0.022 0.009 0.010 0.004
CP 957 954 940 939 949 955 955 935 945 948

(¢, 7) = (0,0)

10/40 Bias 0.007 -0.004 0.007 -0.008 0.007  0.007 -0.003 0.007 -0.008 0.007
Var 0.014 0.020 0.007 0.009 0.003 0.014 0.020 0.007 0.009 0.003
Var* 0.014 0.021 0.007 0.009 0.003 0.014 0.021 0.006 0.009 0.003
CP 93.3 954 928 939 95.0 93.7 951 924 941 94.7

5/80 Bias 0.003 -0.013 0.009 -0.014 0.010  0.003 -0.013 0.009 -0.013 0.009
Var  0.013 0.022 0.007 0.009 0.003  0.013 0.022 0.007 0.009 0.003
Var* 0.014 0.022 0.007 0.009 0.003 0.014 0.022 0.007 0.009 0.003
CP 954 945 940 943 94.0 95.6 942 936 948 94.1

2/200 Bias 0.007 -0.010 0.013 -0.008 0.012  0.007 -0.010 0.013 -0.008 0.012
Var 0.015 0.020 0.007 0.010 0.003  0.015 0.020 0.007 0.010 0.003
Var®* 0.014 0.022 0.007 0.009 0.003 0.014 0.022 0.007 0.009 0.003
CP 94.6 957 940 93.0 93.8 946 95.6 941 93.7 94.0
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variances based on the ES method and the EM method are comparable.

To further evaluate the efficiency gains from the ES method, we calculate the
relative efficiency (RE) defined as the ratio of mean squared errors of the estimates
from the ES method to that from the EM method, i.e., RE = MSEggs/MSEg),, and

report them in Table 4.3. The results indicate that the proposed ES method can

Table 4.3: Relative efficiency of é*ES VS é*E M-

Type of RE = MSE(0},¢)/MSE(63,/)
n;/ K covariate Yo Y Bo b1 Q
(=04, 7=08

discrete  0.902 0.709 0.953 0.830 0.996

10/40 . tinwous 1.000 0463 0975  0.663  0.989
discrete  0.950  0.769  0.957  0.865  0.996
/80 ontinuous 0.970  0.683  0.998 0710  0.991
yppp  iscrete 0960 0870 0999 0948 0.994
continuous  1.000  0.925  0.998  0.853  0.986
(=02 7=05
jojap  discrefe 0950 0850 0970 0907 1000
continuous 1.000 0.882 0.966 0.864 0.995
discrete  0.969 0916  0.953 0921  0.995
5/80  ontinmous 1000 0.920  1.000 0920  0.994
discrete 1.000 0.961 1.000 0.969 1.000
2/200 continuous 1.000 0.957 1.000 0.908 1.000
(=0,7=0
discrete  1.000 1000 0.999  1.000  1.000
10/40 . tinwous 1.000  1.000  1.000  1.000  1.000
discrete  1.000  1.000  1.000  1.000  1.000
5/80  ontinwous 1000 1.000  1.000  0.997  0.994
2/200 discrete 1.000 1.000 1.000 1.000 1.000

continuous 1.000 1.000 1.000 1.000 1.000

achieve considerable efficiency gain for regression parameters, particularly for ~; and
1, when the correlation is strong, and it is still comparable with the EM method
when the correlation is weak. For example, when the correlation is strong, that is

(¢,7) = (0.4,0.8), the REs of 7, can be as low as 0.709 for binary covariate and 0.463
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for continuous covariate and the REs of 51 can be as low as 0.830 for binary covariate
and 0.663 for continuous covariate. The REs tend to approach 1 when the correlation
becomes weak.

The proposed estimation method also produces estimates of p; and p,, the cor-
relation coefficients in the two working correlation matrices. Even though they do
not correspond to the correlation measures ¢ and 7 in the data generation, Table 4.4
shows that the estimated values of p; and py agree well with the values of ( and 7
used in the data generation in the sense that when the latter decrease, the former
tend to decrease too. When there is no correlation in clusters, the estimates of p;

and py are very close to zero.

Table 4.4: Mean, empirical variance (Var), average of estimated variance (Var*) of
(/317 [)2)

Type of 10/40 5/30 2/200
covariate Mean Var Var* Mean Var  Var* Mean Var  Var*
(¢, 7) = (0.4,0.8)

p 0.354 0.003 0.004 0357 0.003 0.003  0.367 0.004 0.004
pp 0.133 0.013 0.011  0.136 0.015 0.013  0.139 0.023 0.022
, pr 0.363 0.004 0.004 0.371 0.003 0.003 0.373 0.005 0.004
contimuous 5 - 438 0.012 0.010  0.148 0.014 0.011  0.146 0.024 0.023
(¢, 7) = (0.2,0.5)

_ pr 0.178 0.002 0.002  0.180 0.003 0.002 0.186 0.005 0.005
discrete 5 0055 0.003 0.002  0.057 0.004 0.002 0.056 0.007 0.005
p 0.179 0.002 0.002  0.179 0.003 0.002  0.184 0.005 0.005

COMNUOUS 5 056 0.003 0.002  0.061 0.004 0.004 0.061 0.008 0.007

(¢, 7) = (0,0)

discrete  P1 ~0-002 0.0005 0.0006 -0.003 0.0013 0.0012 -0.004 0.0053 0.0051
ISCHeRe 5, 0.013 0.0003 0.0002  0.011 0.0005 0.0003  0.012 0.0018 0.0020

; pr -0.005 0.0006 0.0006 -0.002 0.0013 0.0012 -0.002 0.0049 0.0047
contmuous 5. 0.018 0.0004 0.0004  0.017 0.0008 0.0007  0.049 0.0019 0.0017

discrete

For the bootstrap method to estimate the variances of p; and py, we select 25
data sets randomly from the 1000 simulated data sets and choose B = 100 in our

simulation studies. Table 4.4 indicates that the empirical variance estimates and the
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average of 25 bootstrap variances are quite close, which indicates that the bootstrap

variance estimators work well for calculating the variance estimates of p; and p,.

4.5 Analysis of the Smoking Cessation Data

We consider data from a smoking cessation study (Section 1.2.3). Observed covariates
include sex, duration as smokers in years, intervention type and the average number
of cigarettes smoked per day just prior to quitting. The survival time is defined as
the time required for a failed quitter to resume smoking. Banerjee and Carlin (2004)
considered the data as interval-censored survival data and analyzed them based on a
parametric mixture cure model with a Bayesian method. They assumed the same cure
rate for different smokers. Due to the potential spatial correlation among subjects
residing the area with same zip code, Yu and Peng (2008) considered the survival times
as right-censored by defining the midpoint of the intervals of the relapse time as the
survival time and applied a marginal mixture cure model with a Weibull baseline
distribution to the data. Chen and Lu (2012) considered a marginal semiparametric
transformation cure model for the right-censored times. Neither of the two works
considered the correlation structures within clusters.

