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Abstract

Clustered failure time data often arise in biomedical and clinical studies where poten-

tial correlation among survival times is induced in a cluster. In this thesis, we develop

a class of marginal models for right censored clustered failure time data and propose a

novel generalized estimating equation approach in a likelihood-based context. We first

investigate a semiparametric proportional hazards model for clustered survival data

and derive the large sample properties of the regression estimators. The finite sample

studies demonstrate that the good applicability of the proposed method as well as the

substantial efficiency improvement in comparison with the existing marginal model

for clustered survival data.

Another important feature of failure time data we will consider in this thesis is

a possible fraction of cured subjects. To accommodate the potential cure fraction,

we consider a proportional hazards mixture cure model for clustered survival data

with long-term survivors and develop a set of estimating equations by incorporating

working correlation matrices in an EM algorithm. The dependence among the cure

statuses and among the survival times of uncured patients within clusters are mod-

eled by working correlation matrices in the estimating equations. For the parametric

proportional hazards mixture cure model, we show that the estimators of the regres-

sion parameters and the parameter in the baseline hazard function are consistent
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and asymptotically normal with a sandwich covariance matrix that can be consis-

tently estimated. A numerical study presents that the proposed estimation method

is comparable with the existing parametric marginal method.

We also extend the proposed generalized estimating equation approach to a semi-

parametric proportional hazards mixture cure model where the baseline survival func-

tion is nonparametrically specified. A bootstrap method is used to obtain the vari-

ances of the estimates. The proposed method is evaluated by a simulation study

from which we observe a noticeable efficiency gain of the proposed method over the

existing semiparametric marginal method for clustered failure time data with a cure

fraction.
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Chapter 1

Introduction

1.1 Clustered Failure Time Data

Clustered failure time data are frequently observed in biomedical and epidemiologic

research. For example, times to occurrence of blindness of two eyes from the same

patient with diabetic retinopathy are possibly correlated, ages at diagnosis of breast

cancer from female siblings may be associated due to similar genetic structures, or

failure times of patients from the same community may be related because of shared

environments or treatment resources. Therefore, it is important to take the correlation

into account when analyzing clustered failure times.

In some cancer studies, a fraction of patients may respond favorably to the treat-

ment and have long-term censored survival times. They are often considered cured in

the sense that they will not experience relapse/death due to the cancer even after an

extended follow-up. For example, in breast cancer study (Farewell, 1986) the Kaplan-

Meier survival curves from three treatment groups level off to nonzero proportions

and a number of long-term censored observations appear at the tail of these curves. In

a head and neck cancer study (Taylor, 1995) only between 5 and 50% of patients ex-

perienced local recurrences whereas the remaining patients were free of symptoms of
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the cancer at the end of the sufficiently long observation period. Due to the existence

of long-term survivors in some cancer studies, the use of standard survival models,

which assume that all subjects would eventually experience the event of interest, will

not be appropriate for the analysis of the failure time data with a cure proportion.

1.2 Motivating Examples

1.2.1 Diabetic Retinopathy Study

The well-known Diabetic Retinopathy Study (Diabetic Retinopathy Study Research

Group, 1981) was conducted to assess the effectiveness of laser photocoagulation
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Figure 1.1: Kaplan-Meier survival curves for the time to blindness stratified by treat-
ment and type of diabetes.

in delaying visual loss among patients with diabetic retinopathy. There were 1742

patients entered this study between 1972 to 1975. One eye of each patient was

randomly selected to receive the laser treatment while the other eye was observed

without treatment. The endpoint used to assess the treatment effect is the time (in
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months) to the first occurrence of visual acuity less than 5/200. Besides the effects of

treatment, the types of diabetes as well as the interaction between them (Figure 1.1),

we are also interested in the potential dependence between a patients’s two eyes which

form a cluster. This data set will be analyzed in Chapter 3.

1.2.2 The Study of Infections in Kidney Patients

We consider a data set on the recurrence times (in days) of infections, at the point

of insertion of the catheter, for 38 kidney patients using the same type of portable
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Figure 1.2: Kaplan-Meier survival curve and its pointwise 95% confidence interval for
the kidney data.

dialysis equipment (McGilchrist and Aisbett, 1991). Two recurrence times and the

corresponding censoring indicators were recorded for each patient. As introduced

by Cleves et al. (2008), the first recurrence time to infection is measured when a

catheter is inserted. The second recurrence time to infection is measured as time

elapsed between the second insertion and the second infection or censoring. The

primary interest of the study is to assess the factors such as age, gender and the

3



type of kidney disease to the development of infections. We plot the Kaplan-Meier

survival curve based on 76 observations. Figure 1.2 shows that the patients experience

the infection given sufficient follow-up time. Meanwhile, the correlation between the

recurrence times within each patient is of interest. This data set will be analyzed in

Chapter 3.

1.2.3 Smoking Cessation Study

We consider a data set from a smoking cessation study (Banerjee and Carlin, 2004).

The original data consist of 223 people enrolled in the study between November 1986

and February 1989 from 51 zip codes in the southeastern corner of Minnesota in the

United States. In this study, smokers were randomly assigned to one of two treatment
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Figure 1.3: Kaplan-Meier survival curves of smoking cessation data stratified by in-
tervention type and sex.

groups: smoking intervention (SI) group or usual care (UC) group. The survival time

is defined as the time (in years) required for a failed quitter to resume smoking. The

people residing in the area with the same zip code form a cluster and may be spatially
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correlated due to the shared environment. Also the data reveals (Murray et al. 1998)

that many former smokers have successfully given up smoking. Therefore, a cure

fraction exists in this data set. We plot the Kaplan-Meier survival curves by sex and

intervention type in Figure 1.3. This data set will be analyzed in Chapter 4.

1.2.4 Multi-Center Clinical Trial of Tonsil Carcinoma

We consider a data set from a tonsil cancer clinical trial study conducted by the

Radiation Therapy Oncology Group in the United States. The survival time is defined

as the time (in days) from diagnosis to death. In this study, patients in one institution

were randomly assigned to one of two treatment groups: radiation therapy alone or

radiation therapy together with a chemotherapeutic agent. A part of the data from

the study is available in Kalbfleisch and Prentice (2002). We plot the Kaplan-Meier
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Figure 1.4: Kaplan-Meier survival curve and its pointwise 95% confidence interval for
the tonsil data.

survival curve and its pointwise 95% confidence interval in Figure 1.4 and observe

that the curve levels off at about 0.18, which suggests that a cure fraction may be

5



present in this data and a cure model should be considered. Another important

feature of this data is that the patients are clustered by institutions in this study.

The shared environment and the treatment facilities in one institution may induce

correlation among the cure statuses and among the failure times of uncured patients

in one institution. Therefore, it is important that both the cure fraction and the

cluster effect are considered in the model for the data. This data set will be analyzed

in Chapter 5.

1.2.5 Bone Marrow Transplantation Data

We consider the bone marrow transplantation data (Klein and Moeschberger, 2003).

This multi-center acute leukemia study consists of 137 patients with acute myelocytic
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Figure 1.5: Kaplan-Meier survival curve and its pointwise 95% confidence interval for
the leukemia data.

leukemia (AML) or acute lymphoblastic leukemia (ALL) aged 7 to 52 from March

1, 1984 to June 30, 1989 at four institutions. The failure time on study is defined

as time (in days) to relapse or death. The Kaplan-Meier survival curve (Figure 1.5)
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suggests that the existence of a cure proportion in acute leukemia patients and a cure

model should be applied to the data. In addition, the patients are clustered by four

institutions which may induce correlation among the cure statuses and among the

failure times of uncured patients. Therefore, both the cure fraction and the cluster

effect should be considered. This data set will be analyzed in Chapter 5.

1.3 Organization of This Thesis

The objective in this thesis is to develop new marginal models for analyzing clustered

failure time data with/without a cure fraction to improve the estimation efficiency. In

Chapter 2, two important models including the Cox proportional hazards model and

proportional hazards mixture cure model are presented under correlation structures.

Then we review random effects models and marginal models for clustered failure time

data with/without a cure proportion. The generalized estimating equations, the EM

algorithm, and the ES algorithm are introduced at the end of this chapter.

The Cox proportional hazards model is considered as a standard model for inves-

tigating the classical clustered failure time data which assume that all subjects would

eventually experience the event of interest. In Chapter 3, we revisit the marginal

method developed by Segal and Neuhaus (1993) for classical clustered failure time

data and propose an unbiased weighted estimating function for regression parameters

in a semiparametric proportional hazards model.

When there exists a fraction of cured subjects in the clustered survival data, the

marginal mixture cure model has been received much attention. In Chapter 4, we

propose a new generalized estimating equation approach to modeling the clustered

survival data with a cure fraction through a marginal parametric proportional hazards

mixture cure model.

7



In Chapter 5, we consider a semiparametric marginal proportional hazards mixture

cure model for clustered failure time data with a cure fraction. A set of generalized

estimating equations are proposed for the regression parameters. We briefly discuss

the iterative algorithm used for solving the equations.

Chapter 6 presents a summary of this dissertation contributions and future re-

search directions.
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Chapter 2

Literature Review of Relevant Models and

Methods

In the first two sections of this chapter, we present two important models including the

Cox proportional hazards model and the mixture cure models that will be extended

in the following chapters. Based on these two models, in Section 2.3, we review

the random effects models and marginal models which are commonly used to handle

the potential correlation within clustered survival times. In Section 2.4, we describe

the generalized estimating equation approach which is an extension of generalized

linear models by explicitly incorporating the correlation structure in the estimation

procedure. The EM algorithm is introduced in Section 2.5. A review of the ES

algorithm which is a combination of the EM algorithm and the generalized estimating

equation approach will be given in Section 2.6.

Throughout this thesis, we assume that there are ni individuals in the ith (i =

1, · · · , K) cluster, and K clusters in total. The total number of observations is N =∑K
i=1 ni. The function I(A) = 1 if A is true and 0 otherwise. Let T̃ij and Cij be the

failure and censoring times for the jth subject in the ith cluster (j = 1, · · · , ni, i =

1, · · · , K) where T̃ij < ∞. Let Tij = min(T̃ij, Cij) be the observed failure time and

9



δij = I(T̃ij ≤ Cij) be the right censoring indicator. The censoring mechanism is

assumed non-informative. That is, the censoring time is statistically independent

of the failure time given observed covariates. Xij is a vector of time independent

covariates that may have effect on the failure time distribution. Given Xij, we assume

that T̃ij and T̃ij′ are correlated in a cluster if j ̸= j′. However, T̃ij and T̃i′j′ are

independent if i ̸= i′.

Although it is common to assume that all subjects would eventually experience the

event of interest, in some social and biomedical studies (see Examples 1.2.3, 1.2.4,

and 1.2.5), a certain fraction of the population may never experience a particular

type of failure and is often considered as cured. Graphically, these fractions are often

characterized by the survival curves being leveled off at nonzero probabilities. Here

we let Yij denote the cure status of subject j in cluster i, that is, Yij = 1 if the subject

is uncured (susceptible) and 0 otherwise.

Similar to the definition of T̃ij, we let T̃ ∗
ij be the failure time for the jth subject

which may be cured in the ith cluster (j = 1, · · · , ni, i = 1, · · · , K) where T̃ ∗
ij ≤ ∞.

Therefore, the modeling of cure rate is a decomposition of the failure time, i.e.,

T̃ ∗
ij = YijT̃ij + (1 − Yij)∞ where T̃ ∗

ij = T̃ij denotes the failure time of a susceptible

subject and T̃ ∗
ij = ∞ denotes the event that the individual will not experience relapse

or death from the cause of interest. The observed failure time is T ∗
ij = min(T̃ ∗

ij, Cij).

Let 1−π(Zij) denote the cure probability for the jth individual in the ith cluster. We

define Xij and Zij as two vectors of time independent covariates (these two vectors

may share some covariates) that may have effects respectively on the failure time

distribution of uncured subjects and the cure probability. It is obvious that if δij = 1,

then Yij = 1. However, if δij = 0, the value of Yij is unknown and Yij is a latent

variable. We further assume that given Xij and Zij, T̃
∗
ij|{Yij = 1} and T̃ ∗

ij′|{Yij′ = 1},

and Yij and Yij′ are correlated respectively in a cluster if j ̸= j′. However, T̃ ∗
ij|{Yij = 1}

10



and T̃ ∗
i′j′|{Yi′j′ = 1}, and Yij and Yi′j′ are respectively independent if i ̸= i′. Note that

if all subjects are assumed to experience the event of interest, the latent variable Yij

is known and equal to 1 and the cure probability is 0.

Let 0 < τ1 < τ2 < · · · < τk < ∞ denote the k distinct ordered event times. Let

ds be the number of deaths at τs and Ds be the set of all individuals who die at time

τs, i.e., Ds = {(i, j) : Tij = τs, δij = 1; j = 1, · · · , ni, i = 1, · · · , K}. The risk set

Rs is defined by Rs = {(i, j) : Tij ≥ τs; j = 1, · · · , ni, i = 1, · · · , K}, i.e., the set

of individuals alive and uncensored just prior to τs. Let Es be the set of individuals

with censoring times in [τs, τs+1), s = 0, · · · , k, where τ0 = 0 and τk+1 = ∞, i.e.,

Es = {(i, j) : τs ≤ Tij < τs+1, δij = 0; j = 1, · · · , ni, i = 1, · · · , K}.

2.1 Cox Proportional Hazards Model

The Cox proportional hazards model (Cox, 1972) is a multiplicative hazards model

as well as a semiparametric model because a parametric form is assumed only for the

covariate effect and the baseline hazard rate is treated nonparametrically. Given the

classical clustered survival data O = {(Tij, δij, Xij), j = 1, · · · , ni, i = 1, · · · , K}, the

hazard rate λ(t;Xij) for the jth individual in the ith cluster is defined by

λ(t;Xij) = λ0(t) exp(β
′Xij), (2.1)

where λ0(·) is an unspecified baseline hazard function and β is a pX × 1 unknown

parameter vector for Xij.

It is straightforward to extend the partial likelihood proposed by Cox (1975) to

the clustered failure time data under the assumption that the survival times are
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independent of each other (Wei et al., 1989; Lee et al.,1992; Lin, 1994). That is

L(β) =
k∏

s=1

exp(β′Xs)

{
∑

(i,j)∈Rs
exp(β′Xij)}ds

, (2.2)

where Xs is the sum of the vectors Xij over all individuals who die at time τs, i.e.,

Xs =
∑

(i,j)∈Ds
Xij. Let β̂ be the value that maximizes L(β), then the cumulative

baseline hazard function Λ0(t) =
∫ t

0
λ0(s)ds could be estimated by

Λ̂0(t) =
∑
s:τs≤t

ds∑
(i,j)∈Rs

exp(β̂′Xij)
, (2.3)

which is the Breslow’s estimator. We will apply the proportional hazards model for

classical clustered survival data in Chapter 3.

2.2 Mixture Cure Models

Mixture cure models (Boag, 1949; Berkson and Gage, 1952) postulating a subpopu-

lation of cured patients are intriguing from both the biological and statistical view-

points. The models are composed by the probability of being a long-term survivor

plus the probability of a death which occurs after time t (Farewell, 1982). They are

often employed to handle the survival data which may contain a cure proportion.

We let S(t;Xij, Zij) and Su(t;Xij) denote the marginal survival functions of T̃ ∗
ij and

T̃ ∗
ij|{Yij = 1}, respectively. We say that the marginal survival function S(t;Xij, Zij)

is from a mixture cure model if

S(t;Xij, Zij) = P (T̃ ∗
ij > t;Xij, Zij) = 1− π(Zij) + π(Zij)Su(t;Xij), (2.4)
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where the uncure rate π(Zij) is considered as the logistic form, i.e.,

π(Zij) = P (Yij = 1;Zij) =
exp(γ′Zij)

1 + exp(γ′Zij)
(2.5)

and γ is unknown regression parameter for Zij. Other link functions such as comple-

mentary log-log, i.e., π(Zij) = exp(−eγ
′Zij) or probit function, i.e., π(Zij) = Φ(γ′Zij)

where Φ is the cumulative distribution function of the standard normal distribution

may also be applied to describe the effects of covariate Zij on uncure rate π(Zij)

(Peng, 2003).

As we discussed in Section 2.1.2, the proportional hazards model is popular in the

analysis of classical clustered survival time data. Similarly, this model can be used

to describe the survival function of uncured patients, i.e., Su(t;Xij), in the mixture

cure model. Therefore, one can assume

Su(t;Xij) = P (T̃ ∗
ij > t|Yij = 1;Xij) = Su0(t;α)

exp(β′Xij), (2.6)

where Su0(t;α) is the baseline survival function of T̃ ∗
ij|{Yij = 1} when Xij = 0 and

α denotes a set of unknown parameters in the baseline distribution. Here β is a set

of unknown regression parameters for Xij. Let θ∗ = (γ, β, α). An alternative to the

commonly-used proportional hazards model for the uncured patients is accelerated

failure time model, i.e., Su(t;Xij) = Su0(te
β′Xij) where the baseline survival function

could be an extended generalized gamma distribution (Yamaguchi, 1992), a gener-

alized F distribution (Peng et al., 1998), or a nonparametric form (Li and Taylor,

2002; Zhang and Peng, 2007). Also a transformation model which accommodates the

proportional hazards model and proportional odds model was considered by Lu and

Ying (2004) to model Su(t;Xij).
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The mixture cure model (2.4) composed by the logistic model (2.5) and the pro-

portional hazards model (2.6) is called the proportional hazards mixture cure model.

We will focus on this model for clustered survival data with a cure fraction in Chapters

4 and 5. Under the complete clustered survival data O∗
c = {(T ∗

ij, δij, Xij, Zij, Yij), j =

1, · · · , ni, i = 1, · · · , K} and the independent observation assumption, an adjusted

likelihood function for β (Peng and Dear, 2000; Sy and Taylor, 2000) could be writ-

ten as

L∗(β; g(m)) =
k∏

s=1

exp(β′Xs)

{
∑

(i,j)∈Rs
g
(m)
ij exp(β′Xij)}ds

, (2.7)

where

g
(m)
ij = E(Yij|θ∗(m), O∗)

=

[
δij +

(1− δij)π(Zij)Su0(t
∗
ij)

exp(β′Xij)

1− π(Zij) + π(Zij)Su0(t∗ij)
exp(β′Xij)

]
θ=θ∗(m)

(2.8)

where θ∗(m) is the current estimate of θ∗ at the mth iteration of the EM algorithm and

O∗ = {(T ∗
ij, δij, Xij, Zij), j = 1, · · · , ni, i = 1, · · · , K} is the observed cluster failure

time data.

Following the discussion of Kalbfleisch and Prentice (2002, P.115) for the propor-

tional hazards model, the contribution of the likelihood of an individual who fails at

τs is S(τ−s ) − S(τs) and the contribution of a censored observation at time t is S(t).

Then the likelihood function for α, the parameters in the baseline distribution, can
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be rewritten as

L(α; yij) =
k∏

s=0

{
∏

(i,j)∈Ds

[Su(τ
−
s ;Xij)− Su(τs;Xij)]

∏
(i,j)∈Es

Su(t;Xij)
yij}

=
k∏

s=0

[
∏

(i,j)∈Ds

{λu(τs;Xij)Su0(τ
−
s )

exp(β′Xij)}
∏

(i,j)∈Es

Su0(τs)
yij exp(β

′Xij)].

Furthermore, a discrete proportional hazards model is assumed such that Su0(t) has

the product-limit form Su0(t) =
∏

s:τs≤t αs. The α’s are nonnegative parameters at

each of the k distinct event times with α0 = 1 and 0 ≤ αs ≤ 1. Su0(τ
−
s ) =

∏s−1
l=1 αl

and Su0(τs) =
∏s

l=1 αl. λu(τs;Xij) = 1− α
exp(β′Xij)
s is the hazard function given Xij.

Rearranging terms, we obtain

L(α; yij) =
k∏

s=0

[
∏

(i,j)∈Ds

{(1− αexp(β′Xij)
s )

s−1∏
l=0

α
exp(β′Xij)
l }

∏
(i,j)∈Es

{
s∏

l=0

α
yij exp(β

′Xij)
l }]

=
k∏

s=1

[
∏

(i,j)∈Ds

(1− αexp(β′Xij)
s )]

×
k∏

s=1

[
∏

(i,j)∈Ds

{
s−1∏
l=0

α
exp(β′Xij)
l }

∏
(i,j)∈Es

{
s∏

l=0

α
yij exp(β

′Xij)
l }]

=
k∏

s=1

[
∏

(i,j)∈Ds

(1− αexp(β′Xij)
s )]

k∏
s=1

[
∏

(i,j)∈Rs−Ds

αyij exp(β
′Xij)

s ]

=
k∏

s=1

{
∏

(i,j)∈Ds

(1− αs
exp(β′Xij))

∏
(i,j)∈Rs−Ds

αyij exp(β
′Xij)

s }.

After taking derivatives of EY (L(α; yij)) with respect to αs, we obtain the estimating

equations for each αs given β and γ. That is

∑
(i,j)∈Ds

eβ
′Xij

1− α
exp(β′Xij)
s

=
∑

(i,j)∈Rs

g
(m)
ij exp(β′Xij) , s = 1, · · · , k. (2.9)
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These equations are similar to (5) in Sy and Taylor (2000) but with clustered data

settings. Therefore, an approximate estimator for the nonparametric baseline cumu-

lative hazard function Λ̂
(m)
u0 (t) can be obtained (Peng and Dear, 2000) by

Λ̂
(m)
u0 (t) =

∑
s:τs≤t

ds∑
(i,j)∈Rs

g
(m)
ij exp(β′Xij)

. (2.10)

Note that if all patients are uncured, then g
(m)
ij ≡ 1, the likelihood function (2.7) for

β reduces to the partial likelihood function (2.2) in the proportional hazards model,

and the estimating function (2.10) reduces to (2.3).

2.3 Existing Methods for Clustered Failure Time Data

To appropriately account for the correlation in a cluster, the two most studied ap-

proaches are random effects models and marginal models. Random effects mod-

els (frailty models, cluster-specific models, conditional models, or multilevel mod-

els) explicitly formulate the underlying dependence via a cluster specific variable

known as the random effect representing the heterogeneity in each cluster. Marginal

(population-averaged) models focus on the population average on the margins of the

joint distribution of data from one cluster, and the correlation is often treated as a

nuisance parameter to reduce the dependence of marginal models on the specification

of unobservable correlation structures of clustered data.

These two models with applications to the proportional hazards model and the

proportional hazards mixture cure model for modeling clustered survival data have

received much attention for the last decades. For classical clustered survival data,

the commonly used proportional hazards frailty model is the so-called shared frailty

model (Klein and Moeschberger, 2003). That is, the hazard rate for the jth subject
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in the ith cluster is of the multiplicative form

λij(t) = λ0(t)ui exp(β
′Xij), j = 1, · · · , ni, i = 1, · · · , K,

where λ0(t) is an unspecified and arbitrary baseline hazard rate and ui is an unob-

servable random effect (frailty) shared by subjects in the ith cluster. Therefore, the

frailty ui induces the dependence among the failure times in the ith cluster. Note that

the survival times in the ith group are independent of each other given ui and covari-

ates. Usually we assume that the ui’s are an independent and identically distributed

sample from a distribution with mean 1 and some unknown variance.

If g(u) is the density function of the distribution of ui, then the joint unconditional

survival function of the failure times in group i is

S(ti1, · · · , tini
) = P (T̃i1 > ti1, · · · , T̃ini

> tini
)

=

∫
exp

(
−u

ni∑
j=1

Λ0(tij) exp(β
′Xij)

)
g(u)du.