As an illustration of the right-censored survival times, we plot the Kaplan-Meier
survival curves by sex and intervention type in Figure 1.3. We observe that male
smokers tend to have a higher cure rate than female smokers in the SI group whereas in
the UC group, female smokers tend to have a higher cure rate than male smokers. This
indicates that the interaction between sex and intervention type should be considered
in a cure model.

To examine the impact of using correlation structures on the marginal parameter

estimation, we propose to fit the survival data with the proposed marginal mixture
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cure model with an exchangeable correlation structure for both the cure statues and
the failure times of uncured patients from the same zip code area. The model includes
sex, duration as a smoker, intervention type, average number of cigarettes smoked
per day as well as the interaction between sex and intervention type in both logistic
regression (4.2) and proportional hazards model (4.3). The parameter estimates from
the proposed estimating equations are reported in Table 4.5. Note that the standard
errors of the estimated correlation parameters in the table are obtained from 200
bootstrap samples. As a comparison, we also include estimates from the marginal
mixture cure model proposed by Yu and Peng (2008) where the correlation structures

within clusters are ignored.

Table 4.5: Estimated parameters from fitting the marginal mixture cure model to the
smoking cessation data using the ES method and EM method.

ES method EM method

Covariate 0*  s.e.(0*) p-value 0*  s.e.(0*) p-value
PH Survival Model

Intercept -2.966 1.011 0.003 -2.833 1.072 0.008
Sex (male=0) 1.048 0.549 0.056 0.954 0.654  0.145
Duration as smoker 0.014 0.039 0.712 0.016 0.038 0.675
SI/UC (usual care=0) 0.713 0.692 0.302 0.707 0.757  0.350
Cigarettes/day -0.043 0.036 0.234 -0.042 0.024 0.071
Sex*SI/UC -0.843 0.860 0.327 -0.752 0.899 0.403
a 2.931 0.265 0.000 2.782 0.139 0.000
P2 -0.020 0.067  0.767 - - -
Logistic Model

Intercept 0.265 0.653 0.685 0.183 0.650 0.778
Sex (male=0) -0.214 0.542 0.692 -0.248 0.613 0.686
Duration as smoker -0.041 0.020 0.036 -0.039 0.020 0.046
SI/UC (usual care=0) -0.969 0.339 0.004 -0.982 0.360 0.006
Cigarettes/day 0.024 0.021 0.257 0.025 0.016 0.116
Sex*SI/UC 0.811 0.574 0.158 0.859 0.626 0.170
p1 -0.023 0.016 0.143 - - -
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The estimates from the two estimation methods are generally similar. The notice-
able difference is in the effect of sex on the relapse (resume smoking) time of subject,
which is marginally significant in the ES method but insignificant in the EM method.
That is, women tend to resume smoking sooner than men, which may be attributed
to the risk of weight gain following smoking cessation (Banerjee and Carlin, 2004).
The number of cigarettes smoked per day, on the other hand, becomes insignificant in
the ES method instead of marginally significant in the EM method. It indicates that
the daily consumption of cigarettes may have little impact on the relapse time or on
the probability of being cured. The effects of the remaining covariates are similar in
the two models. The similarity of the estimates from the two methods may indicate
that the correlation within clusters may not be strong enough to make differences in
parameter estimates. This is evident from the estimates of p; and py;. Both values

are close to zero. Their large variances make the correlations insignificant.

4.6 Conclusions

Existing marginal cure models and estimation methods for analyzing clustered sur-
vival data with a cure fraction do not impose specific dependence structures on the
correlated failure times or cure statuses. They are useful when there is little infor-
mation about the correlation structures. However, when the correlation is of interest
and there is partial information available for the correlation structures, the methods
may not be efficient.

Rosen et al. (2000) extended the estimating equations of Liang and Zeger (1986)
to mixtures of the generalized linear models. This idea was also explored by Hall and
Zhang (2004) for zero-inflated count data. In this chapter, we propose an approach to

extend the generalized estimating equation approach from generalized linear models to
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the marginal mixture cure model for censored survival data. The estimating equations
incorporate two working correlation structures, one for the failure times of uncured
subjects and the other for the cure statuses within a cluster. We show that the
estimates of the regression parameters and the baseline distribution are consistent
and asymptotically normal, and their variances can be consistently estimated by a
sandwich variance estimator. Our numerical study demonstrates that the proposed
method substantially improves the estimation efficiency of the regression parameters,
especially when the correlation within clusters is strong and the cluster size is large.
Therefore, the proposed marginal proportional hazards mixture cure model is a useful
alternative to the existing marginal models for clustered survival data with a possible
cure fraction.

Our method generalizes the marginal proportional hazards model proposed for the
correlated failure time data without cure fraction (Segal and Neuhaus, 1993) to the
marginal proportional hazards mixture cure model for clustered survival data with a
cure fraction. The proposed method also extends the marginal proportional hazards
mixture cure model (Yu and Peng, 2008) by explicitly including correlation structures
such as the exchangeable working matrix in the model estimation. Future work for
this model includes a method to consider a correlation structure when estimating the

parameters in the baseline distribution.
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Chapter 5

Semiparametric Marginal Proportional

Hazards Mixture Cure Model

5.1 Introduction

As we discussed in Chapter 4, the proposed estimating equations approach can im-
prove the estimation efficiency in a parametric proportional hazards mixture cure
model for clustered survival data with a cure fraction. In this chapter, we further
consider a semiparametric proportional hazards mixture cure model where the sur-
vival function for the uncured patients is modeled by a semiparametric proportional
hazards model. Peng et al. (2007) considered the same model for clustered failure
time data and proposed a robust variance estimation method. However, their method
may lose efficiency when potential correlation exists within clusters. To improve the
estimation efficiency, we follow the idea in Chapter 4 and apply the ES method in
a semiparametric proportional hazards mixture cure model. Similarly, the depen-
dence among the cure statuses and among the survival times of uncured patients
within clusters are modeled by working correlation matrices in the proposed estimat-

ing equations. A bootstrap method is used to obtain the variances of the estimates.

83



We report a simulation study to demonstrate a substantial efficiency gain of the pro-
posed method over the existing marginal method. Finally, we apply the model and
the proposed method to two sets of data including a multi-institutional study of tonsil
cancer patients treated with radiation therapy and a multi-center study of leukemia
patients treated with bone marrow transplantation.

The rest of this chapter is organized as follows. In Section 5.2, we introduce the
marginal semiparametric proportional hazards mixture cure model with clustered ob-
servations. Then we present the proposed estimating equations and the corresponding
estimation steps. The variance estimation is discussed in Section 5.3. We conduct
a simulation study to evaluate the performance of the proposed marginal method
in Section 5.4. The proposed model and estimation method are applied to a tonsil

cancer data in Section 5.5. Finally, we provide conclusions in Section 5.6.

5.2 Model and Estimation

We assume that the marginal survival function of 77} is from a semiparametric pro-

portional hazards mixture cure model, i.e.,

where 7(Z;;) = P(Y;; = 1; Z;;) is in a logistic regression form

exp(v'Zij)
7T( ) 1 + eXp(’}//Zij) ( )
and S,(t; X;;) is specified by the proportional hazards model
Su(t, XU) = Suo(t>eXp(ﬁ/Xij), (53)
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where Sy0(t) is the baseline survival function of TZ’;HY;J = 1} when X;; = 0 and is

usually unspecified, and 5 and « are px x 1 and pz x 1 parameter vectors for X;; and

7.

17"

Let t7; be the observed value of T7;,

1,---, K} be the observed data. We also augment the observed data to include the

and O* = {(1}%,0i5, Xij, Zij), 7 =1,--+ ,n;, i =

177

latent values of Y;; and denote the augmented data as O} = {(T7;, dij, Xij, Zij, Yij), J

1,--+,m;i=1,--- , K}. If we ignore the potential correlation between T;;|{Y;] =1}
and YN’Z.*;,HY;J-/ = 1}, and between Y;; and Y;;/, the unknown parameters in the marginal
model specified in (5.1), (5.2), and (5.3) can be estimated using the EM algorithm
(Peng and Dear, 2000; Sy and Taylor, 2000). The E-step in the EM algorithm

computes the expectation of a log likelihood function based on data O,

K ez

le(y, 8,05 05) = Tog [ T[] m(zi5)" (1= m(zi)' ™" [fultyys @)™ Sty i)~ 29]™
i=1 j=1
K n;

= log H H m(25)% (1 — W(zij))l_y“

i=1 j=1
K n;

+ logH H ( (ti; a a) exp(f’ x”)) Y exp(—Awo(ti;; @) exp(ﬁ'xij))yij

i=1 j=1

+ logﬁﬁ( ”’_ )>6ij, (5.4)

=1 j=1 1]’

where A\yo(t; ) and Ayo(t; ) are the corresponding baseline hazard and cumulative
baseline hazard functions for S,o(t), and « is a set of unknown parameters in the
baseline distribution. For given y;;, the first term corresponds to a log-likelihood
function of the logistic regression for y;;. The second term can be viewed as a log-
likelihood function if d;; is assumed to follow a Poisson distribution with mean equal
to yijAuo(t;; ) exp(f'w;), and the last term does not depend on 3 and . A similar

approach of treating a likelihood function of the proportional hazards model as a
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likelihood function of a Poisson model was discussed in Chapter 3. The expectation
in E-step is taken with respect to the conditional distribution of the latent variable Y;;
given the observed data and the current estimates of the parameters. If the current

estimate is denoted by 8*(™ = (1™ 307 o(™) then

g;) = BE(Yyl6™, 0")
(1- 5ij)7T(Zz‘j)Suo(tfj)eXP(ﬁ'Xz‘j)

L= 7(Zij) + m(Zij) Swo (L) Xea) |

= |0 + (5.5)
which is the same as (4.8), and the E-step is equivalent to substituting gi(;-n) for y,;
in (5.1). The M-step maximizes F(l.) with respect to v, and «. It results in the

following estimating equations for v and (3 respectively

S BN WAl - w(2) = (56)
ST BB 6 - (X)) o 57)

where 6" = (gi7", -+ g0V, 7(Z0) = (1(Zu), -+ 7(Zin))T, As = diag(n(Zan) (1 -
m(Zin)), -+ 7(Zin, ) (A=7(Zin,))); 0 = (Bi1, -+, 0in) T, p(X) = ((Xin), -+, Xin,))"
with p(X;;) = ggn)Auo(tfj; a)exp(8'X;;), B; = diag(u(Xi), -+, u(Xin,)), and I; is an
n; X n; identity matrix.

The baseline survival function S,o(t) in the M-step can be estimated using the

nonparametric maximum likelihood estimation method as we discussed in Section

2.1.3. That is, the estimating equations for a, are

eﬁ/Xij "
1 exp(B'Xi;) 2: gi(j : eXp(BlXij) =0, s=1,---,k (5.8)
— Qs

(4,7)€Ds (4,7)ERs
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The equation (5.8) is the same as equation (2.9), and it does not have a closed
solution of oy when there is a d;, > 1. An approximate estimator for the baseline
survival function S%) (t) can be obtained (Peng and Dear, 2000)

m) ds
S (t) = exp(= )

siTs<t Z(i,j)eRs gi(;'n) exp(3'Xy;)

). (5.9)

To enhance the identifiability of the parameter estimation, it is often assumed that
SU(t) = 0if t;; > 7, (Taylor, 1995; Peng and Dear, 2000; and Sy and Taylor, 2000).

Due to the potential correlation between T;’J‘HYW = 1} and Ti’;,\{}ﬂ-j/ = 1}, and
between Y;; and Y;; for j # j’, the aforementioned method may not be efficient, even
though the marginal model is correctly specified. Peng et al. (2007) considered this
method for clustered data and proposed a sandwich variance estimate for the esti-
mated parameters in the marginal model. Their method may still lack efficiency due
to the absence of the correlation modeling in the model. To increase the estimation
efficiency of the method above, we use the ES algorithm proposed in Chapter 4. That
is, the M-step in the EM algorithm is replaced by the S-step where the identity matrix
I; in (5.6) and (5.7) are replaced by working correlation matrices to account for the
potential correlation in each cluster. Therefore, the proposed estimating equations

for v and 3 are

S AN QA ) "~ w(z) =0, (.10)
SO XD (B2, () BY605) 16, — pu(X0)) = 0, (5.10)

"0

where Qi(p1) = (¢;5:(P1))nixn; and Qi(p2) = (¢jj7(p2))nixn, are the working correla-
tion matrices, and p; and ps are unknown parameters in the matrices that need to

be estimated. The scale parameters ¢, and ¢, are incorporated in the estimating
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equations to accommodate the over- or under-dispersion. Note that the proposed
estimating equation (5.11) for g is different from the estimating equation (4.10)
which has a weighted form. Furthermore, through the simulation study, we observe
that equation (5.11) produces biased estimate of 5. To reduce the bias of the es-
timate of §, motivated by Ritov (1990), we standardize X;; in (5.11), i.e., we use
(Xi; — X;)/(var(X;)'/?) instead of X;; as the covariate, where X; and var(X;) are the
mean and variance of X;;, j =1,...,n;,i=1,... K.

Similar to Chapter 4, we apply the exchangeable correlation structure with g;;/(p1)
= p1 and g;;/(p2) = po for j # j' to estimating equations (5.10) and (5.11). Following
the moment method, p; and p; in the two exchangeable correlation structures can
be estimated from the standardized Pearson residuals 7;; by ¢7! 3%, 37 st TigTijr/
{ZZ L 2n1( i—1)—p.} and gz§2 ZZ 1Z]>g' TijTijr /{ZZ 12nz(nZ 1)—p, } respectively,
where gy = Y315, 3250, 78 /(N = p.) and 7 <g§] )= 7))/ (m (i) (1= 7(237))7 fox
prand gy = 310, S 73/ (N = po) and 4y = (85 — () u(ay)? for po

Due to the substitution of (5.10) and (5.11) for (5.6) and (5.7) respectively, the
solution of 7, B, and S,o(t) from the S-step in the ES algorithm have to be found

iteratively. We summarize this algorithm as follows:

1. Set initial values for v, 8 and Syo(t).
2. E-step: calculate the conditional expectation of Y;; via (5.5).
3. S-step:

(a) Given current estimates of py, p2, ¢1 and ¢9, calculate the updated esti-
mates of v and f from (5.10) and (5.11) using the Newton-Raphson method

and an updated estimate of Syo(t) from (5.9).