The frequently used distributions for frailty are the gamma distribution (Clay-

ton, 1978; Clayton and Cuzick, 1985), the inverse Gaussian distribution (Hougaard,

1986a), the positive stable distribution (Hougaard, 1986b), and the log normal dis-

tribution (McGilchrist and Aisbett, 1991). Excellent discussions on the proportional

hazards frailty model can be found in Hougaard (1995, 2000) and Therneau and

Grambsch (2000).

For clustered survival data with a cure fraction, Yau and Ng (2001) considered

the proportional hazards mixture cure model by using two independent normal ran-

dom effects to characterize the correlation among cure statuses and the correlation

among the failure times of uncured patients in a cluster. They proposed a best linear
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unbiased prediction (BLUP) method to estimate the parameters in the model. Lai

and Yau (2008) extended this method by allowing dependent random effects and a

nonparametric baseline distribution in the model. Peng and Taylor (2011) consid-

ered maximum likelihood estimation for the mixture cure model with random effects.

Their method provides flexibility in specifying distribution for the random effects

and is computationally intensive because of the numerical integration involved in the

method.

Chatterjee and Shih (2001) also extended the univariate mixture cure models to

bivariate survival data. They modeled the correlation among the cure statuses and

the failure times of uncured subjects in a familial cluster in a breast cancer study using

pairwise odds ratios and a copula model respectively, and proposed a quasi-likelihood

method to estimate the parameters in the model. Wienke et al. (2003) considered a

full likelihood method with a similar model for bivariate data. Both methods do not

consider covariate effects and the estimation methods become infeasible when cluster

size is large.

As an alternative method to the random effects models, the marginal models take

a population-average approach to model the marginal mean while treating the correla-

tions as nuisance parameters. The proportional hazards model has been investigated

extensively for correlated failure time data with the marginal method. Wei et al.

(1989) introduced a marginal proportional hazards model for the multivariate failure

time observations with respect to different types of failures. Huster et al. (1989) pro-

posed a parametric marginal proportional hazards model for modeling paired survival

data. Lee et al. (1992) analyzed the clustered survival data with the common base-

line hazard function and showed that the regression parameters are consistent and

asymptotically normal. Liang et al. (1993), Lin (1994), Spiekerman and Lin (1998),

and Clegg et al. (1999) independently proposed a marginal mixed baseline hazards
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model where the baseline hazards combine both common and distinguishable base-

lines. Yang and Ying (2001) introduced parametric models for ordered event times

with proper joint density functions and marginal proportional hazards. Chen et al.

(2010) analyzed marginal proportional hazards model based on a linear combination

of martingale residuals.

To further improve the estimation efficiency, an estimating equation approach

has been investigated by Segal and Neuhaus (1993), Cai and Prentice (1995, 1997),

Prentice and Hsu (1997), and Gray and Li (2002), among others. This method clearly

specifies working correlation structures in the estimating equations to accommodate

the dependence of failure times in each cluster. Specifically, Segal and Neuhaus (1993)

developed a synthesis of the Poisson regression model and generalized estimating

equations based on a parametric proportional hazards model for multivariate survival

data. Cai and Prentice (1995, 1997) derived a weighted partial likelihood estimating

equation based on a counting process approach for correlated failure time data. They

developed the asymptotic distribution for the hazard ratio parameter estimates with

different nonparametric baseline specifications. Prentice and Hsu (1997) extended

Cai and Prentice (1995) by developing joint estimating equations for hazard ratio

and pairwise dependence parameters. Gray and Li (2002) considered the optimal

selection of weights in martingale estimating equations for clustered failure time data

based on the marginal proportional hazards model.

For the marginal method in the analysis of clustered failure time data with a cure

fraction, Peng et al. (2007) proposed a semiparametric marginal proportional hazards

mixture cure model to analyze survival data from a multi-institutional study of tonsil

cancer and provided robust variance estimates of parameters. Yu and Peng (2008)

also considered a marginal mixture cure model with Weibull baseline distribution for a

smoking cessation study and provided jackknife variance estimates of the parameters
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in the model. Chen and Lu (2012) further extended the work of Peng et al. (2007) by

considering a transformation model for uncured patients. All these marginal mixture

cure models are robust to misspecification of the correlation structure. However,

when the correlation is of interest and there is partial information available for the

correlation structure, an efficiency loss may be incurred in using the marginal method

for the clustered failure time data with a survival proportion.

Therefore, parallel to the generalized estimating equations approach in the marginal

proportional hazards model, we are interested in developing a marginal method that

accommodates the correlation in clustered failure time data with a cure fraction in

the proportional hazards mixture cure model to improve the estimation efficiency.

2.4 Generalized Estimating Equations

Generalized estimating equations (GEEs) approach is originally proposed for the sit-

uation where it is reasonable to assume that the marginal mean response conforms to

a generalized linear models (GLMs) (Nelder and Wedderburn, 1972; McCullagh and

Nelder, 1989; Dobson, 2002). To handle non-normal longitudinal data, Liang and

Zeger (1986) introduced a working correlation matrix with a set of nuisance param-

eters to avoid the specification of correlation between measurements within clusters.

When the primary interest is on the marginal regression parameters and the depen-

dence among observations in a cluster is nuisance, GEEs provide a useful approach

in the analysis of correlated outcomes.

Let T̃i = (T̃i1, · · · , T̃ini
)
′
be the ni×1 vector of outcome values and Xi = (Xi1, · · · ,

Xini
)
′
be the ni×p covariate matrix for the ith subject (i = 1, · · · , K). Here T̃ij ∈ R.

Liang and Zeger (1986) assumed that the observations from the distinct subjects are
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independent and the marginal density of T̃ij is from an exponential family

f(t̃ij) = exp[{t̃ijθij − a(θij) + b(t̃ij)}/ϕ],

where θij = h(ηij), ηij = β′Xij, and moreover

E(T̃ij) =
da(θij)

dθij
= a′(θij), Var(T̃ij) =

d2a(θij)

dθ2ij
ϕ = a′′(θij)ϕ,

where the p × 1 vector β are regression parameters which embody the relationship

between the responses and the covariates and ϕ is a scale (dispersion) parameter.

Traditionally, we could consider f(t̃ij) as an exponential family which includes Gaus-

sian, binomial, gamma, inverse Gaussian, Poisson, geometric, and negative binomial

distributions.

Under the working assumption that the repeated observations from a subject

are independent of one another, Liang and Zeger (1986) derived the independent

estimating equations (IEEs), i.e.,

UI(β) =
K∑
i=1

XT
i ∆iSi = 0, (2.11)

where ∆i = diag{δθij/δηij} is an ni × ni matrix and Si = T̃i − a′i(θ) is of order

ni×1 for the ith subject. When the marginal model is correctly specified, under mild

regularity conditions, the solution of equations (2.11), β̂I , is a consistent estimate of

β and var(β̂I) can be consistently estimated by

{
K∑
i=1

XT
i ∆iAi∆iXi}−1{

K∑
i=1

XT
i ∆iSiS

T
i ∆iXi}{

K∑
i=1

XT
i ∆iAi∆iXi}−1|β̂I

,

where Ai is a diagonal matrix of order ni×ni with elements a′′(θij). They also showed
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that β̂I are reasonable efficient for a few simple designs such as the true correlation

is moderate or the variation of cluster sizes is small.

However, the use of independent working correlation structure may result in a no-

table loss of efficiency when, for example, the response correlation coefficient is large,

or variation in cluster sizes is large. To accommodate the within-cluster dependence

and improve the efficiency, the diagonal covariance matrix ∆i in the score equations

(2.11) is replaced by a ‘working’ covariance matrix of order ni × ni

Vi(ρ) = A
1
2
i R(ρ)A

1
2
i ϕ, (2.12)

which will be cov(T̃i) if R(ρ) is the true correlation matrix. Here ρ is a set of pa-

rameters that fully characterizes the working correlation matrix R(ρ). Therefore, the

modified score equations, i.e., GEEs, are defined by Liang and Zeger (1986) as

UG(β) =
K∑
i=1

DT
i V

−1
i (ρ)Si = 0, (2.13)

where Di is the matrix of derivatives of a′(θ) with respect to the regression parameters

β, i.e., Di = δ{a′i(θ)}/δβ = Ai∆iXi. If R(ρ) is specified as an identity matrix, equa-

tions (2.13) reduce to the IEEs (2.11). Let β̂G and V̂G denote the regression estimates

and the corresponding variance estimates from (2.13). As in the independence case,

the consistency of β̂G and V̂G depend only on the correct specification of the mean

structure, not on the correct choice of R(ρ) and the estimators for ρ and ϕ as long as

they are K
1
2 -consistent.

To obtain β̂G, the authors suggested an iteration between the Fisher scoring

method for β and the moment method for ρ and ϕ. Given the current estimates
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ρ̂ and ϕ̂,

β̂j+1 = β̂j − [E(
∂UG(β)

∂β
)]−1UG(β)|β̂j

= β̂j + {
K∑
i=1

DT
i (β̂j)Ṽ

−1
i (β̂j)Di(β̂j)}−1{

K∑
i=1

DT
i (β̂j)Ṽ

−1
i (β̂j)Si(β̂j)},

where Ṽi(β) = Vi[β, ρ̂{β, ϕ̂(β)}]. That is,

β̂j+1 = {DT Ṽ −1D}−1DT Ṽ −1Z|β̂j
,

whereD = (DT
1 (β), · · · , DT

K(β))
T is a matrix of orderN×p, S = (ST

1 (β), · · · , ST
K(β))

T

is of order N × 1 and Ṽ = diag{Ṽ1(β), · · · , ṼK(β)} which is a block diagonal matrix

of order N ×N . Vector Z = Dβ + S is of order N × 1.

At each iteration step, the scale parameter ϕ can be estimated by the moment

method

ϕ̂ =
K∑
i=1

ni∑
j=1

r̂2ij/(N − p) , (2.14)

where the current Pearson residual r̂ij is {T̃ij − a′(θ̂ij)}/{a′′(θ̂ij)}
1
2 . The estimate

of ρ varies based on the different choices of R(ρ). There are a variety of common

correlation structures such as an independent working correlation matrix where R(ρ)

is an identity matrix; an exchangeable (equicorrelated, compound symmetric) one

where corr(T̃ij, T̃ij′) = ρ for all j ̸= j′; a first-order autoregressive (AR-1) one where

corr(T̃ij, T̃ij′) = ρ|j−j′|; and an unstructured one where no restriction for correlation

but ni(ni − 1)/2 correlation parameters are required. For instance, when R(ρ) has
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an exchangeable correlation structure, given ϕ, ρ can be estimated by

ρ̂ = ϕ−1

K∑
i=1

∑
j>j′

r̂ij r̂ij′/{
K∑
i=1

1

2
ni(ni − 1)− p}. (2.15)

The variance of β̂G can be consistently estimated by

{
K∑
i=1

DT
i V

−1
i Di}−1{

K∑
i=1

DT
i V

−1
i SiS

T
i V

−1
i Di}{

K∑
i=1

DT
i V

−1
i Di}−1|(β̂G,ϕ̂,ρ̂) .

Generally, GEEs is a marginal approach since the underlying GLMs involve re-

gression models defining the mean of the marginal distribution. As we introduced

above, Liang and Zeger (1986) gave an algorithm for estimating both β and ρ, as

well as established the asymptotic multivariate normal distribution for the regression

parameters given the consistent estimates of the correlation and scale parameters.

The fact that the asymptotic distribution is independent of a specific estimator of

ρ allows for robustness to misspecification of the working correlation matrix. Qu et

al. (2000) utilized quadratic inference functions which avoid direct estimation of the

correlation parameters. Their method guarantees that the estimator of correlation

always exists and hence solve the issues raised by Crowder (1995) where the esti-

mator of ρ does not exist in some simple cases of misspecification which results in

inconsistency. Alternatively, Stoner and Leroux (2002) proposed an optimal (in terms

of estimation efficiency) combination of estimating equations approach to model the

correlation structure of the observations in a more efficient manner.

2.5 The EM Algorithm

The expectation maximization (EM) algorithm (Dempster et al., 1977) is a popular

method for maximum likelihood estimation in incomplete-data problems. The EM
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algorithm estimates the parameters of a model iteratively with some initial values.

Specifically, each iteration consists of an expectation (E) step, which calculates the

expected value of the full likelihood function with respect to the unobservable vari-

ables using the current estimates of the parameters, and a maximization (M) step,

which estimates the parameters by maximizing the expected value of the full like-

lihood function derived in the E-step. The EM algorithm is easy to implement in

many applications because of the numerical stability. However, one drawback of the

EM algorithm is that it does not produce valid standard errors directly. To address

this issue, Louis (1982) used the complete log-likelihood to derive the observed in-

formation matrix. That is, let S(y, θ) and B(y, θ) be the gradient and the negative

of the associated second derivative matrices based on the completely log-likelihood

separately, then the observed information I(θ) could be represented by

I(θ) = Eθ{B(Y, θ)|X ∈ R} − Eθ{S(Y, θ)ST (Y, θ)|Y ∈ R},

where the first term on the right hand side can be viewed as the complete information,

and the second term can be viewed as the missing information (Meng and Rubin,

1991).

Other methods such as using numerical differentiation to obtain the standard

errors in the EM algorithm were also investigated by Meng and Rubin (1991) and

Jamshidian and Jennrich (2000). Their methods are especially useful when the ana-

lytic calculation of derivatives was cumbersome or impossible.

2.6 The ES Algorithm

As an extension of the EM algorithm, Rosen et al. (2000) proposed an Expectation-

Solution (ES) algorithm for mixtures of the generalized linear models where the GEEs
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are embedded into the M-step of the EM algorithm to account for the correlation

among the responses. They defined the marginal probability density of T̃ ∗
ij (here

T̃ ∗
ij ∈ R) by the mixture density function

p(t̃∗ij|Xij, θs) =
I∗∑
r=1

p(er|Xij, γ)p(t̃
∗
ij|Xij, βr, ϕr),

where θs denotes all the parameters; β1, · · · , βI∗ , ϕ1, · · · , ϕI∗ , and γ = (γ1, · · · , γI∗−1),

er is an I∗ × 1 vector with 1 at the rth position and 0’s elsewhere. For each covari-

ate Xij in the ith cluster, the response T̃ ∗
ij is generated from the rth subprocess

(component) p(t̃∗ij|Xij, βr, ϕr) with probability p(er|Xij, γr) = π
(ij)
r , r = 1, · · · , I∗,

j = 1, · · · , ni, i = 1, · · · , K. The weights π
(ij)
r depend on the covariates and are

expressed in a multinomial logit form. Specifically,

π(ij)
r =

exp(γ
′
rXij)∑I∗

d=1 exp(γ
′
dXij)

for each r. For the jth observation in the ith cluster,
∑I∗

r=1 π
(ij)
r = 1. p(t̃∗ij|Xij, βr, ϕr)

is assumed to be a member of the exponential family. π
(ij)
r and p(t̃∗ij|Xij, βr, ϕr)

may share some covariates. Obviously, the expectation of T̃ ∗
ij varies with different

component in the mixture models. Given covariates Xij, µ
(ij)
r = E(T̃ ∗

ij) which is

described by a function of parameter vector βr from the rth component, i.e., µ
(ij)
r =

h(β
′
rXij) and h is a link function.

Suppose that the observed data Os = {(T̃ ∗
ij, Xij), j = 1, · · · , ni, i = 1, · · · , K} are

independent and there are no censored observations, the observed full likelihood is

given by

L(θs|Os) =
K∏
i=1

ni∏
j=1

I∗∑
r=1

p(er|Xij, γr)p(t̃
∗
ij|Xij, βr, ϕr). (2.16)
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When unobserved indicator vectors y(ij) = (y
(ij)
1 , · · · , y(ij)I∗ ) are added to the observa-

tions Os, i.e., O
′
s = {(T̃ ∗

ij, Xij, y
(ij)), j = 1, · · · , ni, i = 1, · · · , K}, the complete full

likelihood, an augmented version of the observed one, can be written as

L(θs|O′
s) =

K∏
i=1

ni∏
j=1

I∗∏
r=1

{p(er|Xij, γr)}y
(ij)
r {p(t̃∗ij|Xij, βr, ϕr)}y

(ij)
r

=
K∏
i=1

ni∏
j=1

I∗∏
r=1

{π(ij)
r p(t̃∗ij|Xij, βr, ϕr)}y

(ij)
r . (2.17)

The authors used the EM algorithm to derive the maximum likelihood estimate θ̂s.

The E-step consists of calculating the expectation of the log form of (2.17) with

respect to y
(ij)
r given the current estimate of θ̂s and the complete data O′

s. That is,

l(θs|O′
s) = E(logL(θs|O′

s))

=
K∑
i=1

ni∑
j=1

I∗∑
r=1

g(ij)r {log π(ij)
r + log p(t̃∗ij|Xij, βr, ϕr)}, (2.18)

where

g(ij)r = E(y(ij)r |Os; θs) = P (y(ij)r = 1|Os; θs)

=
p(t̃∗ij|er, Xij; θ)p(er|Xij; θs)∑I∗

r=1 p(t̃
∗
ij|er, Xij; θs)p(er|Xij; θs)

=
π
(ij)
r p(t̃∗ij|Xij, βr, ϕr)∑I∗

l=1 π
(ij)
l p(t̃∗ij|Xij, βl, ϕl)

, (2.19)

which is the success probability of Bernoulli random variable y
(ij)
r . Furthermore,

l(θs|O′
s) can be separated into I∗ + 1 log likelihood functions including

lγ =
K∑
i=1

ni∑
j=1

I∗∑
r=1

g(ij)r log π(ij)
r , (2.20)
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and

lβr,ϕr =
K∑
i=1

ni∑
j=1

g(ij)r log p(t̃∗ij|Xij, βr, ϕr) (r = 1, · · · , I∗). (2.21)

The M-step consists of maximizing (2.20) with respect to γr and maximizing (2.21)

with respect to βr and ϕr for the fixed {g(ij)r }ni=1. To estimate γ, the Newton-Raphson

method can be applied based on (2.20). The authors proposed I∗ generalized linear

models with observed data Os to fit βr. Let µ
(i)
r = (µ

(i1)
r , · · · , µ(ini)

r )T , the I∗ systems

of score equations based on (2.21) are

K∑
i=1

D(i)T
r (V (i)

r )−1G(i)
r (t̃∗i − µ(i)

r ) = 0 (r = 1, · · · , I∗), (2.22)

where G
(i)
r = diag(g

(i1)
r , · · · , g(ini)

r ), V
(i)
r = diag(ϕrv(µ

(i1)
r ), · · · , ϕrv(µ

(ini)
r )), andD

(i)
r =

∂µ
(i)
r /∂β′

r. varr(t̃
∗
ij) = ϕrv(µ

(ij)
r ). For instance, v(µ

(ij)
r ) = µ

(ij)
r (1 − µ

(ij)
r ) and ϕr = 1

for Bernoulli outcome data, v(µ
(ij)
r ) = µ

(ij)
r and ϕr = 1 for Poisson outcome data.

Function (2.20) can be considered as a log likelihood for generalized Bernoulli outcome

data where
∑I∗

r=1 g
(ij)
r = 1 for given (i, j).

To capture the correlation among the observations from the mixture model, the

authors incorporated the working correlation matrices in (2.22). The GEEs with

respect to βr are

K∑
i=1

D(i)T
r (V (i)(ρr))

−1G(i)
r (t̃∗i − µ(i)

r ) = 0 (r = 1, · · · , I∗), (2.23)

where V (i)(ρr) = ϕr(A
(i)
r )1/2Ri(ρr)(A

(i)
r )1/2, A

(i)
r = diag(v(µr

(i1)), · · · , v(µ(ini)
r )), Ri(ρr)

is a working correlation matrix depending on the rth component’s association param-

eters ρr which is a dr-dimensional vector.
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Rosen et al. (2000) further showed that the estimating functions with respect

to γ and β are unbiased. Based on Carroll et al. (1995), the solutions of unbiased

estimating equations are consistent and asymptotically normally distributed as the

sample size K → ∞. Under certain regularity conditions (Gallant and White, 1988),

the estimated asymptotic variances of θ̂s are obtained by

v̂ar(θ̂s) = {F̂−1}V̂{F̂−1}T , (2.24)

where

F̂ =
K∑
i=1

ni∑
j=1

I∗∑
ζ=1

∇sij(eζ ; θ̂s, θ̂s), V̂ =
K∑
i=1

{
ni∑
j=1

I∗∑
ζ=1

sij(eζ ; θ̂s, θ̂s)

}⊗2

,

where v
⊗2 ≡ vvT for a general column vector v, [∇v]kl =

∂(v)k
∂(θs)l

, k, l = 1, · · · , dθs , and

dθs = dim(θs) = Idim(βr) + Idim(ϕr) + (I∗ − 1)dim(γr) = Idβ + Idϕ + (I∗ − 1)dγ.

sij(eζ ; θ̂s, θ̂s) = qij(t̃
∗
ij, eζ ; θ̂s)g

(ij)
ζ for j = 1, · · · , ni and i = 1, · · · , K. qij(t̃

∗
ij, eζ ; θs) is a

dθs × 1 vector for each ζ = 1, · · · , I∗, j = 1, · · · , ni and i = 1, · · · , K. The first (Idβ)

components are

ni∑
u=1

[D
(i)
ζ ]ul[V

(i)(ρζ)
−1]ujδ

∗
ζr(t̃

∗
ij − µ

(ij)
ζ )

for r = 1, · · · , I∗ and l = 1, · · · , dβ. Note that δ∗ζr = 1 when ζ = r and 0 elsewhere.

The first (Idβ) components are corresponding to (2.23). That is, given i, r and l,

ni∑
j=1

I∗∑
ζ=1

ni∑
u=1

[D
(i)
ζ ]ul[V

(i)(ρζ)
−1]ujδ

∗
ζr(t̃

∗
ij − µ

(ij)
ζ ) = D(i)T

r (V (i)(ρr))
−1(t̃∗i − µ(i)

r ) .
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The middle I∗ components are

{(t̃∗ij − µ
(ij)
ζ )2 − ϕζv(µ

(ij)
ζ )}δ∗ζr

for r = 1, · · · , I∗. The last (I∗ − 1)dγ components are

(π
(ij)
ζ )−1

{
∂π

(ij)
ζ

∂(γr)k

}

for r = 1, · · · , I∗, k = 1, · · · , dγ.
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Chapter 3

Marginal Proportional Hazards Model

3.1 Introduction

In this chapter, we consider the marginal method developed by Segal and Neuhaus

(1993) for the classical clustered failure time data without a cured fraction. We ob-

serve in numerical studies that, when correlation exists within clusters, the estimating

function proposed by Segal and Neuhaus (1993) for hazards ratio regression param-

eters is biased. Therefore, the estimates from the existing estimating equation are

biased and the variance estimates are unstable. To address this issue, we propose

an unbiased weighted estimating function and show that the estimators based on the

proposed estimating equation are consistent and asymptotically normal. A consistent

estimator of the covariance matrix for regression parameters is also provided. We will

demonstrate via a simulation study that the proposed estimating equation approach

produces unbiased regression estimators as well as improves the estimation efficiency

compared to the existing marginal methods.

The rest of the chapter is organized as follows. In Section 3.2, we propose an

unbiased weighted estimating function for the hazard ratio parameters based on the

marginal semiparametric proportional hazards model. The asymptotic properties of
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the estimators and the variance estimates are obtained in Section 3.3. We perform a

simulation study in Section 3.4 to evaluate the performance of the proposed estimating

equation, and apply this approach in the analysis of Diabetic Retinopathy Study and

in the study of Infection in Kidney Patients in Section 3.5. Finally, we provide

conclusions on the proposed model and estimation method in Section 3.6.