(b) Given the estimates of v, 8 and S,o(t), calculate the standardized Pearson

residuals 7;;.
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(c) Use the residuals 7;; to estimate py, pa, ¢1, and ¢s.

(d) Repeat steps (a), (b), and (c) until convergence.

4. Iterate steps 2 and 3 until the algorithm converges to obtain 6*.

5.3 Variance Estimation for é*, p1 and po

Obtaining the variances of the estimated parameters 6% in the proposed estimating
equations for the semiparametric proportional hazards mixture cure model is not
straightforward. Rosen et al. (2000) proposed a sandwich variance estimator for
the mixtures-of-experts model. However, it is difficult to use the estimator due to
the nonparametric baseline estimation in the proposed ES algorithm. Therefore,
we consider a bootstrap method as we did in Section 4.3.2 to obtain the variance
estimates of 6*. A bootstrap sample from this approach is obtained from sampling
clusters with replacement. That is, all observations from one cluster will be either
selected or excluded in a bootstrap sample. Let é;; be the estimate of 6* = (v, 3, «)
from the bth bootstrap sample, b = 1,---, B, and B is the number of bootstrap

samples. The variance of 6* can be estimated by

Var(6%) =Y (6; = 6:/B)*/(B—1).

b=1 a=1

The same bootstrap approach can be applied to the variance estimates of p; and ps

in (5.10) and (5.11).

5.4 A Simulation Study

The design of our simulation study is similar to that in Chapter 4. Our objective is to

investigate the performances of the proposed method and to compare the results with

89



those from Peng et al. (2007). The data in the simulation study are generated from
a cure model for clustered survival data with the exchangeable correlation structure
and the marginal equal to (5.1), (5.2), and (5.3). In particular, we consider a single
covariate in the model and assume that the covariate has effects on both 7(Z;;) and
Su(t; Xi;). The effect on 7(Z;;) are specified by (79,71) = (0.4, —1), the effect of the
covariate on S,(t; X;;) is specified by f = —1, and the baseline distribution in (5.3)
is the Weibull distribution with S,o(t;a) = e~ (29" where a = (a1, az) = (2,2).
The covariate is either a binary covariate with value 0 for a control group and 1 for a
treatment group, or a continuous covariate with values generated from the standard
normal distribution. Under the binary covariate case, the marginal cure rates are
40% and 64% in the control and the treatment groups respectively.

The correlation coefficient between Y;; and Y;;, denoted as ¢, is set to 0.4, 0.2,
and 0. To generate data Y;; and Y;;» so that the correlation of Y;; and Y;; is ¢ with
P(Y;; = 1) = my; and P(Y;y = 1) = m; given in (5.2), we adopt the method as

described in Section 4.4. That is, given (, m;; ,m;;7, we solve for p;;;» through

(255 2my,0), Piyr) — TigMige

7Tij7Tij’<]- — Wij)(l — Trij’)

Y

where ®(-, p;;;+) is the standard bivariate normal distribution function and the corre-
lation coefficient equals to p;;;. We use Zr;; and Zr., 1O denote the m;;th and m;;th
quantiles of the standard normal distribution. After obtaining p;;; for the 7th clus-
ter, we generate (21, - , Zin,) from the multivariate normal distribution N (0, ;) and
obtain (yi1, -+, ¥in,) With y;; = 1 if 25 < 2, and 0 otherwise, where the diagonal
elements of the covariance matrix ; are 1 and the rest are p;;;.

To generate the correlated failure times for uncured patients with the given marginal
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survival function in (5.3), we use the Clayton copula model (Clayton, 1978),

P(Tiﬁ>t;1v"' T‘* >t |Y;j:17Xij7j:1a"'ani)

y Ting in;

nq

=D Sultiy Xi) ™ —mi + 137,

j=1

where £ measures the degree of dependence among the failure times of uncured pa-
tients within cluster ¢ and it relates to Kendall’s tau by ¢ = 27/(1 — 7). We set
¢ = 8,2, and 0. The corresponding values of 7 are 0.8, 0.5 and 0 respectively, and
the larger value implies the stronger correlation of the failure times. When £ = 0 or
7 =0, it implies the independence among the failure times.

To save computational time, we only consider three configurations of (¢, 7): (0.4,
0.8), (0.2, 0.5) and (0, 0), and equal cluster sizes (ny = -+ = ng). For each con-
figuration of (¢, 7) above, we generate clustered failure time data with the following
pairs of the number of clusters and cluster sizes: (40, 10), (80, 5) and (200, 2). The
censoring times are non-informative and generated from the uniform distribution in
(0, 3). For each setting above, we generate 1000 data sets and estimate the parameters
in the marginal model using the proposed ES algorithm for each data set. The bias,
empirical variance (Var), and the average of bootstrap variance (Var*) of the param-
eter estimates are computed. The bootstrap variance and the coverage probability of
95% confidence intervals are based on 200 randomly selected data sets from the 1000
data sets to save some computational time. As a comparison, we also estimate the
parameters in the marginal model using the method by Peng et al. (2007) (denoted
as PTY in the following tables) and calculate the relative efficiency (RE), defined as
the ratio of the mean squared error of the estimates from the ES method to that from

the PTY method, to measure the efficiency gains from using the ES method relative

to the PTY method.
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From the simulation study, we observe the similar features as the results based on
the parametric proportional hazards mixture cure model in Chapter 4. Tables 5.1 and
5.2 present results from the data generated with the binary covariate and continuous
covariate, respectively. They show that when the cure statuses and the failure times
of uncured patients within a cluster are correlated, the empirical variance estimates
of the regression parameters, particularly v, and g, from the ES method are less than
those from the PTY method, and the REs are generally less than 1 and can be as
low as 0.56 for v, and 0.61 for $ when the correlation is strong. Given the same total
number of observations, the most empirical variance estimates of 7y and S tend to
decrease as the number of clusters increases. However, this trend does not apply to
~1 for binary covariate. For example, when the correlation is strong, the empirical
variance of 7, firstly increases then decreases in the PTY method and consistently
increases in the ES method. When the correlation is moderate, the empirical vari-
ance of vy; in both methods firstly increases then decreases as the number of clusters
increases. The REs tend to approach 1 when the correlation decreases. When the
correlation reduces to zero, the empirical variances based on the ES method and the
PTY method are almost the same, and the REs are close to 1. It indicates that the
proposed ES method can achieve a considerable efficiency gain when the correlation
is strong and is still comparable with the existing method when the correlation is

weak.
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Table 5.1: Bias, empirical variance, average of estimated variance, coverage percent-
age and relative efficiency of the estimates of (79,71, 5) with a binary
covariate and high cure rate.