3.2 Model and Estimating Equation

The marginal survival function of T̃ij is assumed to follow the proportional hazards

model, i.e.,

S(t;Xij) = S0(t)
exp(β′Xij), (3.1)

where S0(t) is the baseline survival function of T̃ij when Xij = 0, and has the product-

limit form as we defined in Section 2.2, i.e., S0(t) =
∏

s:τs≤t αs where 0 ≤ αs ≤ 1. If

we ignore the correlation within clusters, the unknown parameters θ = (β, α) in the

model could be estimated based on a log-likelihood function with the observations

O = {(Tij, δij, Xij), j = 1, · · · , ni, i = 1, · · · , K}. That is,

l(θ;O) = log
K∏
i=1

ni∏
j=1

f(tij;Xij)
δijS(tij;Xij)

1−δij

= log
K∏
i=1

ni∏
j=1

{Λ0(tij) exp(β
′Xij)}δij exp{−Λ0(tij) exp(β

′Xij)}

+ log
K∏
i=1

ni∏
j=1

(
λ0(tij)

Λ0(tij)

)δij

(3.2)

= log
K∏
i=1

ni∏
j=1

[
{exp(β′Xij)}κij exp{−exp(β′Xij)}

]Λ0(tij)

+ log
K∏
i=1

ni∏
j=1

(λ0(tij))
δij , (3.3)
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where f(tij;Xij) is the density function of S(tij;Xij), and λ0(tij) and Λ0(tij) are

the hazard and cumulative hazard functions corresponding to S0(tij). Here κij =

δij/Λ0(tij).

Based on (3.2), Segal and Neuhaus (1993) proposed an estimating function (de-

noted by USN) for the regression parameters β. That is

USN =
K∑
i=1

(USN)i

=
K∑
i=1

{∂µSN(Xi)

∂β
}T{A1/2

i Qi(ρSN)A
1/2
i ϕSN}−1{δi − µSN(Xi)}, (3.4)

where µSN(Xi) = {µSN(Xi1), · · · , µSN(Xini
)}T with µSN(Xij) = Λ0(tij) exp(β

′Xij),

Ai = diag{µSN(Xi)}, δi = (δi1, · · · , δini
)T , Qi(ρSN) is the working correlation matrix,

ρSN is a group of unknown parameters in the correlation matrix, and ϕSN is an un-

known scale parameter. The Newton-Raphson method can be used to solve the equa-

tion USN = 0 to obtain the estimate of the regression parameter vector β. We let β̂SN

denote the solution of USN = 0. As pointed out by Segal and Neuhaus (1993), the ro-

bust variance estimates are obtained from (−∂USN

∂β
)−1(

∑K
i=1{USN}i{USN}i) (−∂USN

∂β
)−T .

Different from the Poisson likelihood mentioned above, Lee et al. (1992), based on

the partial likelihood, proposed robust sandwich variance estimates for the regression

parameter β without specifying dependence structure within clusters.

As we discussed in Section 2.3, one attractive property of the GEEs method is

that the estimation efficiency may be improved by using the working correlation

matrix. However, the estimating function (3.4) displays considerable biases that

may lead to biased estimate of β. This can be seen from a numerical study based

on 1000 data sets generated from the model (3.1) (details for data generation are

given in Section 3.4). By plotting the 1000 values of function (3.4) given the true
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Figure 3.1: The average (black line) of 1000 values of function USN/K based on the
correlated failure time (Kendall’s tau=0.8) with binary covariate (left)
and standard normal covariate (right). The regression parameter β =
log(2) and the baseline survival function follows exponential distribution
with parameter α = 2. Here K = 40.

parameter settings, we observe that the average value of function USN is -0.072 for

the binary covariate and 0.151 for the continuous covariate when the Kendall’s tau

equals 0.8 (Figure 3.1). Both considerably deviate from 0. Here Kendall’s tau is used

to measure the strength of association among observations in one cluster. The larger

value of Kendall’s tau represents the stronger correlation within clusters. Figure 3.1

shows that the estimating function USN is biased when the correlation within a cluster

exists. Consequently, the estimators based on estimating equation USN = 0 are biased

and the corresponding variance estimates are unstable as we can observe that in the

simulation study in Section 3.4.

To address this issue, we propose a weighted estimating function for β based on

the log-likelihood (3.3), i.e.,

UNew =
K∑
i=1

ni∑
j=1

(UNew)ij =
K∑
i=1

(UNew)i

=
K∑
i=1

{∂µNew(Xi)

∂β
}T{B1/2

i Qi(ρNew)B
1/2
i ϕNew}−1Wi{κi − µNew(Xi)}, (3.5)
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Figure 3.2: The average (black line) of 1000 values of function UNew/K based on the
correlated failure time (Kendall’s tau=0.8) with binary covariate (left)
and standard normal covariate (right). The regression parameter β =
log(2) and the baseline survival function follows exponential distribution
with parameter α = 2. Here K = 40.

where µNew(Xi) = {µNew(Xi1), · · · , µNew(Xini
)}T with µNew(Xij) = exp(β′Xij), Bi =

diag{µNew(Xi)}, κi = (κi1, · · · , κini
)T , Wi = diag(Λ0(ti1), · · · ,Λ0(tini

)), Qi(ρNew) is

the working correlation matrix, and ρNew is a group of unknown parameters in the

matrix that needs to be estimated. Similar to function (3.4), the scale parameter

ϕNew is incorporated in the estimating function (3.5) to accommodate the over- or

under-dispersion.

Based on the same data set used in Figure 3.1, we plot the 1000 values of function

(3.5) and observe that the average value of UNew is much closer to zero than that from

(3.4) for both binary covariate (about -3.178e-05) and continuous covariate (about

3.024e-04) (Figure 3.2). That is, empirically, the function (3.5) tends to be unbiased.

We will show the unbiasedness of the proposed weighted estimating function (3.5)

in Section 3.3. Therefore, by letting UNew = 0, we establish an unbiased weighted

estimating equation for the hazard ratio parameters in (3.1). We let β̂New denote the

solution of equation UNew = 0.

Different from the parametric baseline specified by Segal and Neuhaus (1993), we
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estimate the baseline survival function S0(t) by using the nonparametric maximum

likelihood estimator (Kalbfleisch and Prentice, 2002). As we discussed in Section

2.1.2, a suitable initial value for S0(t) could be chosen as

Ŝ0(t) = exp(−
∑
s:τs≤t

ds∑
(i,j)∈Rs

exp(β′Xij)
). (3.6)

based on the nonparametric estimate of Λ0(t).

To obtain β̂New, we suggest a dual iteration algorithm as follows:

1. Set initial values for βNew and calculate Ŝ0(t) based on (3.6).

2. Given Ŝ0(t), calculate the updated estimate of βNew using Newton-Raphson

method, i.e.,

(a) Given current estimates of ρNew and ϕNew, calculate the updated estimate

of βNew from (3.5).

(b) Given the estimate of βNew, calculate the standardized Pearson residuals

r̂ij = {κij − µNew(Xij)}/{µNew(Xij)}
1
2 .

(c) Use the residuals r̂ij to estimate ρ̂New and ϕ̂New.

(d) Repeat steps (a), (b), and (c) until convergence.

3. Given β̂New, update Ŝ0(t).

4. Repeat steps 2 and 3 until convergence.

Here we consider an exchangeable correlation structure for Qi(ρNew) as it is often used

for clustered data. Such a correlation structure was also considered in USN by Segal

and Neuhaus (1993). As we discussed in Section 2.3, following the formulas (2.14)

and (2.15), the correlation parameter ρNew can be estimated from the standardized
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Pearson residuals. That is

ρ̂New = ϕ̂−1
New

K∑
i=1

∑
j>j′

r̂ij r̂ij′/{
K∑
i=1

1

2
ni(ni − 1)− pX}, (3.7)

where ϕ̂New =
∑K

i=1

∑ni

j=1 r̂
2
ij/(N − pX) and pX is the length of covariate Xij.

3.3 Asymptotic Results and Variance Estimation

3.3.1 Asymptotic Properties of β̂New

Theorem 3.1. Let β0 be the true parameter of β and ΨK(β) =
UNew

K
= 1

K

∑K
i=1(UNew)i.

Under the following set of conditions (Yuan and Jennrich, 1998; Liang and Zeger,

1986)

A1. ΨK(β0) → 0 with probability 1;

A2. There is a neighborhood N of β0 on which with probability one all ΨK(β) are

continuously differentiable and the Jacobians ∂ΨK(β)
∂β

converge uniformly to a

nonstochastic limit which is nonsingular at β0;

A3. K1/2ΨK(β0) → N(0,V) in distribution where V = limK→∞(
∑K

i=1E((UNew)
T
i

(UNew)i)/K);

A4. ∂ΨK(β0)/∂ρNew → 0 with probability 1;

A5. K1/2(ϕ̂New − ϕNew) = Op(1) given β;

A6. K1/2(ρ̂New − ρNew) = Op(1) given β and ϕNew;

A7. |∂ρ̂(β, ϕNew)/∂ϕNew| is bounded by a function H(T, β) which is Op(1),

the estimator β̂New solving (3.5) is a consistent estimator of β0. Also K1/2(β̂New −

β0) is asymptotically normally distributed with mean vector 0 and with variance
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matrix Σ = A−1(β0)V(β0)A−T (β0) where A(β0) = −∂UNew(β0)/∂β0 and V(β0) =∑K
i=1{UNew(β0)}i{UNew(β0)}Ti . Moreover, Σ can be consistently estimated by Σ̂ =

A−1(β̂New)V(β̂New)A−T (β̂New).

Proof. To show the large sample properties of β̂New, we first consider the unbiased-

ness of {(UNew)ij|cij, θ}. Let µij = (µNew)ij and Fij(t) be the distribution function of

T̃ij. Then we have

E{(UNew)ij|cij, θ}

=

∫ ni∑
l=1

ϕ−1
NewXilµ

1/2
il Q̃i(ρNew)ljµ

−1/2
ij Λ0(t)(κij − µij)dFij(t|cij, θ)

= {ϕ−1
New

ni∑
l=1

Xilµ
1/2
il Q̃i(ρNew)ljµ

−1/2
ij }

∫
Λ0(t)(κij − µij)dFij(t|cij, θ)

= Mij

∫
Xij(δij − Λ0(t)µij)dFij(t|cij, θ)

= Mij

∫
∂µij

∂β

1

µij

(δij − Λ0(t)µij)dFij(t|cij, θ)

= Mij

∫
∂

∂β
log[{λ0(t)µij}δij exp(−Λ0(t)µij)]dFij(t|cij, θ)

= Mij

∫
∂

∂β
log[λδij(t;Xij) exp{−Λ(t;Xij)}]dFij(t|cij, θ)

= Mij

∫
∂

∂β
[log{f δij

ij (t|cij, θ)S
1−δij
ij (t|cij, θ)}]dFij(t|cij, θ)

= Mij{
∫

δij
∂

∂β
log fij(t|cij, θ)dFij(t|cij, θ)

+

∫
(1− δij)

∂

∂β
logSij(t|cij, θ)dFij(t|cij, θ)}

= Mij{
∫ cij

0

1

fij(t|cij, θ)
∂fij(t|cij, θ)

∂β
dFij(t|cij, θ)

+

∫ ∞

cij

1

Sij(t|cij, θ)
∂Sij(t|cij, θ)

∂β
dFij(t|cij, θ)}

= Mij{
∫ cij

0

∂fij(t|cij, θ)
∂β

dt+

∫ ∞

cij

∂Sij(t|cij, θ)
∂β

dΛij(t|cij, θ)}

= Mij
∂

∂β
{Fij(cij|cij, θ) + Sij(cij|cij, θ)} = πijMij

∂

∂β
(1) = 0,
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where Mij = {ϕ−1
New

∑ni

l=1Xilµ
1/2
il Q̃i(ρNew)ljµ

−1/2
ij /Xij} and Q̃i(ρNew) = Q−1

i (ρNew)

and Qi(ρNew) is an ni × ni working correlation matrix for i = 1, · · · , K. Therefore,

E{(UNew)ij|θ} = E(E{(UNew)ij|cij, θ}) = 0. That is, UNew is an unbiased estimating

function.

To prove the asymptotic normality of β̂New, we follow the similar discussion in

Liang and Zeger (1986). For simplicity, we let ρ∗New(β0) = ρ̂(β0, ϕ̂New(β0)) and U =

UNew. By Taylor expansion, we have

K1/2(β̂New − β0) ≈ [
K∑
i=1

− δ

δβ0

Ui(β0, ρ
∗
New(β0))/K]−1[

K∑
i=1

Ui(β0, ρ
∗
New(β0))/K

1/2],

where

δ

δβ0

Ui(β0, ρ
∗
New(β0)) =

∂

∂β0

Ui(β0, ρ
∗
New(β0)) +

∂Ui(β0, ρ
∗
New(β0))

∂ρ∗New(β0)

∂ρ∗New(β0)

∂β0

= A∗
i +B∗

iC
∗.

Next we let β0 be fixed and Taylor expansion gives

∑K
i=1 Ui(β0, ρ

∗
New(β0))

K1/2
=

∑K
i=1 Ui(β0, ρNew)

K1/2

+
∂/∂ρ

∑K
i=1 Ui(β0, ρNew)

K
K1/2(ρ∗New(β0)− ρNew) + op(1)

= A∗∗ +B∗∗C∗∗ + op(1),

where B∗∗ = op(1) by (A4) and

C∗∗ = K1/2[ρ̂(β0, ϕ̂New(β0))− ρ̂(β0, ϕNew) + ρ̂(β0, ϕNew)− ρNew]

= K1/2[
∂ρ̂(β0, ϕ

∗
New)

∂ϕNew

(ϕ̂New − ϕNew) + ρ̂(β0, ϕNew)− ρNew] = Op(1)

by (A5), (A6) and (A7). Therefore, K−1/2
∑K

i=1 Ui(β0, ρ
∗
New(β0)) is asymptotically
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equivalent to A∗∗. From (A3), we know that the asymptotic distribution of A∗∗ is mul-

tivariate Gaussian with zero mean and covariance matrix limK→∞(
∑K

i=1E((UNew)
T
i

(UNew)i)/K). It is easy to see that
∑K

i=1B
∗
i /K = op(1) and C∗ = Op(1). There-

fore,
∑K

i=1
δ

δβ0
Ui(β0, ρ

∗
New(β0))/K is asymptotically equivalent to

∑K
i=1A

∗
i /K which

converges to 1
K
∂UNew(β0)/∂β0 as K → ∞. By Slutsky’s Theorem, as K → ∞, we

have

K1/2(β̂New − β0) → N(0,Σ) in distribution,

where Σ = A−1(β0)V(β0)A−T (β0), A(β0) = −∂UNew(β0)/∂β0 and V(β0) =
∑K

i=1

{UNew(β0)}i{UNew(β0)}Ti . Furthermore, we have

β̂New − β0 =
Σ

K1/2
(K1/2 β̂New − β0

Σ
) → lim

K→∞
(

Σ

K1/2
)Z = 0,

where Z ∼ N(0, 1). So β̂New−β0 → 0 in distribution by Slutsky’s Theorem. We know

that convergence in distribution to a point is equivalent to convergence in probability,

so β̂New is a consistent estimator of β0.

3.3.2 Variance Estimation for β̂New and ρ̂New

The estimating functions of β and α are

UNew =
K∑
i=1

(UNew)i =
K∑
i=1

{∂µ(Xi)

∂β
}T{B1/2

i Qi(ρNew)B
1/2
i ϕNew}−1Wi{κi − µ(Xi)},

and

Uα =
∑

{i,j}∈Dk

exp(β′Xij)

1− exp(−αk exp(β′Xij))
−

∑
(i,j)∈Rk

exp(β′Xij).

40



Therefore, the derivatives of the estimating functions UNew and Uα with respect

to θ = (β, α) have four elements including Uββ, Uβαk
, Uαkαk′ and Uαkβ. Specifically,

Uββ =
∂UNew

∂β
=

K∑
i=1

A
(β)
i [B

(β)
i WiC

(β)
i −D

(β)
i WiE

(β)
i ],

where

A
(β)
i = (Xi1ν , Xi2ν , · · · , Xiniν)1×ni

,

B
(β)
i =


B

(β)
i11 · · · B

(β)
i1ni

...
. . .

...

B
(β)
ini1

· · · B
(β)
inini


ni×ni

,

where

B
(β)
imn =

1

2ϕNew

(Ximω −Xinω)(µim)
1/2(µin)

−1/2Q̃i(ρNew)mn

for m ̸= n, otherwise B
(β)
imm = 0, m,n = 1, 2, · · · , ni.

C
(β)
i = (κi1 − µi1, κi2 − µi2, · · · , κini

− µini
)T ,

D
(β)
i =


D

(β)
i11 · · · D

(β)
i1ni

...
. . .

...

D
(β)
ini1

· · · D
(β)
inini


ni×ni

,

where

D
(β)
imn = ϕ−1

2 (µim)
1/2(µin)

−1/2Q̃i(ρNew)mn
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for m ̸= n, otherwise D
(β)
imm = Q̃i(ρNew)mm.

E
(β)
i = (Xi1ωµi1, Xi2ωµi2, · · · , Xiniωµini

)T ,

and Wi = diag(Λ0(ti1), · · · ,Λ0(tini
)).

Uαkαk′ = −
∑

(i,j)∈Dk

exp(2β′Xij − αk exp(β
′Xij))

(1− exp(−αk exp(β′Xij)))2
, if k′ = k, 0 otherwise,

Uαkβ =
∑

(i,j)∈Dk

exp(β′Xij)(1− exp(−αk exp(β
′Xij))

(1− exp(−αk exp(β′Xij)))2
Xij

−
∑

(i,j)∈Dk

−αk exp(β
′Xij) exp(−αk exp(β

′Xij)))

(1− exp(−αk exp(β′Xij)))2
Xij

−
∑

(i,j)∈Rk

exp(β′Xij)Xij,

Uβαk
= −

∑
(i,j):tij≥τk

(

ni∑
l=1

Xilµ
1/2
il µ

−1/2
ij Q̃i(ρNew)lj) exp(β

′Xij).

We consider a bootstrap method (Efron and Tibshirani, 1993; Monaco et al., 2005)

to obtain the variance estimates of the correlation coefficient ρ̂New. The bootstrap

sample is obtained from sampling clusters with replacement and is fitted with the

proposed method to obtain the parameter estimates, denoted as ρ̂b. The variance

estimates can be estimated by
∑B

i=1(ρ̂
(i)
b −

∑B
j=1 ρ̂

(j)
b /B)2/(B − 1), where B is the

number of bootstrap samples for each simulated data set.
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3.4 A Simulation Study

We conduct a simulation study to investigate the performances of the proposed

method (denoted as New in the following tables) and to compare the results with

those from Lee et al. (1992) (denoted as LWA in the following tables) and Segal

and Neuhaus (1993) (denoted as SN in the following tables). The classical clustered

survival data in the simulation study are generated from the proportional hazards

model (3.1) with the exchangeable correlation structure. In particular, we consider

a single binary covariate (mean=0.5) with value 0 for a control group and 1 for a

treatment group, and a single continuous covariate with values generated from the

standard normal distribution. Note that Segal and Neuhaus (1993) only considered

the standard normal covariate in their simulation study. The effect of the covariate

on S(t;Xij) is specified by β = log(2) and the baseline distribution is the exponential

distribution, i.e., S0(t;α) = e−αt where α = 2.

For each data set, we consider the following pairs of the number of clusters and the

cluster size: (40,10), (80,5), and (200,2). For each cluster in a data set, the correlated

failure times are generated by using the Clayton copula model (Clayton, 1978),

P (T̃i1 > ti1, · · · , T̃ini
> tini

|Xij, j = 1, · · · , ni)

= {
ni∑
j=1

S(tij;Xij)
−ξ − ni + 1}−1/ξ,

where S(tij;Xij) is the marginal survival function given by (3.1). The value of ξ

measures the degree of dependence among the failure times within cluster i and it

relates to Kendall’s tau by τ = ξ/(ξ + 2). We set ξ = 8, 2, and 0. The corresponding

values of τ are 0.8, 0.5 and 0 respectively, and the larger value the stronger correlation

of the failure times. When ξ = 0 or τ = 0, it implies the independence among

43



the failure times. The censoring times are non-informative and generated from the

uniform distribution in (0, c) with c chosen to produce about 10%, 30%, and 50%

censoring.

For each setting above, we generate 1000 data sets and fit each data set with the

marginal model using the proposed estimating function (3.5) with an exchangeable

working correlation matrix. As a comparison, we also estimate the parameters in

the marginal model using the robust sandwich methods in Lee et al. (1992), i.e.,

estimating function (3.4) or (3.5) with an identity working correlation matrix, and in

Segal and Neuhaus (1993), i.e., estimating function (3.4) with exchangeable working

correlation matrix. The biases, empirical variances (Var), the averages of estimated

variances (Var*), and the coverage probabilities (CP) of 95% confidence intervals of

the parameter estimates based on the above three methods are reported in Tables

3.1, 3.2, and 3.3 for different censoring rates.

The simulation results indicate that the proposed estimation method outperforms

the existing estimation methods. The average estimated variances of the regression

parameters from the proposed method are close to their empirical variances, and

the 95% confidence interval coverage rates are satisfactory and close to the nominal

level. When the failure times within a cluster are correlated, the variances from the

proposed method are consistently smaller than those from the Lee et al.’s method

(1992). We notice that Segal et al.’s method (1993) also improves the estimation

efficiency when the correlation exists within clusters. However, the biases of β̂SN

based on the estimating equation USN = 0 are obvious and significantly affect the

coverage probability, especially when the correlation is strong and the cluster size is

large. When the correlation reduces to zero, the empirical variances based on the

proposed method and Lee et al.’s method are comparable.

To further evaluate the efficiency gains from the proposed method, we calculate
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Table 3.1: Bias, empirical variance (Var), average of estimated variance (Var∗), cov-
erage percentage (CP) of 95% confidence intervals of the estimate of β
with censoring rate equals 0.5.

ni/K 40/10 80/5 200/2
LWA SN New LWA SN New LWA SN New

binary covariate
τ = 0.8
Bias 0.021 -0.153 0.019 0.005 -0.147 0.004 0.002 -0.096 0.001
Var 0.032 0.026 0.021 0.027 0.017 0.016 0.022 0.016 0.018
Var* 0.030 0.012 0.019 0.025 0.009 0.015 0.022 0.008 0.018
CP 94.8 60.2 93.8 93.9 57.4 93.8 94.2 73.3 94.4
τ = 0.5
Bias 0.011 -0.535 0.011 0.011 -0.428 0.010 0.000 -0.224 0.000
Var 0.023 0.022 0.018 0.024 0.020 0.019 0.020 0.019 0.019
Var* 0.024 0.017 0.018 0.023 0.013 0.018 0.022 0.010 0.020
CP 94.3 2.6 95.4 94.5 6.3 95.5 95.7 41.4 95.6
τ = 0
Bias -0.002 -0.540 -0.003 0.002 -0.297 0.003 0.008 -0.085 0.008
Var 0.023 0.038 0.023 0.020 0.038 0.020 0.020 0.029 0.021
Var* 0.021 0.013 0.021 0.021 0.010 0.021 0.021 0.009 0.021
CP 92.8 4.3 92.6 95.5 26.3 95.7 95.9 66.3 95.4

continuous covariate
τ = 0.8
Bias 0.015 0.104 0.016 0.009 0.088 0.009 0.006 0.057 0.005
Var 0.014 0.010 0.011 0.010 0.007 0.007 0.007 0.005 0.006
Var* 0.013 0.004 0.011 0.010 0.003 0.007 0.007 0.004 0.006
CP 95.1 57.1 94.9 94.2 58.9 94.5 94.3 75.8 94.2
τ = 0.5
Bias 0.019 0.034 0.017 0.003 0.022 0.003 0.008 0.016 0.007
Var 0.010 0.007 0.008 0.007 0.005 0.006 0.006 0.005 0.006
Var* 0.009 0.005 0.007 0.007 0.005 0.006 0.006 0.005 0.006
CP 92.9 87.4 92.3 94.3 90.5 93.6 94.4 91.4 94.6
τ = 0
Bias 0.006 -0.042 0.005 0.005 -0.022 0.005 0.004 -0.004 0.004
Var 0.006 0.006 0.006 0.006 0.007 0.006 0.006 0.006 0.006
Var* 0.006 0.006 0.006 0.006 0.005 0.006 0.006 0.005 0.006
CP 94.3 90.0 94.5 92.8 89.7 92.9 94.4 92.0 94.3
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Table 3.2: Bias, empirical variance (Var), average of estimated variance (Var∗), cov-
erage percentage (CP) of 95% confidence intervals of the estimate of β
with censoring rate equals 0.3.

ni/K 40/10 80/5 200/2
LWA SN New LWA SN New LWA SN New

binary covariate
τ = 0.8
Bias 0.033 -0.121 0.031 0.015 -0.117 0.014 0.007 -0.085 0.005
Var 0.023 0.016 0.014 0.019 0.011 0.011 0.016 0.010 0.012
Var* 0.022 0.007 0.014 0.018 0.005 0.011 0.016 0.005 0.012
CP 95.0 57.4 94.2 94.7 56.9 95.2 94.8 69.3 95.0
τ = 0.5
Bias 0.023 -0.475 0.023 0.000 -0.394 0.000 0.012 -0.214 0.011
Var 0.020 0.015 0.014 0.016 0.026 0.016 0.015 0.014 0.014
Var* 0.019 0.011 0.013 0.015 0.008 0.015 0.016 0.007 0.014
CP 92.8 0.9 93.5 94.5 7.3 94.4 95.6 32.7 95.9
τ = 0
Bias 0.001 -0.642 0.002 0.004 -0.387 0.004 0.008 -0.124 0.008
Var 0.014 0.025 0.015 0.015 0.026 0.015 0.016 0.023 0.016
Var* 0.015 0.011 0.015 0.015 0.008 0.015 0.015 0.007 0.015
CP 94.5 0.3 94.6 95.4 8.2 95.1 94.0 56.2 94.0

continuous covariate
τ = 0.8
Bias 0.022 0.092 0.024 0.015 0.072 0.013 0.002 0.046 0.002
Var 0.012 0.009 0.010 0.008 0.005 0.006 0.006 0.004 0.005
Var* 0.011 0.002 0.009 0.007 0.002 0.005 0.005 0.002 0.004
CP 93.7 45.3 94.9 93.4 52.7 95.2 91.9 75.1 92.5
τ = 0.5
Bias 0.018 0.046 0.017 0.010 0.032 0.009 0.002 0.017 0.002
Var 0.009 0.006 0.007 0.007 0.005 0.005 0.005 0.004 0.004
Var* 0.008 0.003 0.006 0.006 0.003 0.005 0.005 0.003 0.004
CP 91.4 76.9 92.7 93.2 82.7 92.7 94.6 89.9 94.7
τ = 0
Bias 0.003 -0.034 0.003 0.004 -0.019 0.004 0.001 -0.006 0.001
Var 0.004 0.004 0.004 0.005 0.005 0.005 0.004 0.004 0.004
Var* 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.005
CP 95.7 94.0 95.3 93.8 91.8 93.5 96.0 94.0 96.0
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Table 3.3: Bias, empirical variance (Var), average of estimated variance (Var∗), cov-
erage percentage (CP) of 95% confidence intervals of the estimate of β
with censoring rate equals 0.1.

ni/K 40/10 80/5 200/2
LWA SN New LWA SN New LWA SN New

binary covariate
τ = 0.8
Bias 0.041 -0.137 0.040 0.010 -0.135 0.015 0.003 -0.103 0.002
Var 0.023 0.014 0.013 0.016 0.007 0.008 0.013 0.006 0.009
Var* 0.019 0.004 0.011 0.015 0.003 0.008 0.013 0.003 0.009
CP 90.0 39.5 93.5 93.4 33.3 93.2 93.6 55.6 93.9
τ = 0.5
Bias 0.035 -0.466 0.034 0.016 -0.391 0.016 0.015 -0.218 0.014
Var 0.018 0.012 0.012 0.015 0.009 0.011 0.012 0.009 0.011
Var* 0.016 0.008 0.010 0.014 0.006 0.010 0.013 0.005 0.011
CP 91.7 0.4 91.7 92.7 0.3 93.1 94.4 21.6 94.5
τ = 0
Bias 0.002 -0.741 0.002 0.003 -0.469 0.003 0.001 -0.167 0.001
Var 0.013 0.020 0.013 0.012 0.018 0.012 0.012 0.018 0.012
Var* 0.012 0.011 0.012 0.012 0.007 0.012 0.012 0.006 0.012
CP 93.5 0.0 93.1 94.3 0.9 94.0 95.5 42.3 95.5

continuous covariate
τ = 0.8
Bias 0.028 0.056 0.031 0.016 0.038 0.014 0.003 0.021 0.004
Var 0.012 0.008 0.010 0.007 0.004 0.005 0.004 0.003 0.004
Var* 0.010 0.001 0.009 0.007 0.001 0.005 0.004 0.001 0.003
CP 92.6 38.5 93.4 93.3 51.3 93.5 94.2 76.0 94.2
τ = 0.5
Bias 0.025 0.034 0.026 0.011 0.021 0.009 0.007 0.012 0.006
Var 0.008 0.006 0.007 0.006 0.004 0.005 0.004 0.004 0.004
Var* 0.007 0.002 0.006 0.005 0.002 0.004 0.004 0.002 0.004
CP 91.7 67.8 92.3 92.2 79.0 93.0 94.9 85.4 94.4
τ = 0
Bias 0.004 -0.012 0.004 0.002 -0.008 0.003 0.000 -0.004 0.000
Var 0.004 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004
Var* 0.004 0.005 0.004 0.004 0.004 0.004 0.004 0.003 0.004
CP 93.6 93.2 93.7 95.4 94.0 95.5 94.2 90.8 94.1
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Table 3.4: Relative efficiency of β̂New vs β̂LWA

RE = MSE(β̂New)/MSE(β̂LWA)
Binary Normal

τ 40/10 80/5 200/2 40/10 80/5 200/2
censoring=0.5

0.8 0.658 0.593 0.818 0.791 0.702 0.856
0.5 0.784 0.792 0.950 0.800 0.857 0.998
0 1.000 1.000 1.050 0.998 1.000 1.000

censoring=0.3
0.8 0.621 0.582 0.749 0.847 0.750 0.833
0.5 0.708 1.000 0.932 0.782 0.716 0.800
0 1.072 1.000 1.000 1.000 1.000 1.000

censoring=0.1
0.8 0.592 0.511 0.692 0.857 0.716 1.002
0.5 0.684 0.738 0.916 0.890 0.830 0.997
0 1.000 1.000 1.000 1.000 1.001 1.000

the relative efficiency (RE) defined as the ratio of mean squared error of the es-

timate from the proposed method to that from the Lee et al.’s method, i.e. RE =

MSE(β̂New)/MSE(β̂LWA), and report them in Table 3.4. The results indicate that the

proposed method can achieve considerable efficiency gain for regression parameters

when the correlation is strong and the cluster size is large, and it is still comparable

with the Lee et al.’s method when the correlation is weak or cluster size is small. For

example, when τ = 0.8 and K/ni = 80/5, the REs of β can be as low as 0.511 for

binary covariate, and 0.702 for continuous covariate. The REs tend to approach 1

when the correlation decreases to zero.

Table 3.5 shows the estimate of ρNew, and their empirical variances and the av-

erages of 100 bootstrap variances. To save time, we computed bootstrap variances

of ρ̂New only for 100 randomly selected data sets from the 1000 simulated data sets

based on B = 100. The similarity of the empirical variances and the bootstrap vari-

ances indicates that the bootstrap variance estimator works well for calculating the
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Table 3.5: Mean, empirical variance (Var), average of estimated variance (Var∗) of
ρ̂New

Type of 10/40 5/80 2/200
covariate Mean Var Var* Mean Var Var* Mean Var Var*

censoring rate = 0.5
τ = 0.8

discrete 0.173 0.005 0.005 0.180 0.007 0.006 0.179 0.014 0.013
continuous 0.173 0.007 0.006 0.175 0.008 0.007 0.181 0.017 0.015

τ = 0.5
discrete 0.081 0.002 0.002 0.084 0.003 0.003 0.086 0.007 0.006
continuous 0.081 0.002 0.002 0.083 0.002 0.003 0.082 0.006 0.004

τ = 0
discrete 0.029 0.003 0.003 0.027 0.0006 0.0007 0.028 0.002 0.002
continuous 0.028 0.003 0.003 0.027 0.0001 0.0001 0.031 0.004 0.002

censoring rate = 0.3
τ = 0.8

discrete 0.178 0.006 0.005 0.185 0.006 0.006 0.188 0.015 0.013
continuous 0.180 0.007 0.007 0.184 0.008 0.006 0.188 0.016 0.014

τ = 0.5
discrete 0.087 0.001 0.002 0.032 0.0007 0.0006 0.094 0.009 0.009
continuous 0.086 0.002 0.002 0.090 0.003 0.002 0.092 0.008 0.007

τ = 0
discrete 0.033 0.0004 0.0003 0.032 0.0008 0.0006 0.032 0.002 0.002
continuous 0.033 0.0003 0.0004 0.033 0.0009 0.0007 0.032 0.003 0.001

censoring rate = 0.1
τ = 0.8

discrete 0.181 0.005 0.005 0.186 0.006 0.007 0.189 0.014 0.012
continuous 0.182 0.007 0.006 0.191 0.009 0.008 0.192 0.017 0.016

τ = 0.5
discrete 0.091 0.001 0.002 0.094 0.002 0.003 0.094 0.006 0.005
continuous 0.093 0.002 0.002 0.092 0.003 0.003 0.092 0.007 0.006

τ = 0
discrete 0.035 0.0003 0.0003 0.034 0.0006 0.0007 0.035 0.003 0.002
continuous 0.036 0.0004 0.0005 0.036 0.0007 0.0007 0.036 0.002 0.002
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variance estimate of ρNew. Although ρNew does not correspond to the correlation

measure τ in the data generation, Table 3.5 shows that the estimated value of ρNew

agrees well with the value τ used in the data generation in the sense that when the

latter decreases, the former tends to decrease too. When there is no correlation in

clusters, the estimate of ρNew is very close to zero.

3.5 Applications

3.5.1 The Diabetic Retinopathy Study

We consider a data set from a Diabetic Retinopathy study which was conducted by the

National Eye Institute (Section 1.2.1). One objective of this study is to evaluate the

effectiveness of laser photocoagulation in delaying the onset of blindness in patients

with diabetic retinopathy. In our analysis, we consider 197 patients coming from 50%

random sample of the patients with “high-risk” diabetic retinopathy as defined by

the Diabetic Retinopathy Study criteria. By the end of the study, 54 treated and

101 control eyes in this group of patients had developed blindness. This data set has

been widely analyzed in the literature with respect to the marginal method (Huster

et al., 1989; Lee et al., 1992; Liang et al., 1993; Lin, 1994; and Segal et al., 1997).

The Kaplan-Meier survival curves by treatment and type of diabetes (Figure 1.1)

show that the treatment is more effective for adult diabetes patients than for juvenile

diabetes whereas in the untreated group, juvenile patients tend to have higher survival

probabilities than the adult patients. Since these two age groups have very different

patterns, we include the interaction term between treatment and the type of diabetes

in our analysis. Therefore, we consider three covariates, i.e., treatment (1 for treated

and 0 otherwise), type of diabetes (1 for adult and 0 otherwise) and the interaction

between them. Additionally, we are also interested in investigating the correlation
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Table 3.6: Estimated parameters from fitting the marginal proportional hazards
model to the Diabetic data using Lee et al.’s method (LWA), Segal et
al.’s method (SN) and the proposed method (New). The standard error
estimates are given in parentheses.

Covariate Methods
LWA SN New

Treatment -0.425 -0.784 -0.425
(0.185) (0.250) (0.184)

Diabetic Type 0.341 0.034 0.341
(0.196) (0.247) (0.195)

Interaction -0.846 -0.646 -0.846
(0.304) (0.362) (0.303)

ρ̂SN 0.215 -
(0.072) -

ρ̂New - 0.033
- (0.031)

that may exist between two eyes of a patient.

We fit the survival data with Lee et al.’s method (1992), Segal et al.’s method

(1993), and the proposed method, respectively. We use the nonparametric estimate

of the baseline survival function as in (3.6). The parameter estimates are summarized

in Table 3.6. Note that the standard errors of the estimated correlation parameters

ρ̂New and ρ̂SN in the table are obtained from 500 bootstrap samples separately.

From Table 3.6, we conclude that the estimates from the proposed method are

similar to the results from Lee et al.’s method. In addition, we observe a positive

correlation (ρ̂New = 0.033) between two eyes for each patient by incorporating an

exchangeable working correlation structure in estimating function (3.5). The vari-

ances of the estimates in the proposed method are a little bit smaller than those

in Lee et al.’s method (1992) although the significance of the regression parameters

do not change in these two methods. Based on Segal et al.’s method (1993) with
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exchangeable working correlation matrix, we also obtain a positive correlation esti-

mate (ρ̂SN = 0.215) which is similar to the dependence estimate based on the design

effect method (Segal et al., 1997). It is worth to note that we did not observe non-

convergence in the regression parameters as they mentioned when using the Poisson

likelihood. In addition, due to the bias of Segal et al.’s estimating function (3.4), the

estimates of the regression parameters are biased although the correlation estimate

ρ̂SN is significant.

3.5.2 The Study of Infections in Kidney Patients

We consider a data set from the kidney infection study (Section 1.2.2). Two recurrence

times (Ti1, Ti2) (defined in Section 1.2.2) and the corresponding censoring indicators

(δi1, δi2) were recorded for the ith patient (i = 1, · · · , 38). Other variables include

age (in years), gender (1 for female and 0 for male) and type of kidney disease (0 for

glomerulo nephritis (GN), 1 for acute nephritis (AN), 2 for polycystic kidney disease

(PKD), and 3 otherwise). This data set has been analyzed by using a multiplicative

frailty model (McGilchrist and Aisbett, 1991; McGilchrist, 1993) as well as a marginal

model (Chen et al., 2010).

The primary interest of the kidney patients study is to assess the the factors

such as age, gender and the type of kidney disease to the development of infections.

Meanwhile, we are also interested in investigating whether the recurrence times within

one patient are related. We fit the survival data with Lee et al.’s method, Segal et al.’s

method and the proposed method, respectively. To compare with a frailty model, we

also report the results based on the ML and REML estimation with log-normal frailty

for analyzing kidney patients data (McGilchrist, 1993). The parameter estimates are

summarized in Table 3.7. Note that the standard errors of the estimated correlation

parameters in the table are obtained from 500 bootstrap samples.
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Table 3.7: Estimated parameters from fitting the marginal proportional hazards
model to the Kidney Infections data using the robust method (LWA),
Segal’s method (SN), proposed method (New) as well as McGilchrist’s
methods (ML and REML). The standard error estimates are given in
parentheses.

Covariate Methods
LWA SN New ML REML

Age 0.003 -0.003 0.003 0.004 0.005
(0.007) (0.007) (0.006) 0.013 (0.015)

Sex -1.483 -0.241 -1.471 -1.605 -1.740
(0.401) (0.307) (0.345) (0.407) (0.472)

GN 0.088 0.025 0.090 0.132 0.186
(0.287) (0.277) (0.285) (0.461) (0.552)

AN 0.351 0.042 0.353 0.357 0.392
(0.275) (0.383) (0.279) (0.458) (0.553)

PKD -1.431 -0.034 -1.427 -1.295 -1.143
(0.871) (0.563) (0.834) (0.724) (0.829)

ρ̂SN - 0.301 - -
- (0.144) - -

ρ̂New - - 0.057 -
- - (0.097) -

θ̂ML - - - 0.179 -
- - - (0.120) -

θ̂REML - - - - 0.546
- - - - (0.310)

The results from the five methods show some substantial differences. For example,

the effect of PKD disease is marginally significant in our method (p-value=0.087) and

in ML method (p-value=0.074) while it is insignificant in other three methods. That

is, the patients with PKD tend to have lower infection risk than those without PKD.

All methods except Segal et al.’s method (1993) show that gender is a significant

factor, indicating that male patients are about four to five times more likely than

female patients to experience infections. Age appears to have no association with risk

of infection, after adjusting for gender and type of disease. Both the proposed method
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and Segal et al.’s method obtain a positive correlation between the failure times to

infection measured on each patient. Different from the strong correlation estimate

(ρ̂SN = 0.301) in Segal et al.’s method, the association estimate (ρ̂New = 0.057) in our

method is weak. From McGilchrist (1993), we know that the variance of log-normal

frailty θ is insignificant (p-value=0.136) in ML method and marginally significant

(p-value=0.078) in REML method. We also notice that the regression estimates are

similar between the proposed method and Lee et al.’s method.

3.6 Conclusions

Segal and Neuhaus (1993) considered a parametric marginal proportional hazards

model with Weibull baseline assumption for multivariate failure time data. However,

due to the bias of their estimating function, the corresponding regression estimators

are biased and the variance estimates are unstable. They also observed nonconver-

gence (Segal and Neuhaus,1993; Segal et al., 1997) in the regression parameters when

using the exchangeable working correlation matrix in their estimating equation. In

this chapter, we considered a semiparametric marginal proportional hazards model

and proposed an unbiased weighted estimating function for clustered survival data to

accommodate the correlation within clusters. The estimates of the regression parame-

ters are shown to be consistent and asymptotically normal under regularity conditions,

and their variances can be consistently estimated by a sandwich variance estimator.

The proposed estimating equation is easily implemented. Our numerical study shows

that the proposed method substantially improves the estimation efficiency of the re-

gression parameters, especially when the correlation within clusters is strong and the

cluster size is large, comparing with the existing marginal method (Lee et al., 1992).

The large sample approximation is reliable for the practical sample sizes. Therefore,
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the proposed marginal proportional hazards model could be considered as an alter-

native approach to the existing marginal models for classical clustered survival data.

In kidney infection study, we further compared the proposed marginal model with a

frailty model (McGlichrist, 1993), the results demonstrate that both models reveal a

correlation between two consecutive infection times measured on the same patient.

Note that although we considered paired survival times in applications, the proposed

method can readily be applied to studies with larger and unequal cluster sizes.
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Chapter 4

Parametric Marginal Proportional

Hazards Mixture Cure Model

4.1 Introduction

In this chapter, we consider a parametric marginal mixture cure model for clustered

survival data in which individuals may have long-term censored survival times and

there may also be correlations between individuals. We propose a generalized estimat-

ing equation approach by incorporating working correlation matrices into the M-step

of the EM algorithm to estimate the regression coefficients and the baseline hazard

function in the marginal model. The estimators of the regression parameters and the

baseline hazard function are shown to be consistent and asymptotically normal, and

their variances can be consistently estimated by a sandwich estimator. We conduct a

simulation study to assess finite sample properties and illustrate the proposed method

with an application to the analysis of a smoking cessation study.

This chapter is organized as follows. In Section 4.2, we introduce the marginal

proportional hazards mixture cure model and propose a set of estimating equations

for clustered survival data with a cure fraction. The asymptotic properties of the
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estimators are investigated in Section 4.3. We conduct a simulation study to evaluate

the finite sample performance of the proposed estimation method in Section 4.4,

and illustrate this method by analyzing the smoking cessation data in Section 4.5.

Conclusions and discussions are presented in Section 4.6.

4.2 Model and Estimation Method

We assume that the marginal survival function of T̃ ∗
ij is from a parametric proportional

hazards mixture cure model, i.e.,

S(t;Xij, Zij) = P (T̃ ∗
ij > t;Xij, Zij) = 1− π(Zij) + π(Zij)Su(t;Xij), (4.1)

where π(Zij) = P (Yij = 1;Zij) is in a logistic regression form

π(Zij) =
exp(γ′Zij)

1 + exp(γ′Zij)
, (4.2)

and Su(t;Xij) = P (T̃ ∗
ij > t|Yij = 1;Xij) is specified by the proportional hazards

model

Su(t;Xij) = Su0(t;α)
exp(β′Xij), (4.3)

and Su0(t;α), the baseline survival function of T̃ ∗
ij|{Yij = 1} when Xij = 0, is assumed

to follow Weibull distribution with Su0(t;α) = exp(−tα). Note that we use two-

parameter Weibull distribution where the scale parameter is considered as an intercept

term in the proportional hazards model. Here β and γ are pX+1 and pZ+1 unknown

regression parameters for Xij and Zij, and α is an unknown parameter in the baseline

distribution.

If we ignore the correlation within clusters, the unknown parameters in the model

are often estimated using the EM algorithm based on a complete log-likelihood

57



function from the augmented data O∗
c = {(T ∗

ij, δij, Xij, Zij, Yij), j = 1, · · · , ni, i =

1, · · · , K}. That is

lc(θ
∗;O∗

c ) = lc(γ, β, α;O
∗
c )

= log
K∏
i=1

ni∏
j=1

π(Zij)
yij {1− π(Zij)}1−yij

+ log
K∏
i=1

ni∏
j=1

[{λu0(t
∗
ij;α) exp(β

′Xij)}δij exp{−Λu0(t
∗
ij;α) exp(β

′Xij)}]yij

= log
K∏
i=1

ni∏
j=1

π(Zij)
yij {1− π(Zij)}1−yij

+ log
K∏
i=1

ni∏
j=1

[exp(β′Xij)
κij exp{− exp(β′Xij)}]yijt

∗α
ij

+ log
K∏
i=1

ni∏
j=1

(αt∗α−1
ij )δij , (4.4)

where λu0(t
∗
ij;α) = αt

∗(α−1)
ij and Λu0(t

∗
ij;α) = t∗αij are the hazard and cumulative haz-

ard functions corresponding to Su0(t
∗
ij;α), and κij = δij/t

∗α
ij . Equation (4.4) consists

of three terms. The first term corresponds to a log-likelihood function of γ based on a

logistic regression for yij only. The second term can be viewed as a log-likelihood func-

tion for β. The third term only contains the information about α. By differentiating

lc(θ
∗;O∗

c ) with respect to θ∗, we obtain the following three estimating equations,

UγEM
=

K∑
i=1

(UγEM
)i =

K∑
i=1

ni∑
j=1

(UγEM
)ij

=
K∑
i=1

{∂π(Zi)

∂γ
}T{A1/2

i IiA
1/2
i }−1{yi − π(Zi)} = 0, (4.5)
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UβEM
=

K∑
i=1

(UβEM
)i =

K∑
i=1

ni∑
j=1

(UβEM
)ij

=
K∑
i=1

{∂µ(Xi)

∂β
}T{B1/2

i IiB
1/2
i }−1Wi{κi − µ(Xi)} = 0, (4.6)

UαEM
=

K∑
i=1

(UαEM
)i =

K∑
i=1

ni∑
j=1

(UαEM
)ij

=
K∑
i=1

ni∑
j=1

[yijt
∗α
ij log(tij){κij − µ(Xij)}+ δij/α] = 0, (4.7)

where yi = (yi1, · · · , yini
)T , π(Zi) = {π(Zi1), · · · , π(Zini

)}T , Ai = diag[π(Zi1){1 −

π(Zi1)}, · · · , π(Zini
){1 − π(Zini

)}], κi = (κi1, · · · , κini
)T , µ(Xi) = {µ(Xi1), · · · ,

µ(Xini
)}T with µ(Xij) = exp(β′Xij), Bi = diag{µ(Xi1), · · · , µ(Xini

)},Wi = diag(yi1t
∗α
i1 ,

· · · , yini
t∗αini

), and Ii is an ni × ni identity matrix. Note that diag(A) implies a di-

agonal matrix with diagonal elements from the vector A. The E-step computes the

conditional expectation of lc(θ
∗;O∗

c ) with respect to Yij given the observed data and

the current estimates of the parameters. If the current estimates are denoted by

θ∗(m) = (γ(m), β(m), α(m)), then the E-step is equivalent to computing

g
(m)
ij = E(Yij|θ∗(m), O∗)

=

{
δij +

(1− δij)π(Zij)Su0(t
∗
ij)

exp(β′Xij)

1− π(Zij) + π(Zij)Su0(t∗ij)
exp(β′Xij)

}
θ∗=θ∗(m)

, (4.8)

where O∗ = {(T ∗
ij, δij, Xij, Zij), j = 1, · · · , ni, i = 1, · · · , K} is the observed data, and

the M-step is equivalent to solving equations (4.5), (4.6) and (4.7) after substituting

g
(m)
ij for yij in the equations. We denote the estimator θ̂∗ solving equations (4.5), (4.6)

and (4.7) as θ̂∗EM .