i K 10/40 5/30 27200
C,7) 0 PTY ES RE PIY ES RE PIY ES RE
Bias 0.008 0.008 20.008 -0.007 0.011 0.010
Var 0065 0.060 992 0043 0040 09 0031 0.030 0-96
Y Var* 0.063 0.062 0.043 0.041 0.031  0.030
CP 946 96.0 941  96.0 944 965
Bias  0.009 0.013 20.0010.002 20.0020.003
Var 0055 0042 976 0063 0050 980 0060 0.053 989
(0.4,0.8) M var* 0055 0.045 0.058  0.050 0.058 0.055
CP 940 940 943 95.0 949  93.0
Bias -0.079 -0.119 20.022 -0.073 20.001 -0.034
Var 0077 0.043 909 0061 0036 067 0044 0034 079
B Var* 0.061 0.055 0.046 0.038 0.038 0.038
CP 90.6 97.5 90.9  96.5 93.0 935
Bias 0.013 0.014 20.001 -0.001 0.016 0.016
Var  0.046 0.045 999 0036 0035 09 0027 0027 099
Y0 Vart 0.044 0.043 0.034 0.035 0.028 0.029
CP 948 940 942 925 952 955
Bias -0.012 -0.014 0.009 0.009 20.010 -0.011
Var 0057 0.054 995 0060 0058 09 (054 0.053 0-98
(0.2,0.5) M vt 0056 0.055 0.057 0.056 0.057 0.057
CP 945 93.5 93.9  90.0 95.6  94.5
Bias -0.030 -0.013 20.028 -0.015 20.006 -0.001
Var 0058 0.040 968 0051 0038 O™ 0044 0041 094
B Var* 0045 0.043 0.040 0.039 0.037 0.041
CP 90.6 945 91.6  96.0 932 955
Bias 0.010 0.012 0.016 0.016 0.016 0.016
Var  0.025 0.025 102 0026 0026 100 0028 0.028 100
" Var* 0.026 0.027 0.026 0.026 0.026  0.027
CP 951 95.5 944 945 938 955
Bias -0.007 -0.014 20.015 -0.018 20.019 -0.021
Var 0058 0.060 103 0060 0060 1O 0061 0.061 1-00
0.0) 7 var* 0.057 0.061 0.057 0.061 0.058 0.062
CP 944 970 938  93.0 946 92.5
Bias -0.011 0.032 20.008 0.013 20.015 -0.008
Var  0.042 0.044 195 0043 0.04a 192 (o045 0046 102
B Var* 0035 0.045 0.036  0.046 0.036  0.047
CP 918 925 922 94.5 924 94.5
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Table 5.2: Bias, empirical variance, average of estimated variance, coverage percent-
age and relative efficiency of the estimates of (7,71, 5) with a continuous
covariate and high cure rate.

i K 10/40 5/30 27200
C,7) 0 PTY ES RE PIY ES RE PIY ES RE
Bias 0015 0.016 0.009 0.010 0.005 0.007
Var 0053 0.053 999 0034 0034 100 (o020 0.020 1-00
7 Vart 0.054 0.058 0.033 0.034 0.020 0.021
CP 955  96.0 954  98.0 944 93.0
Bias -0.033 -0.017 20.031 -0.018 20.016 -0.015
(04,08)  Var 0073 0041 O 0054 0039 072 0032 0.02 092
M Vart 0.069 0.046 0.049 0.039 0.031 0.032
CP 926 97.0 92.3  94.0 955  94.0
Bias -0.071 -0.090 20.024 -0.050 20.008 -0.017
Var 0071 0.038 Y61 0033 0019 965 0016 0.013 080
B Var* 0.052 0.035 0.030 0.021 0.015 0.013
CP 897 945 924 955 941 935
Bias 0015 0.014 0.005 0.005 0.010 0.010
Var 0039 0.038 99 0025 0025 099 (020 0.020 100
Y Vart 0.037 0.038 0.025 0.027 0.019 0.019
CP 940 95.0 948  96.0 945  93.0
Bias -0.022 -0.025 20.015 -0.019 20.018 -0.017
0.205)  Var 0031 0028 %9 0020 0027 09 0024 0024 100
M Var* 0.027 0.028 0.027 0.028 0.025 0.026
CP 926 93.5 945 945 952 945
Bias -0.028 -0.003 20.018 -0.001 20.006 0.005
Var 0026 0.018 967 0017 0012 %70 go012 0011 091
P Var* 0020 0.018 0.015 0.013 0.011 0.011
CP 905 935 932 96.0 945  93.0
Bias 0.009 0.004 0.011_ 0.009 0.004 0.004
Var 0016 0.016 999 0016 0016 190 0018 0.018 100
0 Var* 0.016 0.016 0.016 0.017 0.016 0.017
CP 942  96.5 95.6  97.0 94.3  94.5
Bias -0.016 -0.025 20.014 -0.019 20.015 -0.017
(0,0) Var  0.027 0.027 193 0026 0026 102 0027 0.027 101
M Var* 0.024 0.027 0.023 0.025 0.024 0.026
CP 931 940 938 925 943 945
Bias -0.014 0.054 20.008 0.030 20.003_ 0.008
Var 0011 0011 124 0011 0011 M9 0011 0011 103
B Var* 0010 0.011 0.010 0.011 0.010 0.011
CP 928 89.5 935  94.5 92.9  95.0
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Table 5.3: Bias, empirical variance, average of estimated variance, coverage percent-
age and relative efficiency of the estimates of (79,71, 5) with a binary
covariate and low cure rate.

i K 10/40 5/30 27200
C,7) 0 PTY ES RE PIY ES RE PIY ES RE
Bias 0.095 0.080 0.064 0.051 0.042 0.035
Var 0220 0207 993 0136 0128 093 (098 0.096 0-98
Y Vark 0.188 0.229 0.129 0.139 0.094 0.105
CP 935 955 954  95.5 956 98.0
Bias -0.064 -0.032 20.034 -0.005 20.016  0.001
(04,08)  Var 0163 0134 O81 0144 0121 08 0132 0127 097
M Var* 0.143  0.152 0.134 0.130 0.131 0.144
CP 935 94.0 944  93.0 952 96.0
Bias -0.051 -0.111 20.022 -0.082 20.011 -0.053
Var 0040 0.023 983 0020 0016 078 0.023 0.015 0-80
B Var* 0.034 0.026 0.025 0.016 0.020 0.014
CP 929 89.0 93.0  90.5 922 92.5
Bias 0.069 0.064 0.043  0.039 0.03%  0.035
Var 0151 0.148 998 0108 0104 09 (oss 0.087 0-99
" Var* 0.133  0.161 0.104 0.127 0.088  0.100
CP 937 94.0 952  98.5 96.1  95.5
Bias -0.044 -0.033 20.016 -0.008 20.025 -0.018
0205  Var 0143 0138 %% 0132 0125 09 0127 0126 09
M Var* 0.134 0.163 0.131 0.153 0.130 0.148
CP 947 93.0 954  97.0 96.4  97.5
Bias -0.044 -0.050 20.028 -0.040 20.007 -0.016
Var 0034 0.022 966 0024 0017 O™ 0021 0.019 0-88
B Var* 0026 0.020 0.022 0.017 0.020 0.019
CP 897 92.0 932 91.5 934  93.5
Bias 0.041 0.047 0.027 0.031 0.026  0.028
Var 0083 0.084 292 0085 0086 102 0081 0081 101
Y Vart 0.081 0.091 0.080 0.097 0.081 0.100
CP 948 95.5 952 96.0 95.0  96.5
Bias -0.020 -0.037 20.002 -0.012 0.014 0.010
(0,0) Var 0133 0137 193 0133 0138 194 0137 0140 102
M Vark 0.127 0.144 0.128 0.151 0.129 0.157
CP 940 95.0 947  97.0 949  96.5
Bias -0.009 0.041 20.014 0.013 20.008 0.001
Var  0.021 0.022 112 0021 0022 195 0021 0022 104
P Var* 0018 0.022 0.019 0.022 0.019 0.022
CP 930 915 935  95.0 936 96.0
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Table 5.4: Bias, empirical variance, average of estimated variance, coverage percent-
age and relative efficiency of the estimates of (7,71, 5) with a continuous
covariate and low cure rate.