When the correlation within clusters is present, we show in Theorem 4.1 that
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the above estimating equations are unbiased if the marginals are correctly specified.

However, the estimates may not be efficient (Peng et al. 2007; Yu and Peng, 2008).

To increase the estimation efficiency of the method above, we follow the idea of the

generalized estimating equations for the generalized linear models (Liang and Zeger,

1986; Rosen et al., 2000) and propose to replace the identity matrix Ii in equations

(4.5) and (4.6) with working correlation matrices to account for the potential corre-

lations between cure statuses and between the failure times of uncured subjects in

each cluster. That is, the proposed estimating equations for γ and β are

UγES
=

K∑
i=1

(UγES
)i =

K∑
i=1

ni∑
j=1

(UγES
)ij

=
K∑
i=1

{∂π(Zi)

∂γ
}T{A1/2

i Qi(ρ1)A
1/2
i ϕ1}−1{yi − π(Zi)} = 0, (4.9)

UβES
=

K∑
i=1

(UβES
)i =

K∑
i=1

ni∑
j=1

(UβES
)ij

=
K∑
i=1

{∂µ(Xi)

∂β
}T{B1/2

i Qi(ρ2)B
1/2
i ϕ2}−1Wi{κi − µ(Xi)} = 0, (4.10)

where Qi(ρ1) = (qjk(ρ1))ni×ni
and Qi(ρ2) = (qjk(ρ2))ni×ni

are the working correlation

matrices, and ρ1 and ρ2 are unknown parameters in the matrices that need to be esti-

mated. The scale parameters ϕ1 and ϕ2 are incorporated in the estimating equations

to accommodate potential over- or under-dispersion.

In this chapter, we consider the exchangeable correlation structure for both Qi(ρ1)

and Qi(ρ2) as it is often used for clustered data. Such a correlation structure was also

considered by Segal and Neuhaus (1993) and Chatterjee and Shih (2001). Following

the moment method in Liang and Zeger (1986), ρ1 and ρ2 can be estimated from the
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standardized Pearson residuals. That is

ϕ̂1 =
K∑
i=1

ni∑
j=1

{r̂(1)ij }2/(N − pZ − 1), (4.11)

ρ̂1 = ϕ̂−1
1

K∑
i=1

∑
j>j′

r̂
(1)
ij r̂

(1)
ij′ /{

K∑
i=1

1

2
ni(ni − 1)− pZ − 1}, (4.12)

where r̂
(1)
ij = {g(m)

ij − π(Zij)}/[π(zij){1− π(Zij)}]
1
2 , and

ϕ̂2 =
K∑
i=1

ni∑
j=1

{r̂(2)ij }2/(N − pX − 1), (4.13)

ρ̂2 = ϕ̂−1
2

K∑
i=1

∑
j>j′

r̂
(2)
ij r̂

(2)
ij′ /{

K∑
i=1

1

2
ni(ni − 1)− pX − 1}, (4.14)

where r̂
(2)
ij = {κij − µ(Xij)}/{µ(Xij)}

1
2 . Note that g

(m)
ij is used to estimate ρ1, which

plays the role of yij.

We summarize the steps to obtain an estimate of θ∗ in this modified EM algorithm

as follows.

1. The E-step stays the same;

2. The M-step starts with an initial value of θ∗. We then obtain the estimates of

ϕ1, ρ1, ϕ2, and ρ2 from equations (4.11), (4.12), (4.13), and (4.14), which in

turn lead to a new estimate of θ∗ from equations (4.7), (4.9) and (4.10) after

substituting g
(m)
ij for yij in the equations. This step is iterated until convergence

to complete the M-step.

The E-step and the M-step are iterated until the EM algorithm converges to obtain

θ̂∗. Following Rosen et al. (2000), we name this modified EM algorithm the ES

algorithm and denote the estimator θ̂∗ solving equations (4.7), (4.9) and (4.10) as θ̂∗ES.

It is obvious that θ̂∗ES = θ̂∗EM when the working correlation matrices are the identity
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matrix and the scale parameters ϕ1 and ϕ2 are equal to 1. Due to the modifications

in the M-step, some useful properties of the EM algorithm are not available in the

ES algorithm. However, in Theorem 4.1, we can show that both θ̂∗ES and θ̂∗EM are

consistent and asymptotically normal estimators.

4.3 Asymptotic Properties and Variance Estimation

4.3.1 Asymptotic Properties of θ̂∗ES and θ̂∗EM

Theorem 4.1. Let θ∗0 be the true value of θ∗. Under some regularity conditions,

(a) both θ̂∗ES and θ̂∗EM are consistent estimators of θ∗0,

(b) K
1
2 (θ̂∗ES − θ∗0) → N(0,ΣES) and K

1
2 (θ̂∗EM − θ∗0) → N(0,ΣEM) (in distribution)

as K → ∞, where

ΣES = A−1
1 (θ∗0)V1(θ

∗
0){A−1

1 (θ∗0)}T , ΣEM = A−1
2 (θ∗0)V2(θ

∗
0){A−1

2 (θ∗0)}T ,

and A1(θ
∗
0) = E{B1(θ

∗
0)}−E{S1(θ

∗
0)ST

1 (θ
∗
0)}, V1(θ

∗
0) =

∑K
i=1E{S1i(θ

∗
0)}E{ST

1i(θ
∗
0)},

A2(θ
∗
0) = E{B2(θ

∗
0)}−E{S2(θ

∗
0)ST

2 (θ
∗
0)}, V2(θ

∗
0) =

∑K
i=1 E{S2i(θ

∗
0)}E{ST

2i(θ
∗
0)},

S1(θ
∗) = (UγES

, UβES
, UαEM

), B1(θ
∗) = −∂S1(θ∗)

∂θ∗
and S1i(θ

∗) = (UγES(i), UβES(i),

UαEM (i)), S2(θ
∗) = (UγEM

, UβEM
, UαEM

), B2(θ
∗) = −∂S2(θ∗)

∂θ∗
and S2i(θ

∗) = (UγEM (i),

UβEM (i), UαEM (i)),

(c) ΣES and ΣEM can be consistently estimated by Σ̂ES = A−1
1 (θ̂∗ES)V1(θ̂

∗
ES){A−1

1 (θ̂∗ES)}T

and Σ̂EM = A−1
2 (θ̂∗EM)V2(θ̂

∗
EM){A−1

2 (θ̂∗EM)}T respectively.

Proof. Given the regularity conditions (Huber, 1967), we adapt the proof in Rosen

et al. (2000) for censored data. Let (St, Ft, ω), (Sc, Fc, µ) and (Sy, Fy, ν) be σ-finite

measure spaces, with a product measure space (St⊗Sc⊗Sy, Ft⊗Fc⊗Fy, ω⊗µ⊗ ν),
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where St ⊂ Rdt , Sc ⊂ Rdc and Sy ⊂ Rdy . We assume a marginal probability model

pij(t, c, y|θ∗) for (t∗ij, cij, yij) ∈ St⊗Sc⊗Sy, which are strictly positive on St⊗Sc⊗Sy

and may depend on subscripts i and j via covariates, for each j = 1, · · · , ni, i =

1, · · · , K, associated with the product measure ω⊗µ⊗ν. Here θ∗ is some vector-valued

parameter in a subset Θ of Rdθ∗ with dθ∗ = dim(θ∗), and pij(t, c, y|·) is continuously

differentiable on Θ for each (t∗ij, cij, yij) ∈ St ⊗ Sc ⊗ Sy. Let pij(y|t∗ij, cij, θ∗) be the

conditional probability model for all yij ∈ Sy. That is

pij(y|t∗ij, cij, θ∗) = pij(t
∗
ij, cij, y|θ∗)/

∫
Sy

pij(t
∗
ij, cij, u|θ∗)dν(u).

Let qij(·, ·, ·; ·) be a dθ∗ × 1 vector-valued function composed by {(UγES
)ij, (UβES

)ij,

(UαEM
)ij}T . It is defined on St ⊗ Sc ⊗ Sy ⊗ Θ 7→ Rdθ∗ such that qij(·, ·, ·;φ) : St ⊗

Sc ⊗ Sy 7→ Rdθ∗ is measurable and integrable with respect to pij(·, ·, ·|θ∗) for each

φ ∈ Θ, and qij(t, c, y; ·) : Θ 7→ Rdθ∗ is continuously differentiable on Θ for each

(t∗ij, cij, yij) ∈ St⊗Sc⊗Sy. We then define a bivariate function H(·|·) : Θ⊗Θ 7→ Rdθ∗

by

H(φ|θ∗(m)) =
K∑
i=1

ni∑
j=1

∫
Sy

qij(t
∗
ij, cij, y|φ)pij(y|t∗ij, cij, θ∗(m)).

The E-step of the ES algorithm computes H(φ|θ∗(m)), and the S-step solves for φ =

θ∗(m+1) from the equation H(φ|θ∗(m)) = 0. Furthermore, we require the following

proposition given by Rosen et al. (2000).

Proposition 4.1. Assuming that the following conditions hold:

(a) H(·|·) is a bivariate continuous function on Θ⊗Θ, where Θ ⊆ Rdθ∗ , and

(b) qij(·, ·, ·; ·) is an unbiased estimating function satisfying E{qij(t∗ij, cij, yij; θ∗)|θ∗} =

0 for all θ∗ ∈ Θ and all j = 1, · · · , ni and i = 1, · · · , K.

63



If there exists a point θ̂∗ ∈ Θ such that limm→∞ θ∗(m) = θ̂∗, where θ∗(m) is a sequence

generated by the Expectation-Solution algorithm for m = 0, 1, 2, · · · , then

(i) θ̂∗ satisfies the estimating equation Ψ(θ̂∗) = H(θ̂∗|θ̂∗) = 0;

(ii) Ψ(θ∗) =
∑K

i=1

∑ni

j=1 qij = 0 is an unbiased estimating equation, satisfying

E{Ψ(θ∗)|θ∗} = 0 for each θ∗ ∈ Θ.

We now show that H(·|·) and qij(·, ·, ·; ·) satisfy conditions (a) and (b). Condition

(a) holds since

H(φ|θ∗(m)) =
K∑
i=1

ni∑
j=1

E{qij(t∗ij, cij, yij;φ)|t∗ij, cij, θ∗(m)}

=
K∑
i=1

ni∑
j=1

∑
yij

qij(t
∗
ij, cij, yij;φ)pij(yij|t∗ij, cij, θ∗(m)),

where

pij(yij = 1|t∗ij, cij, θ∗(m)) =

{
δij + (1− δij)

π(Zij)Su0(t
∗
ij)

exp(β′Xij)

1− π(Zij) + π(Zij)Su0(t∗ij)
exp(β′Xij)

}
θ=θ∗(m)

,

pij(yij = 0|t∗ij, cij, θ∗(m)) =

{
(1− δij)

1− π(Zij)

1− π(Zij) + π(Zij)Su0(t∗ij)
exp(β′Xij)

}
θ=θ∗(m)

,

and the qij(t, c, y; ·)’s and pij(t, c, y|·)’s are continuous functions for each (t∗ij, cij, yij) ∈

St ⊗ Sc ⊗ Sy.

To prove condition (b) holds, i.e.,

E{qij(t∗ij, cij, yij; θ∗)|θ∗} =

∫ ∫ ∑
y

pij(y|t, c, θ∗)qij(t, c, y; θ∗)dFij(t|c, θ∗)dFij(c|θ∗) = 0,

we first investigate the unbiasedness of the components of qij(t
∗
ij, cij, yij; θ

∗) corre-

sponding to γ.
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Let πij = π(Zij). Then

E{(UγES
)ij|θ∗} = E[E{(UγES

)ij|c, θ∗}|θ∗]

=

∫ ∫ ∑
y

pij(y|t, c, θ∗)
ni∑
l=1

ϕ−1
1 Zil{πil(1− πil)}1/2Q̃i(ρ1)lj

×{πij(1− πij)}−1/2(yij − πij)dFij(t|c, θ∗)dFij(c|θ∗)

= ϕ−1
1

ni∑
l=1

Zil

∫ ∫ ∑
y

pij(y|t, c, θ∗){πil(1− πil)}1/2Q̃i(ρ1)lj

×{πij(1− πij)}−1/2(yij − πij)dFij(t|c, θ∗)dFij(c|θ∗)

= ϕ−1
1

ni∑
l=1

Zil{πil(1− πil)}1/2Q̃i(ρ1)lj{πij(1− πij)}−1/2

×{
∫ ∫ ∑

y

ypij(y|t, c, θ∗)dFij(t|c, θ∗)dFij(c|θ∗)− πij}

= ϕ−1
1

ni∑
l=1

Zil{πil(1− πil)}1/2Q̃i(ρ1)lj{πij(1− πij)}−1/2{πij − πij} = 0,

where Q̃i(ρ1) = Q−1
i (ρ1) and Qi(ρ1) is an ni × ni working correlation matrix for

i = 1, · · · , K.

To prove the unbiasedness of the components of qij(t
∗
ij, cij, yij; θ

∗) corresponding

to β, let µij = µ(Xij). We first look at the unbiasedness of {(UβES
)ij|yij, cij, θ∗}

E{(UβES
)ij|yij, cij, θ∗}

=

∫ ni∑
l=1

ϕ−1
2 Xilµ

1/2
il Q̃i(ρ2)ljµ

−1/2
ij yijt

α(κij − µij)dFij(t|yij, cij, θ∗)

= {ϕ−1
2

ni∑
l=1

Xilµ
1/2
il Q̃i(ρ2)ljµ

−1/2
ij }

∫
yijt

α(κij − µij)dFij(t|yij, cij, θ∗)

= Mij

∫
Xijyijt

α(κij − µij)dFij(t|yij, cij, θ∗)

= Mij

∫
∂µij

∂β

1

µij

yij(δij − tαµij)dFij(t|yij, cij, θ∗)

= Mij

∫
∂

∂β
log[{µδij

ij exp(−tαµij)}yij(tα−1α)δij ]dFij(t|yij, cij, θ∗)
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= Mij

∫
∂

∂β
log[{(tαµij)

δij exp(−tαµij)}yij(
αtα−1µij

tαµij

)δij ]dFij(t|yij, cij, θ∗)

= Mij

∫
∂

∂β
log([λδij

u (t;Xij) exp{−Λu(t;Xij)}]yij)dFij(t|yij, cij, θ∗)

= Mijyij

∫
∂

∂β
log[λδij

u (t;Xij) exp{−Λu(t;Xij)}]dFij(t|yij, cij, θ∗),

where Mij = {ϕ−1
2

∑ni

l=1Xilµ
1/2
il Q̃i(ρ2)ljµ

−1/2
ij /Xij} and Q̃i(ρ2) = Q−1

i (ρ2) and Qi(ρ2)

is an ni × ni working correlation matrix for i = 1, · · · , K. Therefore

E{(UβES
)ij|cij, θ∗}

=
∑
y

pij(y|cij, θ∗)E{(UβES
)ij|y, cij, θ∗}

=
∑
y

pij(y|cij, θ∗)Mijy

∫
∂

∂β
log[λδij

u (t|cij, θ∗) exp{−Λu(t|cij, θ∗)}]dFij(t|y, cij, θ∗)

= πijMij

∫
∂

∂β
[log{f δij

u (t|cij, θ∗)S1−δij
u (t|cij, θ∗)}]dFu(t|cij, θ∗)

= πijMij{
∫

δij
∂

∂β
log fu(t|cij, θ∗)dFu(t|cij, θ∗)

+

∫
(1− δij)

∂

∂β
logSu(t|cij, θ∗)dFu(t|cij, θ∗)}

= πijMij{
∫ cij

0

1

fu(t|cij, θ∗)
∂fu(t|cij, θ∗)

∂β
dFu(t|cij, θ∗)

+

∫ ∞

cij

1

Su(t|cij, θ∗)
∂Su(t|cij, θ∗)

∂β
dFu(t|cij, θ∗)}

= πijMij{
∫ cij

0

∂fu(t|cij, θ∗)
∂β

dt+

∫ ∞

cij

∂Su(t|cij, θ∗)
∂β

dΛu(t|cij, θ∗)}

= πijMij
∂

∂β
{
∫ cij

0

fu(t|cij, θ∗)dt+
∫ ∞

cij

λu(t|cij, θ∗)Su(t|cij, θ∗)dt}

= πijMij
∂

∂β
{Fu(cij|cij, θ∗) + Su(cij|cij, θ∗)} = πijMij

∂

∂β
(1) = 0.

Since the component of qij(t
∗
ij, cij, yij; θ

∗) corresponding to α is a score function

based on the complete log likelihood function lc, following the same idea used in the
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unbiasedness of {(UβES
)ij|cij, θ∗}, we can show that

E{(UαEM
)ij|cij, θ∗} =

∑
y

pij(y|cij, θ)E{(UαEM
)ij|y, cij, θ∗} = 0,

where UαEM
=
∑K

i=1

∑ni

j=1(UαEM
)ij. Therefore, we have

K∑
i=1

ni∑
j=1

E{qij(t∗ij, cij, yij; θ∗)|θ∗} = E[E{qij(t∗ij, cij, yij; θ∗)|cij, θ∗}|θ∗] = 0,

and this completes the verification of condition (b) of Proposition 4.1. That is, we

prove that if the ES algorithm converges, θ̂∗ES is a solution of unbiased estimating

equations Ψ(θ∗) of θ∗. Therefore, based on the regularity conditions, the asymptotic

normality of θ̂∗ES and its covariance estimation follow from the result of Huber (1967)

as the number of clusters K → ∞.

The consistency and asymptotic normality of θ̂∗EM can be established similarly

after replacing the working correlation structures with the identity matrix and re-

placing ϕ1 and ϕ2 with 1 in the estimating functions (4.9) and (4.10), which reduce

to (4.5) and (4.6).

4.3.2 Variance Estimation for θ̂∗ES, θ̂
∗
EM , ρ̂1 and ρ̂2

The variance and standard error of θ̂∗ES can be obtained based on Theorem 4.1 (c).

Obtaining V1(θ̂
∗
ES) is straightforward. We need to find E{S1i(θ̂

∗
ES)} = {E(UγES (i)),

E(UβES (i)), E(UαEM (i))} for i = 1, · · · , K and calculate V1(θ
∗) =

∑K
i=1E{S1i(θ̂

∗
ES)}

E{ST
1i(θ̂

∗
ES)}. Here we provide some details for calculating A1(θ

∗). To simplify the

notations, we let (Uγ, Uβ, Uα) = (UγES
, UβES

, UαEM
). The first term in A1(θ̂

∗
ES),
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E(B1(θ̂
∗
ES)), can be written as

E(B1(θ̂
∗
ES)) = −E


Uγγ Uγβ Uγα

Uβγ Uββ Uβα

Uαγ Uαβ Uαα

 = −E


Uγγ 0 0

0 Uββ Uβα

0 Uαβ Uαα

 .

The (ν, ω) {ω, ν = 1, 2, · · · , dim(γ)} element in the first dim(γ)×dim(γ) matrix

Uγγ is

K∑
i=1

A
(γ)
i (B

(γ)
i C

(γ)
i −D

(γ)
i E

(γ)
i ),

where A
(γ)
i = (Zi1ν , Zi2ν , · · · , Ziniν)1×ni

,

B
(γ)
i =


B

(γ)
i11 · · · B

(γ)
i1ni

...
. . .

...

B
(γ)
ini1

· · · B
(γ)
inini


ni×ni

with B
(γ)
imn = 1

2ϕ1
{Zimω(1− 2πim)−Zinω(1− 2πin)}{πim(1−πim)}1/2{πin(1−πin)}−1/2

Q̃i(ρ1)mn for m ̸= n, otherwise B
(γ)
imm = 0, m,n = 1, 2, · · · , ni. C

(γ)
i = (yi1 − πi1, yi2 −

πi2, · · · , yini
− πini

)T ,

D
(γ)
i =


D

(γ)
i11 · · · D

(γ)
i1ni

...
. . .

...

D
(γ)
ini1

· · · D
(γ)
inini


ni×ni

68



with D
(γ)
imn = ϕ−1

1 {πim(1 − πim)}1/2{πin(1 − πin)}−1/2Q̃i(ρ1)mn for m ̸= n, other-

wise D
(γ)
imm = Q̃i(ρ1)mm. E

(γ)
i = {Zi1ωπi1(1 − πi1), Zi2ωπi2(1 − πi2), · · · , Ziniωπini

(1 −

πini
)}T1×ni

.

The (ν, ω) {ω, ν = 1, 2, · · · , dim(β)} element in the second block diagonal dim(β)

× dim(β) matrix Uββ is

K∑
i=1

A
(β)
i (B

(β)
i WiC

(β)
i −D

(β)
i WiE

(β)
i ),

where A
(β)
i = (Xi1ν , Xi2ν , · · · , Xiniν)1×ni

,

B
(β)
i =


B

(β)
i11 · · · B

(β)
i1ni

...
. . .

...

B
(β)
ini1

· · · B
(β)
inini


ni×ni

with B
(β)
imn = 1

2ϕ2
(Ximω−Xinω)(µim)

1/2(µin)
−1/2Q̃i(ρ2)mn form ̸= n, otherwise B

(β)
imm =

0, m,n = 1, 2, · · · , ni. C
(β)
i = (κi1 − µi1, κi2 − µi2, · · · , κini

− µini
)T ,

D
(β)
i =


D

(β)
i11 · · · D

(β)
i1ni

...
. . .

...

D
(β)
ini1

· · · D
(β)
inini


ni×ni

with D
(β)
imn = ϕ−1

2 (µim)
1/2(µin)

−1/2Q̃i(ρ2)mn for m ̸= n, otherwise D
(β)
imm = Q̃i(ρ2)mm.

E
(β)
i = (Xi1ωµi1, Xi2ωµi2, · · · , Xiniωµini

)T , and Wi = diag(yi1t
∗α
i1 , yi2t

∗α
i2 · · · , yini

t∗αini
).
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The last diagonal element Uαα is

−
K∑
i=1

ni∑
j=1

[yij{log(tij)}2tαijµij + δij/α
2].

The off-diagonal element Uβα, a matrix of order dim(β)× 1, is

−
K∑
i=1

A
(β)
i D

(β)
i WiF

(β)
i ,

where F
(β)
i = {µi1 log(t

∗
i1), µi2 log(t

∗
i2), · · · , µini

log(t∗ini
)}T .

The off-diagonal 1×dim(β) matrix Uαβ has elements

−
K∑
i=1

A
(β)
i WiF

(β)
i .

Next we compute the second term of A1(θ̂
∗
ES), i.e.,

E{S1(θ̂
∗
ES)ST

1 (θ̂
∗
ES)} = E


UγUγ UγUβ UγUα

UβUγ UβUβ UβUα

UαUγ UαUβ UαUα

 ,

where

E(UγUγ) = E{
K∑
i=1

RT
1iV

−1
1i (yi − gi)}2

= E{
K∑
i=1

RT
1iV

−1
1i (yi − gi)(yi − gi)

TV −T
1i R1i}

=
K∑
i=1

RT
1iV

−1
1i E{(yi − gi)(yi − gi)

T}V −T
1i R1i,
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E(UβUβ) = E{
K∑
i=1

RT
2iV

−1
2i (yi − gi)(δi − t∗αi µi)}2

= E{
K∑
i=1

RT
2iV

−1
2i (yi − gi)(δi − t∗αi µi)(δi − t∗αi µi)

T (yi − gi)
TV −T

2i R2i}

=
K∑
i=1

RT
2iV

−1
2i E{(yi − gi)(δi − t∗αi µi)(δi − t∗αi µi)

T (yi − gi)
T}V −T

2i R2i,

E(UαUα) = E[
K∑
i=1

{log(t∗i )(δi − t∗αi µi)}T (yi − gi)]
2

= E[
K∑
i=1

{log(t∗i )(δi − t∗αi µi)}T (yi − gi)(yi − gi)
T log(t∗i )(δi − t∗αi µi)]

=
K∑
i=1

{log(t∗i )(δi − t∗αi µi)}TE{(yi − gi)(yi − gi)
T} log(t∗i )(δi − t∗αi µi),

E(UγUβ) = E{
K∑
i=1

RT
1iV

−1
1i (yi − gi)

K∑
i=1

RT
2iV

−1
2i (yi − gi)(δi − t∗αi µi)}

= E{
K∑
i=1

RT
1iV

−1
1i (yi − gi)(δi − t∗αi µi)

T (yi − gi)
TV −T

2i R2i}

=
K∑
i=1

RT
1iV

−1
1i E{(yi − gi)(δi − t∗αi µi)

T (yi − gi)
T}V −T

2i R2i,

E(UγUα) = E[
K∑
i=1

RT
1iV

−1
1i (yi − gi)

K∑
i=1

{log(t∗i )(δi − t∗αi µi)}T (yi − gi)]

= E{
K∑
i=1

RT
1iV

−1
1i (yi − gi)(yi − gi)

T log(t∗i )(δi − t∗αi µi)}

=
K∑
i=1

RT
1iV

−1
1i E{(yi − gi)(yi − gi)

T} log(t∗i )(δi − t∗αi µi),
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E(UβUα) = E[
K∑
i=1

RT
2iV

−1
2i (yi − gi)(δi − t∗αi µi)

K∑
i=1

{log(t∗i )(δi − t∗αi µi)}T (yi − gi)]

= E[
K∑
i=1

RT
2iV

−1
2i (yi − gi)(δi − t∗αi µi)(yi − gi)

T{log(t∗i )(δi − t∗αi µi)}]

=
K∑
i=1

RT
2iV

−1
2i E{(yi − gi)(δi − t∗αi µi)(yi − gi)

T}{log(t∗i )(δi − t∗αi µi)}.

Here R1i =
∂π(Zi)
∂γ

, V1i = A
1/2
i Qi(ρ1)A

1/2
i ϕ1, R2i =

∂µ(Xi)
∂β

and V2i = B
1/2
i Qi(ρ2)B

1/2
i ϕ2,

gi = (gi1, · · · , gini
)T , δi = (δi1, · · · , δini

)T , t∗αi = (t∗αi1 , · · · , t∗αini
)T and µi = (µi1, · · · , µini

)T .

For θ̂∗EM , the formulas for variance estimation are similar. Note that Yu and Peng

(2008) also provided a jackknife variance estimate for θ̂∗EM .

To obtain the variance estimates of the correlation coefficients ρ̂1 and ρ̂2, we

consider a bootstrap method which is similar to the method we used for ρ̂New in

Section 3.3.2. That is, a bootstrap sample is obtained from sampling clusters with

replacement and is fitted with the proposed method to obtain the parameter estimates

ρ̂1b and ρ̂2b, separately. Then the variance estimates of ρ̂1 and ρ̂2 can be estimated

by
∑B

i=1(ρ̂
(i)
1b −

∑B
j=1 ρ̂

(j)
1b /B)2/(B− 1) and

∑B
i=1(ρ̂

(i)
2b −

∑B
j=1 ρ̂

(j)
2b /B)2/(B− 1), where

B is the number of bootstrap samples for each simulated data set.

4.4 A Simulation Study

We conduct an extensive simulation study to investigate the performance of the pro-

posed method and to compare its estimates with those from existing methods. The

study considers various cluster sizes with different correlation settings for both dis-

crete and continuous covariates.

The data in the simulation are generated from the marginal proportional hazards

mixture cure model (4.1), (4.2) and (4.3) with a single covariate in bothX and Z. The

parameters in the model are set to θ∗ = (γ0, γ1, β0, β1, α) = (0.4,−1, log(2),−1, 1).
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The single covariate is either a binary covariate generated from the Bernoulli distri-

bution with mean 0.5 or a continuous covariate generated from the standard normal

distribution.

For each data set, we consider the following pairs of the number of clusters and the

cluster size: (40,10), (80,5), and (200,2). For each cluster in a data set, correlated Yij’s

and T̃ ∗
ij’s given Yij = 1 are generated. Specifically, to generate the Yij and Yij′ that

satisfy P (Yij = 1;Zij) = π(Zij), P (Yij′ = 1;Zij′) = π(Zij′) and corr(Yij, Yij′) = ζ, we

adopt the method proposed by Emrich and Piedmonte (1991). That is, given π(Zij),

π(Zij′) and ζ, we solve for ρ̃ijj′ through

Φ[{zπ(Zij), zπ(Zij′ )
}, ρ̃ijj′ ]− π(Zij)π(Zij′)

π(Zij)π(Zij′){1− π(Zij)}{1− π(Zij′)}
= ζ,

where Φ(·, ρ̃ijj′) is the standard bivariate normal distribution function with the cor-

relation coefficient equal to ρ̃ijj′ . After obtaining ρ̃ijj′ for the ith cluster, we use them

to form a correlation matrix Σi and then generate (zi1, · · · , zini
) from the multivari-

ate normal distribution N(0,Σi). The correlated Yij’s in the cluster with specified

correlation ζ can be obtained from (zi1, · · · , zini
) via Yij = I{zij < zπ(Zij)}, where

zπ(Zij) is the π(Zij)th quantile of the standard normal distribution. An R software

package “mvtBinaryEP” (By and Qaqishi, 2011) is available to produce binary data

following the procedure above.

To generate the correlated failure times for uncured patients with the given marginal

survival function in (4.3), we use the Clayton copula model (Clayton, 1978),

P (T̃ ∗
i1 > ti1, · · · , T̃ ∗

ini
> tini

|Yij = 1, Xij, j = 1, · · · , ni)

= {
ni∑
j=1

Su(t
∗
ij;Xij)

−ξ − ni + 1}−1/ξ,
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where ξ measures the degree of dependence among the failure times of uncured pa-

tients within cluster i and it relates to Kendall’s tau by ξ = 2τ/(1 − τ). When τ

takes 0.8, 0.5 and 0, the corresponding values of ξ are 8, 2 and 0, respectively, and

they correspond to strong, weak and zero correlation.

We consider three configurations of (ζ, τ): (0.4, 0.8), (0.2, 0.5) and (0, 0). A pair

of larger values of (ζ, τ) imply a stronger correlation of the cure status and the failure

times of uncured patients in a cluster. When (ζ, τ) = (0, 0), clustering does not

produce correlations. Finally, the censoring times are generated independently from

the uniform distribution in (0,12).

For each setting above, we generate 1000 data sets and fit each data set with

the marginal model using the proposed estimation equations. As a comparison, we

also estimate the parameters in the marginal model using the EM algorithm (Yu

and Peng, 2008). The initial value of θ∗ in our simulation study is set to 0. The

biases, empirical variances (Var), the averages of estimated variances (Var*), and the

coverage probabilities of 95% confidence intervals of the parameter estimates, under

each method, are reported in Table 4.1 and Table 4.2 for the binary and continuous

covariate cases, respectively.

The results indicate that the proposed ES estimation method outperforms the

existing EM estimation method. The average estimated variances of the regression

parameters from the ES method are close to their empirical variances in all cases, and

the 95% confidence interval coverage rates are satisfactory and close to the nominal

level. When the correlation within a cluster is strong and the cluster size is large, the

biases and variances, particularly the variances of γ1 and β1, from the ES method are

smaller than those from the EM method. Given the same sample size, the variances

of the parameters except γ1 tend to decrease as the cluster size decreases or as the

correlation decreases. When the correlation reduces to zero, the biases and empirical

74



Table 4.1: Bias, empirical variance (Var), average of estimated variance (Var∗), cov-
erage percentage (CP) of 95% confidence intervals of the estimate of
θ∗ = (γ0, γ1, β0, β1, α) with binary covariate.

ni/K EM ES
γ0 γ1 β0 β1 α γ0 γ1 β0 β1 α

(ζ, τ) = (0.4, 0.8)
10/40 Bias 0.005 -0.019 0.031 -0.047 0.045 0.004 -0.017 0.030 -0.046 0.044

Var 0.061 0.048 0.043 0.057 0.022 0.055 0.034 0.041 0.047 0.022
Var* 0.061 0.055 0.040 0.057 0.020 0.052 0.038 0.038 0.042 0.022
CP 95.2 95.1 92.2 93.2 93.0 94.2 95.6 92.5 93.1 94.4

5/80 Bias 0.012 -0.013 0.021 -0.028 0.026 0.011 -0.012 0.020 -0.027 0.025
Var 0.040 0.052 0.024 0.044 0.012 0.038 0.040 0.023 0.038 0.012
Var* 0.040 0.051 0.022 0.043 0.010 0.035 0.047 0.022 0.039 0.012
CP 94.9 95.1 92.3 92.6 92.7 94.1 96.0 93.0 93.7 93.5

2/200 Bias 0.008 0.002 0.011 -0.013 0.018 0.008 0.003 0.010 -0.013 0.017
Var 0.025 0.046 0.014 0.038 0.006 0.024 0.040 0.014 0.036 0.006
Var* 0.027 0.051 0.013 0.037 0.006 0.026 0.048 0.013 0.035 0.006
CP 96.0 96.0 92.9 93.8 93.8 96.0 96.6 92.9 94.3 94.6

(ζ, τ) = (0.2, 0.5)
10/40 Bias -0.005 0.005 0.026 -0.038 0.035 -0.006 0.006 0.025 -0.036 0.035

Var 0.040 0.050 0.034 0.043 0.011 0.038 0.044 0.033 0.039 0.011
Var* 0.041 0.051 0.031 0.041 0.010 0.038 0.052 0.029 0.039 0.011
CP 95.9 95.5 92.9 93.6 93.8 95.2 96.7 91.3 92.3 93.4

5/80 Bias -0.003 -0.008 0.015 -0.012 0.017 -0.004 -0.006 0.015 -0.012 0.016
Var 0.032 0.048 0.021 0.038 0.007 0.031 0.044 0.020 0.035 0.007
Var* 0.031 0.051 0.019 0.039 0.006 0.029 0.049 0.019 0.036 0.007
CP 94.9 95.0 92.0 93.6 93.8 93.8 95.5 93.1 94.6 94.4

2/200 Bias 0.001 0.002 0.013 -0.007 0.014 0.001 0.002 0.013 -0.006 0.014
Var 0.025 0.051 0.013 0.033 0.005 0.025 0.049 0.013 0.032 0.005
Var* 0.025 0.051 0.012 0.036 0.004 0.024 0.050 0.012 0.034 0.004
CP 95.2 94.9 93.9 95.3 94.2 95.7 95.1 93.9 96.1 94.2

(ζ, τ) = (0, 0)
10/40 Bias -0.002 0.002 0.007 -0.003 0.011 -0.003 0.002 0.006 -0.002 0.011

Var 0.021 0.047 0.011 0.034 0.004 0.021 0.047 0.011 0.034 0.004
Var* 0.022 0.050 0.010 0.034 0.004 0.022 0.049 0.010 0.033 0.004
CP 95.0 95.3 93.2 93.4 93.2 95.1 94.9 93.6 93.2 93.2

5/80 Bias 0.005 -0.006 0.005 -0.004 0.008 0.005 -0.006 0.005 -0.003 0.008
Var 0.023 0.048 0.011 0.034 0.004 0.023 0.048 0.011 0.034 0.004
Var* 0.023 0.051 0.010 0.035 0.004 0.023 0.050 0.010 0.033 0.004
CP 95.3 96.2 93.2 93.9 94.9 95.4 95.7 93.4 93.1 94.9

2/200 Bias 0.003 -0.006 0.013 -0.015 0.010 0.003 -0.007 0.013 -0.015 0.010
Var 0.023 0.047 0.011 0.035 0.004 0.023 0.047 0.011 0.035 0.004
Var* 0.023 0.051 0.010 0.035 0.004 0.023 0.050 0.010 0.033 0.004
CP 95.2 95.3 93.6 93.9 94.5 95.1 95.4 93.6 94.6 94.3
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Table 4.2: Bias, empirical variance (Var), average of estimated variance (Var∗), cov-
erage percentage (CP) of 95% confidence intervals of the estimate of
θ∗ = (γ0, γ1, β0, β1, α) with continuous covariate.

ni/K EM ES
γ0 γ1 β0 β1 α γ0 γ1 β0 β1 α

(ζ, τ) = (0.4, 0.8)
10/40 Bias 0.003 -0.027 0.037 -0.047 0.040 0.003 -0.024 0.035 -0.036 0.037

Var 0.052 0.074 0.044 0.048 0.019 0.052 0.034 0.043 0.032 0.019
Var* 0.053 0.065 0.039 0.046 0.017 0.048 0.043 0.037 0.033 0.018
CP 95.0 91.4 92.0 92.7 92.1 93.2 96.2 90.8 93.8 93.3

5/80 Bias 0.000 -0.007 0.019 -0.027 0.025 0.000 -0.008 0.018 -0.020 0.023
Var 0.033 0.044 0.021 0.028 0.010 0.032 0.030 0.021 0.020 0.010
Var* 0.032 0.045 0.019 0.027 0.009 0.029 0.034 0.018 0.020 0.009
CP 94.4 95.4 92.1 93.2 93.3 93.5 96.0 92.4 93.8 94.2

2/200 Bias -0.001 -0.006 0.014 -0.019 0.016 -0.001 -0.003 0.013 -0.016 0.014
Var 0.018 0.027 0.011 0.014 0.004 0.018 0.025 0.011 0.012 0.004
Var* 0.018 0.029 0.010 0.014 0.004 0.018 0.027 0.010 0.014 0.005
CP 95.5 96.9 93.3 94.0 94.5 94.8 95.8 93.0 95.0 95.0

(ζ, τ) = (0.2, 0.5)
10/40 Bias 0.001 -0.021 0.028 -0.031 0.031 -0.001 -0.021 0.028 -0.029 0.030

Var 0.036 0.025 0.029 0.022 0.011 0.036 0.022 0.028 0.019 0.011
Var* 0.035 0.025 0.026 0.019 0.009 0.032 0.025 0.026 0.017 0.009
CP 94.9 94.0 92.2 92.9 92.2 93.8 96.2 91.3 91.8 91.9

5/80 Bias 0.004 -0.014 0.021 -0.021 0.018 0.003 -0.013 0.021 -0.017 0.017
Var 0.023 0.025 0.017 0.014 0.006 0.023 0.023 0.017 0.013 0.006
Var* 0.023 0.024 0.016 0.013 0.005 0.022 0.023 0.015 0.012 0.006
CP 94.9 94.2 91.5 92.3 93.9 94.8 95.3 92.1 94.0 94.2

2/200 Bias 0.002 -0.013 0.009 -0.012 0.011 0.002 -0.013 0.009 -0.011 0.011
Var 0.016 0.023 0.010 0.011 0.004 0.016 0.022 0.010 0.010 0.004
Var* 0.017 0.022 0.009 0.010 0.004 0.016 0.022 0.009 0.010 0.004
CP 95.7 95.4 94.0 93.9 94.9 95.5 95.5 93.5 94.5 94.8

(ζ, τ) = (0, 0)
10/40 Bias 0.007 -0.004 0.007 -0.008 0.007 0.007 -0.003 0.007 -0.008 0.007

Var 0.014 0.020 0.007 0.009 0.003 0.014 0.020 0.007 0.009 0.003
Var* 0.014 0.021 0.007 0.009 0.003 0.014 0.021 0.006 0.009 0.003
CP 93.3 95.4 92.8 93.9 95.0 93.7 95.1 92.4 94.1 94.7

5/80 Bias 0.003 -0.013 0.009 -0.014 0.010 0.003 -0.013 0.009 -0.013 0.009
Var 0.013 0.022 0.007 0.009 0.003 0.013 0.022 0.007 0.009 0.003
Var* 0.014 0.022 0.007 0.009 0.003 0.014 0.022 0.007 0.009 0.003
CP 95.4 94.5 94.0 94.3 94.0 95.6 94.2 93.6 94.8 94.1

2/200 Bias 0.007 -0.010 0.013 -0.008 0.012 0.007 -0.010 0.013 -0.008 0.012
Var 0.015 0.020 0.007 0.010 0.003 0.015 0.020 0.007 0.010 0.003
Var* 0.014 0.022 0.007 0.009 0.003 0.014 0.022 0.007 0.009 0.003
CP 94.6 95.7 94.0 93.0 93.8 94.6 95.6 94.1 93.7 94.0
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variances based on the ES method and the EM method are comparable.

To further evaluate the efficiency gains from the ES method, we calculate the

relative efficiency (RE) defined as the ratio of mean squared errors of the estimates

from the ES method to that from the EM method, i.e., RE = MSEES/MSEEM , and

report them in Table 4.3. The results indicate that the proposed ES method can

Table 4.3: Relative efficiency of θ̂∗ES vs θ̂∗EM .

Type of RE = MSE(θ̂∗ES)/MSE(θ̂∗EM)
ni/K covariate γ0 γ1 β0 β1 α
ζ = 0.4, τ = 0.8

discrete 0.902 0.709 0.953 0.830 0.996
10/40

continuous 1.000 0.463 0.975 0.663 0.989
discrete 0.950 0.769 0.957 0.865 0.996

5/80
continuous 0.970 0.683 0.998 0.710 0.991
discrete 0.960 0.870 0.999 0.948 0.994

2/200
continuous 1.000 0.925 0.998 0.853 0.986

ζ = 0.2, τ = 0.5
discrete 0.950 0.880 0.970 0.907 1.000

10/40
continuous 1.000 0.882 0.966 0.864 0.995
discrete 0.969 0.916 0.953 0.921 0.995

5/80
continuous 1.000 0.920 1.000 0.920 0.994
discrete 1.000 0.961 1.000 0.969 1.000

2/200
continuous 1.000 0.957 1.000 0.908 1.000

ζ = 0, τ = 0
discrete 1.000 1.000 0.999 1.000 1.000

10/40
continuous 1.000 1.000 1.000 1.000 1.000
discrete 1.000 1.000 1.000 1.000 1.000

5/80
continuous 1.000 1.000 1.000 0.997 0.994
discrete 1.000 1.000 1.000 1.000 1.000

2/200
continuous 1.000 1.000 1.000 1.000 1.000

achieve considerable efficiency gain for regression parameters, particularly for γ1 and

β1, when the correlation is strong, and it is still comparable with the EM method

when the correlation is weak. For example, when the correlation is strong, that is

(ζ, τ) = (0.4, 0.8), the REs of γ1 can be as low as 0.709 for binary covariate and 0.463
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for continuous covariate and the REs of β1 can be as low as 0.830 for binary covariate

and 0.663 for continuous covariate. The REs tend to approach 1 when the correlation

becomes weak.

The proposed estimation method also produces estimates of ρ1 and ρ2, the cor-

relation coefficients in the two working correlation matrices. Even though they do

not correspond to the correlation measures ζ and τ in the data generation, Table 4.4

shows that the estimated values of ρ1 and ρ2 agree well with the values of ζ and τ

used in the data generation in the sense that when the latter decrease, the former

tend to decrease too. When there is no correlation in clusters, the estimates of ρ1

and ρ2 are very close to zero.

Table 4.4: Mean, empirical variance (Var), average of estimated variance (Var∗) of
(ρ̂1, ρ̂2).

Type of 10/40 5/80 2/200
covariate Mean Var Var* Mean Var Var* Mean Var Var*
(ζ, τ) = (0.4, 0.8)

ρ̂1 0.354 0.003 0.004 0.357 0.003 0.003 0.367 0.004 0.004
discrete

ρ̂2 0.133 0.013 0.011 0.136 0.015 0.013 0.139 0.023 0.022
ρ̂1 0.363 0.004 0.004 0.371 0.003 0.003 0.373 0.005 0.004

continuous
ρ̂2 0.138 0.012 0.010 0.148 0.014 0.011 0.146 0.024 0.023

(ζ, τ) = (0.2, 0.5)
ρ̂1 0.178 0.002 0.002 0.180 0.003 0.002 0.186 0.005 0.005

discrete
ρ̂2 0.055 0.003 0.002 0.057 0.004 0.002 0.056 0.007 0.005
ρ̂1 0.179 0.002 0.002 0.179 0.003 0.002 0.184 0.005 0.005

continuous
ρ̂2 0.056 0.003 0.002 0.061 0.004 0.004 0.061 0.008 0.007

(ζ, τ) = (0, 0)
ρ̂1 -0.002 0.0005 0.0006 -0.003 0.0013 0.0012 -0.004 0.0053 0.0051

discrete
ρ̂2 0.013 0.0003 0.0002 0.011 0.0005 0.0003 0.012 0.0018 0.0020
ρ̂1 -0.005 0.0006 0.0006 -0.002 0.0013 0.0012 -0.002 0.0049 0.0047

continuous
ρ̂2 0.018 0.0004 0.0004 0.017 0.0008 0.0007 0.049 0.0019 0.0017

For the bootstrap method to estimate the variances of ρ̂1 and ρ̂2, we select 25

data sets randomly from the 1000 simulated data sets and choose B = 100 in our

simulation studies. Table 4.4 indicates that the empirical variance estimates and the
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average of 25 bootstrap variances are quite close, which indicates that the bootstrap

variance estimators work well for calculating the variance estimates of ρ̂1 and ρ̂2.

4.5 Analysis of the Smoking Cessation Data

We consider data from a smoking cessation study (Section 1.2.3). Observed covariates

include sex, duration as smokers in years, intervention type and the average number

of cigarettes smoked per day just prior to quitting. The survival time is defined as

the time required for a failed quitter to resume smoking. Banerjee and Carlin (2004)

considered the data as interval-censored survival data and analyzed them based on a

parametric mixture cure model with a Bayesian method. They assumed the same cure

rate for different smokers. Due to the potential spatial correlation among subjects

residing the area with same zip code, Yu and Peng (2008) considered the survival times

as right-censored by defining the midpoint of the intervals of the relapse time as the

survival time and applied a marginal mixture cure model with a Weibull baseline

distribution to the data. Chen and Lu (2012) considered a marginal semiparametric

transformation cure model for the right-censored times. Neither of the two works

considered the correlation structures within clusters.