i K 10/40 5/30 27200
C,7) 0 PTY ES RE PIY ES RE PIY ES RE
Bias 0.103 0.100 0.069 0.071 0.054 0.057
Var 0181 0.177 998 0115 0114 999 0066 0.066 101
7 Vart 0153 0.216 0.097 0.127 0.063 0.077
CP 926 955 940  97.5 956 97.5
Bias -0.064 -0.053 20.028 -0.018 20.030 -0.021
(0408  Var 0222 0152 %99 0138 0114 982 0085 0085 10V
M Vart 0183 0.189 0.121 0.131 0.071 0.081
CP 904 95.0 91.9  98.0 935  95.0
Bias -0.061 -0.091 20.023 -0.063 20.004 -0.032
Var  0.053 0.025 998 0023 0012 969 0012 0.008 081
B Var* 0.041 0.024 0.021 0.014 0.010  0.008
CP 908 89.0 942  95.5 935  93.5
Bias 0071 0.074 0.059 0.061 0.051  0.052
Var 0122 0.122 201 0081 0080 999 0059 0.059 1-00
Y Var* 0.104 0.132 0.076  0.090 0.058 0.075
CP 924  96.5 94.3  95.0 949  96.0
Bias -0.053 -0.049 20.037 -0.034 20.033 -0.032
0205  Var 0082 0077 "9 0073 0.070 %% 0.060 0.060 0%
M Var* 0.068 0.084 0.061 0.071 0.055 0.068
CP 900 925 917  95.0 947  96.0
Bias -0.030 -0.043 (68 -0.012 -0.018 20.005 -0.011
Var  0.019 0.012 0.012 0.009 %70 0008 0.007 090
B Var* 0015 0.013 0.010  0.009 0.007 0.007
CP 889 90.5 91.6  96.0 925  96.0
Bias 0.042 0.039 100 0.043 0.041 0.060 0.059
Var  0.054 0.054 0.056 0.056 199 0050 0.050 100
Y Vart 0.051 0.061 0.051  0.059 0.053 0.062
CP 945 95.5 93.9  93.5 958 96.0
Bias -0.028 -0.045 103 -0.020 -0.040 20.044 -0.047
(0,0) Var  0.055 0.055 0.058 0.059 102 0053 0.053 101
M Var* 0.050 0.062 0.051 0.059 0.051  0.060
CP 935 95.0 92.9  94.0 94.3  95.0
Bias -0.006 0.053 1922 -0.003 0.034 0.000 0.011
Var  0.008 0.007 0.007 0.007 16 0007 0.007 104
B Var* 0007 0.007 0.006 0.007 0.006 0.007
CP 937 89.0 93.3  92.0 925 915
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Table 5.5: Mean, empirical variance (Var), average of estimated variance (Var*) of
the estimates of (p1, p2). Var* are from 200 bootstrap samples.

covariates cure rate 10/40 5/80 2/200

Mean Var Var® Mean Var Var®* Mean Var Var*

(¢, 7) = (0.4,0.8)
_ p1 0.309 0.003 0.003 0.311 0.003 0.003 0.317 0.004 0.004
' high p2 0.380 0.009 0.006 0.387 0.008 0.006 0.398 0.013 0.009
discrete p1 0.277 0.007 0.006 0.285 0.006 0.005 0.287 0.008 0.008
low p» 0502 0.006 0.005 0.513 0.006 0.005 0.517 0.009 0.006
_ p1 0.320 0.003 0.003 0.324 0.003 0.003 0.323 0.005 0.005
. high p» 0432 0.008 0.006 0.439 0.008 0.006 0.445 0.013 0.009
contimuous p1 0.281 0.011 0.010 0.288 0.009 0.008 0.292 0.014 0.012
low p> 0.538 0.007 0.004 0.539 0.007 0.005 0.538 0.010 0.007

(¢, 7) = (0.2,0.5)
' p1 0.153 0.002 0.002 0.157 0.003 0.002 0.156 0.005 0.005
_ high p> 0.203 0.003 0.003 0.206 0.004 0.003 0.214 0.008 0.006
discrete pr 0.144 0.004 0.003 0.145 0.004 0.005 0.149 0.008 0.007
low py 0.314 0.003 0.003 0.315 0.003 0.004 0.318 0.006 0.005
‘ p1 0.158 0.002 0.002 0.162 0.002 0.002 0.165 0.005 0.005
' high p» 0.244 0.004 0.003 0.245 0.004 0.003 0.249 0.008 0.006
CONTINUOUS p1 0.139 0.006 0.004 0.141 0.006 0.004 0.146 0.011 0.009
low p» 0.326 0.005 0.003 0.335 0.005 0.003 0.333 0.008 0.005

(¢, 7) = (0,0)
' p1 -0.003 0.0006 0.0005 -0.004 0.0013 0.0012 -0.003 0.005 0.005
_ high p> 0.034 0.0005 0.0004 0.032 0.0010 0.0008 0.034 0.004 0.004
discrete p1 -0.002 0.0006 0.0005 -0.004 0.0013 0.0011 -0.002 0.005 0.005
low p 0.075 0.0005 0.0004 0.075 0.0010 0.0008 0.080 0.005 0.003
_ p1 -0.004 0.0005 0.0005 -0.003 0.0012 0.0012 0.001 0.005 0.005
' high p> 0.048 0.0005 0.0004 0.049 0.0011 0.0008 0.049 0.005 0.003
CONTINNOUS p1 -0.003 0.0006 0.0005 -0.004 0.0013 0.0010 -0.007 0.005 0.004
low p> 0.083 0.0006 0.0004 0.084 0.0012 0.0008 0.083 0.004 0.003
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Besides the simulation with high cure rate ((y9,71) = (0.4, —1)) we consider above,
the cases with low cure rate, i.e., (70,71) = (2.2, —1), are also investigated and sum-
marized in Tables 5.3 and 5.4 which are corresponding to the binary covariate and
continuous covariate, separately. The observation from these tables are similar to
that in Tables 5.1 and 5.2. For example, the REs can be as low as 0.69 for v; and
0.58 for B when the correlation in a cluster is strong. Therefore, the efficiency gain is
maintained in the low cure rate cases too.