As an illustration of the right-censored survival times, we plot the Kaplan-Meier

survival curves by sex and intervention type in Figure 1.3. We observe that male

smokers tend to have a higher cure rate than female smokers in the SI group whereas in

the UC group, female smokers tend to have a higher cure rate than male smokers. This

indicates that the interaction between sex and intervention type should be considered

in a cure model.

To examine the impact of using correlation structures on the marginal parameter

estimation, we propose to fit the survival data with the proposed marginal mixture
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cure model with an exchangeable correlation structure for both the cure statues and

the failure times of uncured patients from the same zip code area. The model includes

sex, duration as a smoker, intervention type, average number of cigarettes smoked

per day as well as the interaction between sex and intervention type in both logistic

regression (4.2) and proportional hazards model (4.3). The parameter estimates from

the proposed estimating equations are reported in Table 4.5. Note that the standard

errors of the estimated correlation parameters in the table are obtained from 200

bootstrap samples. As a comparison, we also include estimates from the marginal

mixture cure model proposed by Yu and Peng (2008) where the correlation structures

within clusters are ignored.

Table 4.5: Estimated parameters from fitting the marginal mixture cure model to the
smoking cessation data using the ES method and EM method.

ES method EM method

Covariate θ̂∗ s.e.(θ̂∗) p-value θ̂∗ s.e.(θ̂∗) p-value
PH Survival Model
Intercept -2.966 1.011 0.003 -2.833 1.072 0.008
Sex (male=0) 1.048 0.549 0.056 0.954 0.654 0.145
Duration as smoker 0.014 0.039 0.712 0.016 0.038 0.675
SI/UC (usual care=0) 0.713 0.692 0.302 0.707 0.757 0.350
Cigarettes/day -0.043 0.036 0.234 -0.042 0.024 0.071
Sex*SI/UC -0.843 0.860 0.327 -0.752 0.899 0.403
α 2.931 0.265 0.000 2.782 0.139 0.000
ρ2 -0.020 0.067 0.767 - - -
Logistic Model
Intercept 0.265 0.653 0.685 0.183 0.650 0.778
Sex (male=0) -0.214 0.542 0.692 -0.248 0.613 0.686
Duration as smoker -0.041 0.020 0.036 -0.039 0.020 0.046
SI/UC (usual care=0) -0.969 0.339 0.004 -0.982 0.360 0.006
Cigarettes/day 0.024 0.021 0.257 0.025 0.016 0.116
Sex*SI/UC 0.811 0.574 0.158 0.859 0.626 0.170
ρ1 -0.023 0.016 0.143 - - -
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The estimates from the two estimation methods are generally similar. The notice-

able difference is in the effect of sex on the relapse (resume smoking) time of subject,

which is marginally significant in the ES method but insignificant in the EM method.

That is, women tend to resume smoking sooner than men, which may be attributed

to the risk of weight gain following smoking cessation (Banerjee and Carlin, 2004).

The number of cigarettes smoked per day, on the other hand, becomes insignificant in

the ES method instead of marginally significant in the EM method. It indicates that

the daily consumption of cigarettes may have little impact on the relapse time or on

the probability of being cured. The effects of the remaining covariates are similar in

the two models. The similarity of the estimates from the two methods may indicate

that the correlation within clusters may not be strong enough to make differences in

parameter estimates. This is evident from the estimates of ρ1 and ρ2. Both values

are close to zero. Their large variances make the correlations insignificant.

4.6 Conclusions

Existing marginal cure models and estimation methods for analyzing clustered sur-

vival data with a cure fraction do not impose specific dependence structures on the

correlated failure times or cure statuses. They are useful when there is little infor-

mation about the correlation structures. However, when the correlation is of interest

and there is partial information available for the correlation structures, the methods

may not be efficient.

Rosen et al. (2000) extended the estimating equations of Liang and Zeger (1986)

to mixtures of the generalized linear models. This idea was also explored by Hall and

Zhang (2004) for zero-inflated count data. In this chapter, we propose an approach to

extend the generalized estimating equation approach from generalized linear models to
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the marginal mixture cure model for censored survival data. The estimating equations

incorporate two working correlation structures, one for the failure times of uncured

subjects and the other for the cure statuses within a cluster. We show that the

estimates of the regression parameters and the baseline distribution are consistent

and asymptotically normal, and their variances can be consistently estimated by a

sandwich variance estimator. Our numerical study demonstrates that the proposed

method substantially improves the estimation efficiency of the regression parameters,

especially when the correlation within clusters is strong and the cluster size is large.

Therefore, the proposed marginal proportional hazards mixture cure model is a useful

alternative to the existing marginal models for clustered survival data with a possible

cure fraction.

Our method generalizes the marginal proportional hazards model proposed for the

correlated failure time data without cure fraction (Segal and Neuhaus, 1993) to the

marginal proportional hazards mixture cure model for clustered survival data with a

cure fraction. The proposed method also extends the marginal proportional hazards

mixture cure model (Yu and Peng, 2008) by explicitly including correlation structures

such as the exchangeable working matrix in the model estimation. Future work for

this model includes a method to consider a correlation structure when estimating the

parameters in the baseline distribution.
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Chapter 5

Semiparametric Marginal Proportional

Hazards Mixture Cure Model

5.1 Introduction

As we discussed in Chapter 4, the proposed estimating equations approach can im-

prove the estimation efficiency in a parametric proportional hazards mixture cure

model for clustered survival data with a cure fraction. In this chapter, we further

consider a semiparametric proportional hazards mixture cure model where the sur-

vival function for the uncured patients is modeled by a semiparametric proportional

hazards model. Peng et al. (2007) considered the same model for clustered failure

time data and proposed a robust variance estimation method. However, their method

may lose efficiency when potential correlation exists within clusters. To improve the

estimation efficiency, we follow the idea in Chapter 4 and apply the ES method in

a semiparametric proportional hazards mixture cure model. Similarly, the depen-

dence among the cure statuses and among the survival times of uncured patients

within clusters are modeled by working correlation matrices in the proposed estimat-

ing equations. A bootstrap method is used to obtain the variances of the estimates.
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We report a simulation study to demonstrate a substantial efficiency gain of the pro-

posed method over the existing marginal method. Finally, we apply the model and

the proposed method to two sets of data including a multi-institutional study of tonsil

cancer patients treated with radiation therapy and a multi-center study of leukemia

patients treated with bone marrow transplantation.

The rest of this chapter is organized as follows. In Section 5.2, we introduce the

marginal semiparametric proportional hazards mixture cure model with clustered ob-

servations. Then we present the proposed estimating equations and the corresponding

estimation steps. The variance estimation is discussed in Section 5.3. We conduct

a simulation study to evaluate the performance of the proposed marginal method

in Section 5.4. The proposed model and estimation method are applied to a tonsil

cancer data in Section 5.5. Finally, we provide conclusions in Section 5.6.

5.2 Model and Estimation

We assume that the marginal survival function of T̃ ∗
ij is from a semiparametric pro-

portional hazards mixture cure model, i.e.,

S(t;Xij, Zij) = 1− π(Zij) + π(Zij)Su(t;Xij), (5.1)

where π(Zij) = P (Yij = 1;Zij) is in a logistic regression form

π(Zij) =
exp(γ′Zij)

1 + exp(γ′Zij)
, (5.2)

and Su(t;Xij) is specified by the proportional hazards model

Su(t;Xij) = Su0(t)
exp(β′Xij), (5.3)
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where Su0(t) is the baseline survival function of T̃ ∗
ij|{Yij = 1} when Xij = 0 and is

usually unspecified, and β and γ are pX ×1 and pZ ×1 parameter vectors for Xij and

Zij.

Let t∗ij be the observed value of T ∗
ij, and O∗ = {(T ∗

ij, δij, Xij, Zij), j = 1, · · · , ni, i =

1, · · · , K} be the observed data. We also augment the observed data to include the

latent values of Yij and denote the augmented data as O∗
c = {(T ∗

ij, δij, Xij, Zij, Yij), j =

1, · · · , ni, i = 1, · · · , K}. If we ignore the potential correlation between T̃ ∗
ij|{Yij = 1}

and T̃ ∗
ij′ |{Yij′ = 1}, and between Yij and Yij′ , the unknown parameters in the marginal

model specified in (5.1), (5.2), and (5.3) can be estimated using the EM algorithm

(Peng and Dear, 2000; Sy and Taylor, 2000). The E-step in the EM algorithm

computes the expectation of a log likelihood function based on data O∗
c ,

lc(γ, β, α;O
∗
c) = log

K∏
i=1

ni∏
j=1

π(zij)
yij (1− π(zij))

1−yij
[
fu(t

∗
ij; xij)

δijSu(t
∗
ij; xij)

1−δij
]yij

= log
K∏
i=1

ni∏
j=1

π(zij)
yij (1− π(zij))

1−yij

+ log
K∏
i=1

ni∏
j=1

(
(Λu0(t

∗
ij;α) exp(β

′xij))
δij exp(−Λu0(t

∗
ij;α) exp(β

′xij))
)yij

+ log
K∏
i=1

ni∏
j=1

(
λu0(t

∗
ij;α)

Λu0(t∗ij;α)

)δij

, (5.4)

where λu0(t;α) and Λu0(t;α) are the corresponding baseline hazard and cumulative

baseline hazard functions for Su0(t), and α is a set of unknown parameters in the

baseline distribution. For given yij, the first term corresponds to a log-likelihood

function of the logistic regression for yij. The second term can be viewed as a log-

likelihood function if δij is assumed to follow a Poisson distribution with mean equal

to yijΛu0(t
∗
ij;α) exp(β

′xij), and the last term does not depend on β and γ. A similar

approach of treating a likelihood function of the proportional hazards model as a
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likelihood function of a Poisson model was discussed in Chapter 3. The expectation

in E-step is taken with respect to the conditional distribution of the latent variable Yij

given the observed data and the current estimates of the parameters. If the current

estimate is denoted by θ∗(m) = (γ(m), β(m), α(m)), then

g
(m)
ij = E(Yij|θ∗(m),O∗)

=

[
δij +

(1− δij)π(Zij)Su0(t
∗
ij)

exp(β′Xij)

1− π(Zij) + π(Zij)Su0(t∗ij)
exp(β′Xij)

]
θ∗=θ∗(m)

, (5.5)

which is the same as (4.8), and the E-step is equivalent to substituting g
(m)
ij for yij

in (5.1). The M-step maximizes E(lc) with respect to γ, β and α. It results in the

following estimating equations for γ and β respectively

K∑
i=1

(
∂π(Zi)

∂γ
)T (A

1/2
i IiA

1/2
i )−1(g

(m)
i − π(Zi)) = 0, (5.6)

K∑
i=1

(
∂µ(Xi)

∂β
)T (B

1/2
i IiB

1/2
i )−1(δi − µ(Xi)) = 0, (5.7)

where g
(m)
i = (g

(m)
i1 , · · · , g(m)

ini
)T , π(Zi) = (π(Zi1), · · · , π(Zini

))T , Ai = diag(π(Zi1)(1−

π(Zi1)), · · · , π(Zini
)(1−π(Zini

))), δi = (δi1, · · · , δini
)T , µ(Xi) = (µ(Xi1), · · · , µ(Xini

))T

with µ(Xij) = g
(m)
ij Λu0(t

∗
ij;α) exp(β

′Xij), Bi = diag(µ(Xi1), · · · , µ(Xini
)), and Ii is an

ni × ni identity matrix.

The baseline survival function Su0(t) in the M-step can be estimated using the

nonparametric maximum likelihood estimation method as we discussed in Section

2.1.3. That is, the estimating equations for αs are

∑
(i,j)∈Ds

eβ
′Xij

1− α
exp(β′Xij)
s

−
∑

(i,j)∈Rs

g
(m)
ij exp(β′Xij) = 0 , s = 1, · · · , k, (5.8)
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The equation (5.8) is the same as equation (2.9), and it does not have a closed

solution of αs when there is a ds > 1. An approximate estimator for the baseline

survival function S
(m)
u0 (t) can be obtained (Peng and Dear, 2000)

Ŝ
(m)
u0 (t) = exp(−

∑
s:τs≤t

ds∑
(i,j)∈Rs

g
(m)
ij exp(β′Xij)

). (5.9)

To enhance the identifiability of the parameter estimation, it is often assumed that

Ŝ
(m)
u0 (t) = 0 if t∗ij > τk (Taylor, 1995; Peng and Dear, 2000; and Sy and Taylor, 2000).

Due to the potential correlation between T̃ ∗
ij|{Yij = 1} and T̃ ∗

ij′|{Yij′ = 1}, and

between Yij and Yij′ for j ̸= j′, the aforementioned method may not be efficient, even

though the marginal model is correctly specified. Peng et al. (2007) considered this

method for clustered data and proposed a sandwich variance estimate for the esti-

mated parameters in the marginal model. Their method may still lack efficiency due

to the absence of the correlation modeling in the model. To increase the estimation

efficiency of the method above, we use the ES algorithm proposed in Chapter 4. That

is, the M-step in the EM algorithm is replaced by the S-step where the identity matrix

Ii in (5.6) and (5.7) are replaced by working correlation matrices to account for the

potential correlation in each cluster. Therefore, the proposed estimating equations

for γ and β are

K∑
i=1

(
∂π(Zi)

∂γ
)T (A

1/2
i Qi(ρ1)A

1/2
i ϕ1)

−1(g
(m)
i − π(Zi)) = 0, (5.10)

K∑
i=1

(
∂µ(Xi)

∂β
)T (B

1/2
i Qi(ρ2)B

1/2
i ϕ2)

−1(δi − µ(Xi)) = 0, (5.11)

where Qi(ρ1) = (qjj′(ρ1))ni×ni
and Qi(ρ2) = (qjj′(ρ2))ni×ni

are the working correla-

tion matrices, and ρ1 and ρ2 are unknown parameters in the matrices that need to

be estimated. The scale parameters ϕ1 and ϕ2 are incorporated in the estimating
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equations to accommodate the over- or under-dispersion. Note that the proposed

estimating equation (5.11) for β is different from the estimating equation (4.10)

which has a weighted form. Furthermore, through the simulation study, we observe

that equation (5.11) produces biased estimate of β. To reduce the bias of the es-

timate of β, motivated by Ritov (1990), we standardize Xij in (5.11), i.e., we use

(Xij− X̄i)/(var(Xi)
1/2) instead of Xij as the covariate, where X̄i and var(Xi) are the

mean and variance of Xij, j = 1, . . . , ni, i = 1, . . . , K.

Similar to Chapter 4, we apply the exchangeable correlation structure with qjj′(ρ1)

= ρ1 and qjj′(ρ2) = ρ2 for j ̸= j′ to estimating equations (5.10) and (5.11). Following

the moment method, ρ1 and ρ2 in the two exchangeable correlation structures can

be estimated from the standardized Pearson residuals r̂ij by ϕ̂−1
1

∑K
i=1

∑
j>j′ r̂ij r̂ij′/

{
∑K

i=1
1
2
ni(ni−1)−pz} and ϕ̂−1

2

∑K
i=1

∑
j>j′ r̂ij r̂ij′/{

∑K
i=1

1
2
ni(ni−1)−px} respectively,

where ϕ̂1 =
∑K

i=1

∑ni

j=1 r̂
2
ij/(N − pz) and r̂ij = (g

(m)
ij −π(zij))/(π(zij)(1−π(zij)))

1
2 for

ρ1 and ϕ̂2 =
∑K

i=1

∑ni

j=1 r̂
2
ij/(N − px) and r̂ij = (δij − µ(xij))/µ(xij)

1
2 for ρ2.

Due to the substitution of (5.10) and (5.11) for (5.6) and (5.7) respectively, the

solution of γ, β, and Su0(t) from the S-step in the ES algorithm have to be found

iteratively. We summarize this algorithm as follows:

1. Set initial values for γ, β and Su0(t).

2. E-step: calculate the conditional expectation of Yij via (5.5).

3. S-step:

(a) Given current estimates of ρ1, ρ2, ϕ1 and ϕ2, calculate the updated esti-

mates of γ and β from (5.10) and (5.11) using the Newton-Raphson method

and an updated estimate of Su0(t) from (5.9).

(b) Given the estimates of γ, β and Su0(t), calculate the standardized Pearson

residuals r̂ij.
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(c) Use the residuals r̂ij to estimate ρ1, ρ2, ϕ1, and ϕ2.

(d) Repeat steps (a), (b), and (c) until convergence.

4. Iterate steps 2 and 3 until the algorithm converges to obtain θ̂∗.

5.3 Variance Estimation for θ̂∗, ρ̂1 and ρ̂2

Obtaining the variances of the estimated parameters θ̂∗ in the proposed estimating

equations for the semiparametric proportional hazards mixture cure model is not

straightforward. Rosen et al. (2000) proposed a sandwich variance estimator for

the mixtures-of-experts model. However, it is difficult to use the estimator due to

the nonparametric baseline estimation in the proposed ES algorithm. Therefore,

we consider a bootstrap method as we did in Section 4.3.2 to obtain the variance

estimates of θ̂∗. A bootstrap sample from this approach is obtained from sampling

clusters with replacement. That is, all observations from one cluster will be either

selected or excluded in a bootstrap sample. Let θ̂∗b be the estimate of θ∗ = (γ, β, α)

from the bth bootstrap sample, b = 1, · · · , B, and B is the number of bootstrap

samples. The variance of θ̂∗ can be estimated by

V̂ar(θ̂∗) =
B∑
b=1

(θ̂∗b −
B∑

a=1

θ̂∗a/B)2/(B − 1).

The same bootstrap approach can be applied to the variance estimates of ρ̂1 and ρ̂2

in (5.10) and (5.11).

5.4 A Simulation Study

The design of our simulation study is similar to that in Chapter 4. Our objective is to

investigate the performances of the proposed method and to compare the results with
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those from Peng et al. (2007). The data in the simulation study are generated from

a cure model for clustered survival data with the exchangeable correlation structure

and the marginal equal to (5.1), (5.2), and (5.3). In particular, we consider a single

covariate in the model and assume that the covariate has effects on both π(Zij) and

Su(t;Xij). The effect on π(Zij) are specified by (γ0, γ1) = (0.4,−1), the effect of the

covariate on Su(t;Xij) is specified by β = −1, and the baseline distribution in (5.3)

is the Weibull distribution with Su0(t;α) = e−(α2t)α1 , where α = (α1, α2) = (2, 2).

The covariate is either a binary covariate with value 0 for a control group and 1 for a

treatment group, or a continuous covariate with values generated from the standard

normal distribution. Under the binary covariate case, the marginal cure rates are

40% and 64% in the control and the treatment groups respectively.

The correlation coefficient between Yij and Yij′ , denoted as ζ, is set to 0.4, 0.2,

and 0. To generate data Yij and Yij′ so that the correlation of Yij and Yij′ is ζ with

P (Yij = 1) = πij and P (Yij′ = 1) = πij′ given in (5.2), we adopt the method as

described in Section 4.4. That is, given ζ, πij ,πij′ , we solve for ρ̃ijj′ through

Φ((zπij
, zπij′ ), ρ̃ijj′)− πijπij′

πijπij′(1− πij)(1− πij′)
= ζ,

where Φ(·, ρ̃ijj′) is the standard bivariate normal distribution function and the corre-

lation coefficient equals to ρ̃ijj′ . We use zπij
and zπij′ to denote the πijth and πij′th

quantiles of the standard normal distribution. After obtaining ρ̃ijj′ for the ith clus-

ter, we generate (zi1, · · · , zini
) from the multivariate normal distribution N(0,Σi) and

obtain (yi1, · · · , yini
) with yij = 1 if zij ≤ zπij

and 0 otherwise, where the diagonal

elements of the covariance matrix Σi are 1 and the rest are ρ̃ijj′ .

To generate the correlated failure times for uncured patients with the given marginal

90



survival function in (5.3), we use the Clayton copula model (Clayton, 1978),

P (T̃ ∗
i1 > t∗i1, · · · , T̃ ∗

ini
> t∗ini

|Yij = 1, Xij, j = 1, · · · , ni)

= {
ni∑
j=1

Su(t
∗
ij;Xij)

−ξ − ni + 1}−1/ξ,

where ξ measures the degree of dependence among the failure times of uncured pa-

tients within cluster i and it relates to Kendall’s tau by ξ = 2τ/(1 − τ). We set

ξ = 8, 2, and 0. The corresponding values of τ are 0.8, 0.5 and 0 respectively, and

the larger value implies the stronger correlation of the failure times. When ξ = 0 or

τ = 0, it implies the independence among the failure times.