As in other estimating equations with working correlation matrices, p; and p
in the two working correlation matrices in the ES algorithm do not necessarily cor-
respond to the correlation measures ( and 7 in the data generation. However, the
estimated values of p; and p; provide good measures of the strength of the correla-
tions between the cure statuses and between the failure times of uncured subjects
in a cluster. That is, the stronger associations specified by ¢ and 7 in the data set
indicate the larger correlation coefficients estimated by the proposed method in the
working correlation matrices. Table 5.5 clearly shows that when the strengths of
the correlation measures between the cure statuses and between the failure times of
uncured patients in a cluster become strong, the estimated working correlation co-
efficients become large correspondingly. When (¢, 7) reduce to (0,0), which implies
that there is no correlation within a cluster, the estimates of p; and py are also close
to zero, which indicates that the working correlation matrices could be considered as

the identity matrices.
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5.5 Applications

5.5.1 Multi-Center Clinical Trial of Tonsil Carcinoma

We consider a data set from a tonsil cancer clinical trial study introduced in Section
1.2.4. A part of the data from the study is available in Kalbfleisch and Prentice
(2003), which includes times (in days) from diagnosis to death of 195 patients with
squamous cell carcinoma of three sites in the oropharynx between 1968 and 1972 in
six participating institutions. Other variables include censoring indicator, treatment,
sex, tumor stage (a binary variable with 1 for T} stage corresponding to a massive
invasive tumor and 0 for 77,7, and T3 stages corresponding to a primary tumor
measuring 2cm or less in the largest diameter, a primary tumor measuring 2 to 4cm
in the largest diameter, or a primary tumor measuring more than 4cm), node stage,
age, general condition (0 for no disability and 1 for the cases including restricted
work capability, requiring assistance with self-care or bed confined), grade (1, 2, and
3 for well, moderate, and poorly differentiated respectively), and the institution code.
We delete observations from 3 patients because of the presence of missing values and
the actual number of patients analyzed is 192. As we discussed in Section 1.2.4, the
Kaplan-Meier survival curve (Figure 1.4) suggests that the cure fraction should be
considered in the model for the data.

Yau and Ng (2001) and Lai and Yau (2008) considered a mixture cure model
with random effects for the data. However, they only analyzed the effect of the
dichotomized T-stage on the cure probability and on the failure time distribution of
uncured patients based on a subset (carcinoma of the pharyngeal tongue) of the data.

We apply the proposed marginal mixture cure model in the previous sections to
the data. The covariates in the model include treatment, sex, grade, age, condition,

and tumor stage, and they are considered in both (5.2) and (5.3). We assume the
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exchangeable correlation structure for both the cure statuses and the failure times
of uncured patients from one institution. The standard errors of the estimated pa-
rameters are obtained from 500 bootstrap samples. As a comparison, we also fit the
data with the marginal mixture cure model using the PTY method. All results are

summarized in Table 5.6.

Table 5.6: Estimated parameters from fitting the marginal mixture cure model to the
tonsil cancer data using the ES algorithm and the PTY method.

Covariate ES PTY

N 0* * 9*
0 s.e.(6%) 0 s.e.(0%)

PH Survival Model

Treatment: (test vs. standard) 0.157 0.174 0.107 0.081
Sex: (female vs. male) -0.439  -1.115 -0.385  -0.157
Grade 2 (vs. Grade 1) -0.295  -0.802 -0.217  -0.161
Grade 3 (vs. Grade 1) 0.245 0.632 0.148 0.583
Age -0.011  -1.154 -0.009  -0.351
Condition 1.660 7.048 1.724 0.619
Tumor 0.640 2.558 0.924 0.468
P2 0.095 4.476 - -
Logistic Model

Intercept -0.388  -0.156 -0.487  -0.047
Treatment: (test vs. standard) -0.141  -0.354 -0.105  -0.193
Sex: (female vs. male) -0.388  -0.429 -0.436  -0.173
Grade 2 (vs. Grade 1) 1.192 0.788 1.163 0.126
Grade 3 (vs. Grade 1) -0.817  -0.963 -0.750  -0.079
Age 0.030 0.773 0.035 0.918
Condition 0.609 0.435 0.454 0.280
Tumor 0.102 0.086 -0.108  -0.063
1 0.007  0.443 . -

The results from the two methods show some substantial differences. For exam-
ple, condition effect (p-value<0.001) and tumor stage effect (p-value=0.011) on the
failure time of uncured patients become highly significant in the ES method instead
of insignificant in the PTY method. That is, the proposed model suggests that, if not

cured, patients with disability or with massive invasive tumors tend to have shorter
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failure times than those without massive invasive tumors.

Yau and Ng (2001) concluded based on their single-covariate model and a subset
analysis of data that there is no significant correlation induced by the institution
among the cure statuses and the failure times of uncured patients from the same
institution. Table 5.6 shows that our model, which is based on the whole data and
multiple covariates, suggests that the correlation induced by the institution among

the failure times of uncured patients cannot be ignored.

5.5.2 Multi-Center Leukemia Data

We also apply the proposed method to the bone marrow transplantation (BMT) data
(Section 1.2.5) which has been studied by Lai and Yau (2008). Several potential
risk factors were collected at the time of transplantation. They are AML high-risk,
AML low-risk, ALL, recipient and donor gender, recipient and donor age, recipient
and donor cytomegalovirus immune status (CMV), waiting time from diagnosis to
transplantation, and, for AML patients, their French-American-British (FAB) classi-
fication based on standard morphological criteria. Specifically, as pointed by Copelan
et al. (1991), the risk of relapse or treatment-related death for patients with FAB
classification of M4 or M5 was higher than that for patients in other FAB groups.
Details of the study can be found in Copelan et al. (1991).

Based on the Kaplan-Meier survival curve (Figure 1.5) in Section 1.2.4, both the
cure fraction and the cluster effect should be considered in the model introduced in
Section 5.2. We consider the covariates AML low-risk, AML high-risk and FAB in
both the logistic and the proportional hazards regression components. The standard
errors of the estimated parameters are obtained from 500 bootstrap samples as we
did in Section 5.5.1. All results are summarized in Table 5.7.

The results based on the two estimation methods are generally similar. The
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Table 5.7: Estimated parameters from fitting the marginal mixture cure model to the
leukemia data using the ES method and the PTY method.

ES method PTY method

Covariate 0 s.e?(é*) 0* S;(é*)
PH Survival Model

AML low-risk (vs. ALL) 0.338 0.636 -0.670  -0.959
AML high-risk (vs. ALL) 1.121 2.905 0.438 1.646
FAB -0.133  -0.411 -0.044  -0.071
P2 0.060 1.293 - -
Logistic Model Intercept 1.768 2.458 0.709 4.838
AML low-risk (vs. ALL) -2.109  -2.589 -0.989  -2.070
AML high-risk (vs. ALL) -1.348  -1.000 -0.295  -1.212
FAB 1.497 1.038 1.440 1.596
P1 0.005 0.154 - -

noticeable difference is in the effect of AML high-risk in the proportional hazards
component. That is, the effect of AML high-risk is highly significant (p-value=0.004)
in the ES method instead of marginally significant (p-value=0.01) in the PTY method.
In other words, the uncured patients of AML high-risk are at a higher risk of death
or relapse comparing with the patients in other two groups (AML low-risk or ALL).
The effect of AML low-risk on the logistic component is marginally significant in both
methods. It indicates that the patients of AML low-risk may have higher chance of
being cured. The effects of the remaining covariates are similar in the two models.
The similarity of the estimates from the two methods may indicate that the correlation
within clusters may not be strong enough to make differences in parameter estimates.
This is evident from the estimates of p; and ps. Both values are close to zero and their
large variances make the correlation insignificant. Lai and Yau (2008) also concluded
that there are no significant differences in the cured proportion and in the survival
for the uncured patients between the participating clinics though a high-positive

correlation between the random effects was obtained.
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5.6 Conclusions

We considered a semiparametric marginal proportional hazards mixture model for
clustered failure time data with a possible cure fraction and proposed a novel ap-
proach based on the generalized estimating equations to incorporate a correlation
structure in the marginal model. Our method generalizes the parametric marginal
proportional hazards mixture cure model investigated in Chapter 4 to the semipara-
metric one for clustered survival data with a cure fraction. The proposed method also
extends the existing marginal proportional hazards mixture cure model (Peng et al.,
2007) by explicitly including the correlation structures in the model estimation. A
simulation study demonstrates that the proposed method can substantially improve
the estimation efficiency compared to the method in Peng et al. (2007) when the
cluster size is large and the correlation within a cluster is strong. These two methods
are comparable when the cluster size or the strength of the correlation decreases.
Therefore, the proposed semiparametric marginal PH mixture model is a useful alter-
native to the existing marginal models for clustered data with a possible cure fraction,
particularly when the correlation structures among the cure statuses and among the
failure times of uncured patients can be specified up to a few unknown parameters.
We employ the bootstrap method to estimate the variances of the estimated pa-
rameters in the model. This method is straightforward but computationally intensive.
Future work for this model includes the asymptotic properties of the estimates (par-
ticularly their asymptotic variance estimation). As we discussed in Section 4.6, we
will also consider methods to include a correlation structure in estimating the param-
eters in the baseline survival distribution and hope to further improve the estimation
efficiency. Since the random effects approach is widely used in the proportional haz-

ards mixture cure model, the performance of the proposed approach comparing with
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the existing random effects approach deserves a further study.
A paper (Niu and Peng, 2012) based on the main results of this chapter has been

accepted by Statistics in Medicine.
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Chapter 6

Summary and Future Work

In this thesis, we proposed novel marginal methods, based on the proportional hazards
model and the proportional hazards mixture cure model, for modeling clustered sur-
vival data with/without a cure fraction. We developed a set of estimating equations
to accommodate the potential correlation within clusters through flexible working
correlation structures such as the exchangeable working matrix.

Motivated by Segal and Neuhaus (1993), in Chapter 3, we investigated the classi-
cal clustered failure time data without a cure fraction by a semiparametric marginal
proportional hazards model. The dependence among failure times within a cluster
are modeled explicitly by an exchangeable working correlation matrix through a new
unbiased weighted estimating equation. We showed that the regression estimators
from the proposed estimating equation are consistent and asymptotically normal un-
der some regularity conditions. The variance estimates have a closed form and can
be consistently estimated by a sandwich method. The finite sample properties were
investigated by a simulation study which shows that the estimators of the regression
parameters based on the proposed estimating equation are more efficient than those
with the existing method (Lee et al., 1992).

In Chapter 4, we extended the marginal proportional hazards model for clustered
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failure time data without a cure fraction to a marginal proportional hazards mixture
cure model for clustered survival data with a cure fraction. The baseline survival
function was assumed to follow the Weibull distribution. Yu and Peng (2008) con-
sidered the same marginal model for a smoking cessation study. They applied the
EM algorithm to handle the missing information in the estimation procedure and
provided jackknife variance estimates of the parameters in the model. Their estima-
tion method is robust to misspecification of the correlation structure but may incur
a substantial efficiency loss of the parameters when there is information available for
the correlation structure. In this chapter, we extended the EM algorithm to the ES
algorithm to handle the substantial correlation among the cure statuses and among
the failure times of uncured patients in one cluster. Specifically, the S-step in the
ES algorithm for the regression parameters in the survival function of the susceptible
group inherits the generalized estimating equation approach as we did in Chapter 3.
Following the same idea, to accommodate the correlation among cure statues, we also
proposed an estimating equation for the regression parameters in the logistic model
of the incidence in the S-step. We proved that the proposed estimating functions are
unbiased and the corresponding estimators are consistent and asymptotically normal
under some regularity conditions.

In Chapter 5, we generalized the parametric marginal proportional hazards mix-
ture cure model to the semiparametric one where the baseline survival function is
nonparametrically specified for modeling clustered survival data with a cure fraction.
Peng et al. (2007) considered the same model for a multi-institutional tonsil cancer
data. They provided the robust variance estimates of parameters but did not ex-
plicitly model the correlation within an institution in the study. Alternatively, we
proposed two sets of estimating equations for the regression parameters in the ES

algorithm as we did in Chapter 4. However, the unweighted estimating equation for
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the regression parameters in the survival function of uncured patients produces biased
estimates. We standardized the corresponding covariates to reduce such biases. A
bootstrap method was applied to obtain the variance estimates because of the bias
of the estimating function of § and the complexity of the nonparametric baseline
estimation in the proposed ES algorithm.

Based on the extensive simulation studies in Chapters 3, 4, and 5, we considered
the substantial improvement of estimation efficiency as the contribution of the pro-
posed methods comparing with the existing marginal methods for modeling clustered
failure time data, especially when the correlation within cluster is strong and the clus-
ter size is large given the total number of observations. The applications to the real
data sets from the biomedical research demonstrate that the proposed methods are
feasible in the practical applications. Therefore, the proposed marginal methods are
useful alternatives to the existing marginal methods for analyzing clustered survival
data with/without a cure fraction.

We would like to point out that, unlike the weighted estimating functions of 3 in
Chapters 3 and 4, the estimating function we proposed for § in Chapter 5 is biased.
We suggested to standardize the corresponding covariates to reduce the biases in
estimates. Future work include applying the unbiased weighted estimating equation
approach for # in the semiparametric marginal proportional hazards mixture cure
model and developing the asymptotic properties of the estimates.

As we mentioned in the conclusions of Chapters 4 and 5, the estimates of baseline
parameters in the marginal proportional hazards mixture cure models are based on
the independent estimating equations. Including a correlation structure in estimating
the parameters in the baseline survival distribution to further improve the estimation
efficiency is under consideration. The comparison between the marginal models and

the random effects models is an interesting topic in simulation studies.
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