To save computational time, we only consider three configurations of (ζ, τ): (0.4,

0.8), (0.2, 0.5) and (0, 0), and equal cluster sizes (n1 = · · · = nK). For each con-

figuration of (ζ, τ) above, we generate clustered failure time data with the following

pairs of the number of clusters and cluster sizes: (40, 10), (80, 5) and (200, 2). The

censoring times are non-informative and generated from the uniform distribution in

(0, 3). For each setting above, we generate 1000 data sets and estimate the parameters

in the marginal model using the proposed ES algorithm for each data set. The bias,

empirical variance (Var), and the average of bootstrap variance (Var*) of the param-

eter estimates are computed. The bootstrap variance and the coverage probability of

95% confidence intervals are based on 200 randomly selected data sets from the 1000

data sets to save some computational time. As a comparison, we also estimate the

parameters in the marginal model using the method by Peng et al. (2007) (denoted

as PTY in the following tables) and calculate the relative efficiency (RE), defined as

the ratio of the mean squared error of the estimates from the ES method to that from

the PTY method, to measure the efficiency gains from using the ES method relative

to the PTY method.
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From the simulation study, we observe the similar features as the results based on

the parametric proportional hazards mixture cure model in Chapter 4. Tables 5.1 and

5.2 present results from the data generated with the binary covariate and continuous

covariate, respectively. They show that when the cure statuses and the failure times

of uncured patients within a cluster are correlated, the empirical variance estimates

of the regression parameters, particularly γ1 and β, from the ES method are less than

those from the PTY method, and the REs are generally less than 1 and can be as

low as 0.56 for γ1 and 0.61 for β when the correlation is strong. Given the same total

number of observations, the most empirical variance estimates of γ0 and β tend to

decrease as the number of clusters increases. However, this trend does not apply to

γ1 for binary covariate. For example, when the correlation is strong, the empirical

variance of γ1 firstly increases then decreases in the PTY method and consistently

increases in the ES method. When the correlation is moderate, the empirical vari-

ance of γ1 in both methods firstly increases then decreases as the number of clusters

increases. The REs tend to approach 1 when the correlation decreases. When the

correlation reduces to zero, the empirical variances based on the ES method and the

PTY method are almost the same, and the REs are close to 1. It indicates that the

proposed ES method can achieve a considerable efficiency gain when the correlation

is strong and is still comparable with the existing method when the correlation is

weak.
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Table 5.1: Bias, empirical variance, average of estimated variance, coverage percent-
age and relative efficiency of the estimates of (γ0, γ1, β) with a binary
covariate and high cure rate.

ni/K 10/40 5/80 2/200
(ζ, τ) θ PTY ES RE PTY ES RE PTY ES RE

Bias 0.008 0.008 -0.008 -0.007 0.011 0.010
Var 0.065 0.060 0.92 0.043 0.040 0.93 0.031 0.030 0.96

γ0 Var* 0.063 0.062 0.043 0.041 0.031 0.030
CP 94.6 96.0 94.1 96.0 94.4 96.5
Bias 0.009 0.013 -0.001 0.002 -0.002 0.003
Var 0.055 0.042 0.76 0.063 0.050 0.80 0.060 0.053 0.89

(0.4,0.8) γ1 Var* 0.055 0.045 0.058 0.050 0.058 0.055
CP 94.0 94.0 94.3 95.0 94.9 93.0
Bias -0.079 -0.119 -0.022 -0.073 -0.001 -0.034
Var 0.077 0.043 0.69 0.061 0.036 0.67 0.044 0.034 0.79

β Var* 0.061 0.055 0.046 0.038 0.038 0.038
CP 90.6 97.5 90.9 96.5 93.0 93.5
Bias 0.013 0.014 -0.001 -0.001 0.016 0.016
Var 0.046 0.045 0.99 0.036 0.035 0.96 0.027 0.027 0.99

γ0 Var* 0.044 0.043 0.034 0.035 0.028 0.029
CP 94.8 94.0 94.2 92.5 95.2 95.5
Bias -0.012 -0.014 0.009 0.009 -0.010 -0.011
Var 0.057 0.054 0.95 0.060 0.058 0.95 0.054 0.053 0.98

(0.2,0.5) γ1 Var* 0.056 0.055 0.057 0.056 0.057 0.057
CP 94.5 93.5 93.9 90.0 95.6 94.5
Bias -0.030 -0.013 -0.028 -0.015 -0.006 -0.001
Var 0.058 0.040 0.68 0.051 0.038 0.74 0.044 0.041 0.94

β Var* 0.045 0.043 0.040 0.039 0.037 0.041
CP 90.6 94.5 91.6 96.0 93.2 95.5
Bias 0.010 0.012 0.016 0.016 0.016 0.016
Var 0.025 0.025 1.02 0.026 0.026 1.00 0.028 0.028 1.00

γ0 Var* 0.026 0.027 0.026 0.026 0.026 0.027
CP 95.1 95.5 94.4 94.5 93.8 95.5
Bias -0.007 -0.014 -0.015 -0.018 -0.019 -0.021
Var 0.058 0.060 1.03 0.060 0.060 1.01 0.061 0.061 1.00

(0,0) γ1 Var* 0.057 0.061 0.057 0.061 0.058 0.062
CP 94.4 97.0 93.8 93.0 94.6 92.5
Bias -0.011 0.032 -0.008 0.013 -0.015 -0.008
Var 0.042 0.044 1.05 0.043 0.044 1.02 0.045 0.046 1.02

β Var* 0.035 0.045 0.036 0.046 0.036 0.047
CP 91.8 92.5 92.2 94.5 92.4 94.5
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Table 5.2: Bias, empirical variance, average of estimated variance, coverage percent-
age and relative efficiency of the estimates of (γ0, γ1, β) with a continuous
covariate and high cure rate.

ni/K 10/40 5/80 2/200
(ζ, τ) θ PTY ES RE PTY ES RE PTY ES RE

Bias 0.015 0.016 0.009 0.010 0.005 0.007
Var 0.053 0.053 0.99 0.034 0.034 1.00 0.020 0.020 1.00

γ0 Var* 0.054 0.058 0.033 0.034 0.020 0.021
CP 95.5 96.0 95.4 98.0 94.4 93.0
Bias -0.033 -0.017 -0.031 -0.018 -0.016 -0.015
Var 0.073 0.041 0.56 0.054 0.039 0.72 0.032 0.029 0.92

(0.4,0.8)
γ1 Var* 0.069 0.046 0.049 0.039 0.031 0.032

CP 92.6 97.0 92.3 94.0 95.5 94.0
Bias -0.071 -0.090 -0.024 -0.050 -0.008 -0.017
Var 0.071 0.038 0.61 0.033 0.019 0.65 0.016 0.013 0.80

β Var* 0.052 0.035 0.030 0.021 0.015 0.013
CP 89.7 94.5 92.4 95.5 94.1 93.5
Bias 0.015 0.014 0.005 0.005 0.010 0.010
Var 0.039 0.038 0.98 0.025 0.025 0.99 0.020 0.020 1.00

γ0 Var* 0.037 0.038 0.025 0.027 0.019 0.019
CP 94.0 95.0 94.8 96.0 94.5 93.0
Bias -0.022 -0.025 -0.015 -0.019 -0.018 -0.017
Var 0.031 0.028 0.91 0.029 0.027 0.94 0.024 0.024 1.00

(0.2,0.5)
γ1 Var* 0.027 0.028 0.027 0.028 0.025 0.026

CP 92.6 93.5 94.5 94.5 95.2 94.5
Bias -0.028 -0.003 -0.018 -0.001 -0.006 0.005
Var 0.026 0.018 0.67 0.017 0.012 0.70 0.012 0.011 0.91

β Var* 0.020 0.018 0.015 0.013 0.011 0.011
CP 90.5 93.5 93.2 96.0 94.5 93.0
Bias 0.009 0.004 0.011 0.009 0.004 0.004
Var 0.016 0.016 0.99 0.016 0.016 1.00 0.018 0.018 1.00

γ0 Var* 0.016 0.016 0.016 0.017 0.016 0.017
CP 94.2 96.5 95.6 97.0 94.3 94.5
Bias -0.016 -0.025 -0.014 -0.019 -0.015 -0.017
Var 0.027 0.027 1.03 0.026 0.026 1.02 0.027 0.027 1.01

(0,0)
γ1 Var* 0.024 0.027 0.023 0.025 0.024 0.026

CP 93.1 94.0 93.8 92.5 94.3 94.5
Bias -0.014 0.054 -0.008 0.030 -0.003 0.008
Var 0.011 0.011 1.24 0.011 0.011 1.08 0.011 0.011 1.03

β Var* 0.010 0.011 0.010 0.011 0.010 0.011
CP 92.8 89.5 93.5 94.5 92.9 95.0
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Table 5.3: Bias, empirical variance, average of estimated variance, coverage percent-
age and relative efficiency of the estimates of (γ0, γ1, β) with a binary
covariate and low cure rate.

ni/K 10/40 5/80 2/200
(ζ, τ) θ PTY ES RE PTY ES RE PTY ES RE

Bias 0.095 0.080 0.064 0.051 0.042 0.035
Var 0.220 0.207 0.93 0.136 0.128 0.93 0.098 0.096 0.98

γ0 Var* 0.188 0.229 0.129 0.139 0.094 0.105
CP 93.5 95.5 95.4 95.5 95.6 98.0
Bias -0.064 -0.032 -0.034 -0.005 -0.016 0.001
Var 0.163 0.134 0.81 0.144 0.121 0.83 0.132 0.127 0.97

(0.4,0.8)
γ1 Var* 0.143 0.152 0.134 0.130 0.131 0.144

CP 93.5 94.0 94.4 93.0 95.2 96.0
Bias -0.051 -0.111 -0.022 -0.082 -0.011 -0.053
Var 0.040 0.023 0.83 0.029 0.016 0.78 0.023 0.015 0.80

β Var* 0.034 0.026 0.025 0.016 0.020 0.014
CP 92.9 89.0 93.0 90.5 92.2 92.5
Bias 0.069 0.064 0.043 0.039 0.038 0.035
Var 0.151 0.148 0.98 0.108 0.104 0.96 0.088 0.087 0.99

γ0 Var* 0.133 0.161 0.104 0.127 0.088 0.100
CP 93.7 94.0 95.2 98.5 96.1 95.5
Bias -0.044 -0.033 -0.016 -0.008 -0.025 -0.018
Var 0.143 0.138 0.96 0.132 0.125 0.94 0.127 0.126 0.99

(0.2,0.5)
γ1 Var* 0.134 0.163 0.131 0.153 0.130 0.148

CP 94.7 93.0 95.4 97.0 96.4 97.5
Bias -0.044 -0.050 -0.028 -0.040 -0.007 -0.016
Var 0.034 0.022 0.66 0.024 0.017 0.74 0.021 0.019 0.88

β Var* 0.026 0.020 0.022 0.017 0.020 0.019
CP 89.7 92.0 93.2 91.5 93.4 93.5
Bias 0.041 0.047 0.027 0.031 0.026 0.028
Var 0.083 0.084 1.02 0.085 0.086 1.02 0.081 0.081 1.01

γ0 Var* 0.081 0.091 0.080 0.097 0.081 0.100
CP 94.8 95.5 95.2 96.0 95.0 96.5
Bias -0.020 -0.037 -0.002 -0.012 0.014 0.010
Var 0.133 0.137 1.03 0.133 0.138 1.04 0.137 0.140 1.02

(0,0)
γ1 Var* 0.127 0.144 0.128 0.151 0.129 0.157

CP 94.0 95.0 94.7 97.0 94.9 96.5
Bias -0.009 0.041 -0.014 0.013 -0.008 0.001
Var 0.021 0.022 1.12 0.021 0.022 1.05 0.021 0.022 1.04

β Var* 0.018 0.022 0.019 0.022 0.019 0.022
CP 93.0 91.5 93.5 95.0 93.6 96.0
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Table 5.4: Bias, empirical variance, average of estimated variance, coverage percent-
age and relative efficiency of the estimates of (γ0, γ1, β) with a continuous
covariate and low cure rate.

ni/K 10/40 5/80 2/200
(ζ, τ) θ PTY ES RE PTY ES RE PTY ES RE

Bias 0.103 0.100 0.069 0.071 0.054 0.057
Var 0.181 0.177 0.98 0.115 0.114 0.99 0.066 0.066 1.01

γ0 Var* 0.153 0.216 0.097 0.127 0.063 0.077
CP 92.6 95.5 94.0 97.5 95.6 97.5
Bias -0.064 -0.053 -0.028 -0.018 -0.030 -0.021
Var 0.222 0.152 0.69 0.138 0.114 0.82 0.085 0.085 1.00

(0.4,0.8)
γ1 Var* 0.183 0.189 0.121 0.131 0.071 0.081

CP 90.4 95.0 91.9 98.0 93.5 95.0
Bias -0.061 -0.091 -0.023 -0.063 -0.004 -0.032
Var 0.053 0.025 0.58 0.023 0.012 0.69 0.012 0.008 0.81

β Var* 0.041 0.024 0.021 0.014 0.010 0.008
CP 90.8 89.0 94.2 95.5 93.5 93.5
Bias 0.071 0.074 0.059 0.061 0.051 0.052
Var 0.122 0.122 1.01 0.081 0.080 0.99 0.059 0.059 1.00

γ0 Var* 0.104 0.132 0.076 0.090 0.058 0.075
CP 92.4 96.5 94.3 95.0 94.9 96.0
Bias -0.053 -0.049 -0.037 -0.034 -0.033 -0.032
Var 0.082 0.077 0.94 0.073 0.070 0.96 0.060 0.060 0.99

(0.2,0.5)
γ1 Var* 0.068 0.084 0.061 0.071 0.055 0.068

CP 90.0 92.5 91.7 95.0 94.7 96.0
Bias -0.039 -0.043 -0.012 -0.018 -0.005 -0.011
Var 0.019 0.012

0.68
0.012 0.009 0.76 0.008 0.007 0.90

β Var* 0.015 0.013 0.010 0.009 0.007 0.007
CP 88.9 90.5 91.6 96.0 92.5 96.0
Bias 0.042 0.039 0.043 0.041 0.060 0.059
Var 0.054 0.054

1.00
0.056 0.056 1.00 0.050 0.050 1.00

γ0 Var* 0.051 0.061 0.051 0.059 0.053 0.062
CP 94.5 95.5 93.9 93.5 95.8 96.0
Bias -0.028 -0.045 -0.029 -0.040 -0.044 -0.047
Var 0.055 0.055

1.03
0.058 0.059 1.02 0.053 0.053 1.01

(0,0)
γ1 Var* 0.050 0.062 0.051 0.059 0.051 0.060

CP 93.5 95.0 92.9 94.0 94.3 95.0
Bias -0.006 0.053 -0.003 0.034 0.000 0.011
Var 0.008 0.007

1.22
0.007 0.007 1.16 0.007 0.007 1.04

β Var* 0.007 0.007 0.006 0.007 0.006 0.007
CP 93.7 89.0 93.3 92.0 92.5 91.5
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Table 5.5: Mean, empirical variance (Var), average of estimated variance (Var∗) of
the estimates of (ρ̂1, ρ̂2). Var

∗ are from 200 bootstrap samples.

covariates cure rate 10/40 5/80 2/200

Mean Var Var* Mean Var Var* Mean Var Var*

(ζ, τ) = (0.4, 0.8)

ρ̂1 0.309 0.003 0.003 0.311 0.003 0.003 0.317 0.004 0.004
high

ρ̂2 0.380 0.009 0.006 0.387 0.008 0.006 0.398 0.013 0.009
discrete

ρ̂1 0.277 0.007 0.006 0.285 0.006 0.005 0.287 0.008 0.008
low

ρ̂2 0.502 0.006 0.005 0.513 0.006 0.005 0.517 0.009 0.006

ρ̂1 0.320 0.003 0.003 0.324 0.003 0.003 0.323 0.005 0.005
high

ρ̂2 0.432 0.008 0.006 0.439 0.008 0.006 0.445 0.013 0.009
continuous

ρ̂1 0.281 0.011 0.010 0.288 0.009 0.008 0.292 0.014 0.012
low

ρ̂2 0.538 0.007 0.004 0.539 0.007 0.005 0.538 0.010 0.007

(ζ, τ) = (0.2, 0.5)

ρ̂1 0.153 0.002 0.002 0.157 0.003 0.002 0.156 0.005 0.005
high

ρ̂2 0.203 0.003 0.003 0.206 0.004 0.003 0.214 0.008 0.006
discrete

ρ̂1 0.144 0.004 0.003 0.145 0.004 0.005 0.149 0.008 0.007
low

ρ̂2 0.314 0.003 0.003 0.315 0.003 0.004 0.318 0.006 0.005

ρ̂1 0.158 0.002 0.002 0.162 0.002 0.002 0.165 0.005 0.005
high

ρ̂2 0.244 0.004 0.003 0.245 0.004 0.003 0.249 0.008 0.006
continuous

ρ̂1 0.139 0.006 0.004 0.141 0.006 0.004 0.146 0.011 0.009
low

ρ̂2 0.326 0.005 0.003 0.335 0.005 0.003 0.333 0.008 0.005

(ζ, τ) = (0, 0)

ρ̂1 -0.003 0.0006 0.0005 -0.004 0.0013 0.0012 -0.003 0.005 0.005
high

ρ̂2 0.034 0.0005 0.0004 0.032 0.0010 0.0008 0.034 0.004 0.004
discrete

ρ̂1 -0.002 0.0006 0.0005 -0.004 0.0013 0.0011 -0.002 0.005 0.005
low

ρ̂2 0.075 0.0005 0.0004 0.075 0.0010 0.0008 0.080 0.005 0.003

ρ̂1 -0.004 0.0005 0.0005 -0.003 0.0012 0.0012 0.001 0.005 0.005
high

ρ̂2 0.048 0.0005 0.0004 0.049 0.0011 0.0008 0.049 0.005 0.003
continuous

ρ̂1 -0.003 0.0006 0.0005 -0.004 0.0013 0.0010 -0.007 0.005 0.004
low

ρ̂2 0.083 0.0006 0.0004 0.084 0.0012 0.0008 0.083 0.004 0.003
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Besides the simulation with high cure rate ((γ0, γ1) = (0.4,−1)) we consider above,

the cases with low cure rate, i.e., (γ0, γ1) = (2.2,−1), are also investigated and sum-

marized in Tables 5.3 and 5.4 which are corresponding to the binary covariate and

continuous covariate, separately. The observation from these tables are similar to

that in Tables 5.1 and 5.2. For example, the REs can be as low as 0.69 for γ1 and

0.58 for β when the correlation in a cluster is strong. Therefore, the efficiency gain is

maintained in the low cure rate cases too.

As in other estimating equations with working correlation matrices, ρ1 and ρ2

in the two working correlation matrices in the ES algorithm do not necessarily cor-

respond to the correlation measures ζ and τ in the data generation. However, the

estimated values of ρ1 and ρ2 provide good measures of the strength of the correla-

tions between the cure statuses and between the failure times of uncured subjects

in a cluster. That is, the stronger associations specified by ζ and τ in the data set

indicate the larger correlation coefficients estimated by the proposed method in the

working correlation matrices. Table 5.5 clearly shows that when the strengths of

the correlation measures between the cure statuses and between the failure times of

uncured patients in a cluster become strong, the estimated working correlation co-

efficients become large correspondingly. When (ζ, τ) reduce to (0, 0), which implies

that there is no correlation within a cluster, the estimates of ρ1 and ρ2 are also close

to zero, which indicates that the working correlation matrices could be considered as

the identity matrices.
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5.5 Applications

5.5.1 Multi-Center Clinical Trial of Tonsil Carcinoma

We consider a data set from a tonsil cancer clinical trial study introduced in Section

1.2.4. A part of the data from the study is available in Kalbfleisch and Prentice

(2003), which includes times (in days) from diagnosis to death of 195 patients with

squamous cell carcinoma of three sites in the oropharynx between 1968 and 1972 in

six participating institutions. Other variables include censoring indicator, treatment,

sex, tumor stage (a binary variable with 1 for T4 stage corresponding to a massive

invasive tumor and 0 for T1, T2 and T3 stages corresponding to a primary tumor

measuring 2cm or less in the largest diameter, a primary tumor measuring 2 to 4cm

in the largest diameter, or a primary tumor measuring more than 4cm), node stage,

age, general condition (0 for no disability and 1 for the cases including restricted

work capability, requiring assistance with self-care or bed confined), grade (1, 2, and

3 for well, moderate, and poorly differentiated respectively), and the institution code.

We delete observations from 3 patients because of the presence of missing values and

the actual number of patients analyzed is 192. As we discussed in Section 1.2.4, the

Kaplan-Meier survival curve (Figure 1.4) suggests that the cure fraction should be

considered in the model for the data.

Yau and Ng (2001) and Lai and Yau (2008) considered a mixture cure model

with random effects for the data. However, they only analyzed the effect of the

dichotomized T-stage on the cure probability and on the failure time distribution of

uncured patients based on a subset (carcinoma of the pharyngeal tongue) of the data.

We apply the proposed marginal mixture cure model in the previous sections to

the data. The covariates in the model include treatment, sex, grade, age, condition,

and tumor stage, and they are considered in both (5.2) and (5.3). We assume the
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exchangeable correlation structure for both the cure statuses and the failure times

of uncured patients from one institution. The standard errors of the estimated pa-

rameters are obtained from 500 bootstrap samples. As a comparison, we also fit the

data with the marginal mixture cure model using the PTY method. All results are

summarized in Table 5.6.

Table 5.6: Estimated parameters from fitting the marginal mixture cure model to the
tonsil cancer data using the ES algorithm and the PTY method.

Covariate ES PTY

θ̂∗ θ̂∗

s.e.(θ̂∗)
θ̂∗ θ̂∗

s.e.(θ̂∗)

PH Survival Model
Treatment: (test vs. standard) 0.157 0.174 0.107 0.081
Sex: (female vs. male) -0.439 -1.115 -0.385 -0.157
Grade 2 (vs. Grade 1) -0.295 -0.802 -0.217 -0.161
Grade 3 (vs. Grade 1) 0.245 0.632 0.148 0.583
Age -0.011 -1.154 -0.009 -0.351
Condition 1.660 7.048 1.724 0.619
Tumor 0.640 2.558 0.924 0.468
ρ2 0.095 4.476 - -
Logistic Model
Intercept -0.388 -0.156 -0.487 -0.047
Treatment: (test vs. standard) -0.141 -0.354 -0.105 -0.193
Sex: (female vs. male) -0.388 -0.429 -0.436 -0.173
Grade 2 (vs. Grade 1) 1.192 0.788 1.163 0.126
Grade 3 (vs. Grade 1) -0.817 -0.963 -0.750 -0.079
Age 0.030 0.773 0.035 0.918
Condition 0.609 0.435 0.454 0.280
Tumor 0.102 0.086 -0.108 -0.063
ρ1 0.007 0.443 - -

The results from the two methods show some substantial differences. For exam-

ple, condition effect (p-value<0.001) and tumor stage effect (p-value=0.011) on the

failure time of uncured patients become highly significant in the ES method instead

of insignificant in the PTY method. That is, the proposed model suggests that, if not

cured, patients with disability or with massive invasive tumors tend to have shorter

100



failure times than those without massive invasive tumors.

Yau and Ng (2001) concluded based on their single-covariate model and a subset

analysis of data that there is no significant correlation induced by the institution

among the cure statuses and the failure times of uncured patients from the same

institution. Table 5.6 shows that our model, which is based on the whole data and

multiple covariates, suggests that the correlation induced by the institution among

the failure times of uncured patients cannot be ignored.

5.5.2 Multi-Center Leukemia Data

We also apply the proposed method to the bone marrow transplantation (BMT) data

(Section 1.2.5) which has been studied by Lai and Yau (2008). Several potential

risk factors were collected at the time of transplantation. They are AML high-risk,

AML low-risk, ALL, recipient and donor gender, recipient and donor age, recipient

and donor cytomegalovirus immune status (CMV), waiting time from diagnosis to

transplantation, and, for AML patients, their French-American-British (FAB) classi-

fication based on standard morphological criteria. Specifically, as pointed by Copelan

et al. (1991), the risk of relapse or treatment-related death for patients with FAB

classification of M4 or M5 was higher than that for patients in other FAB groups.

Details of the study can be found in Copelan et al. (1991).

Based on the Kaplan-Meier survival curve (Figure 1.5) in Section 1.2.4, both the

cure fraction and the cluster effect should be considered in the model introduced in

Section 5.2. We consider the covariates AML low-risk, AML high-risk and FAB in

both the logistic and the proportional hazards regression components. The standard

errors of the estimated parameters are obtained from 500 bootstrap samples as we

did in Section 5.5.1. All results are summarized in Table 5.7.

The results based on the two estimation methods are generally similar. The
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Table 5.7: Estimated parameters from fitting the marginal mixture cure model to the
leukemia data using the ES method and the PTY method.

ES method PTY method

Covariate θ̂∗ θ̂∗

s.e.(θ̂∗)
θ̂∗ θ̂∗

s.e.(θ̂∗)

PH Survival Model
AML low-risk (vs. ALL) 0.338 0.636 -0.670 -0.959
AML high-risk (vs. ALL) 1.121 2.905 0.438 1.646
FAB -0.133 -0.411 -0.044 -0.071
ρ2 0.060 1.293 - -
Logistic Model Intercept 1.768 2.458 0.709 4.838
AML low-risk (vs. ALL) -2.109 -2.589 -0.989 -2.070
AML high-risk (vs. ALL) -1.348 -1.000 -0.295 -1.212
FAB 1.497 1.038 1.440 1.596
ρ1 0.005 0.154 - -

noticeable difference is in the effect of AML high-risk in the proportional hazards

component. That is, the effect of AML high-risk is highly significant (p-value=0.004)

in the ES method instead of marginally significant (p-value=0.01) in the PTYmethod.

In other words, the uncured patients of AML high-risk are at a higher risk of death

or relapse comparing with the patients in other two groups (AML low-risk or ALL).

The effect of AML low-risk on the logistic component is marginally significant in both

methods. It indicates that the patients of AML low-risk may have higher chance of

being cured. The effects of the remaining covariates are similar in the two models.

The similarity of the estimates from the two methods may indicate that the correlation

within clusters may not be strong enough to make differences in parameter estimates.

This is evident from the estimates of ρ1 and ρ2. Both values are close to zero and their

large variances make the correlation insignificant. Lai and Yau (2008) also concluded

that there are no significant differences in the cured proportion and in the survival

for the uncured patients between the participating clinics though a high-positive

correlation between the random effects was obtained.
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5.6 Conclusions

We considered a semiparametric marginal proportional hazards mixture model for

clustered failure time data with a possible cure fraction and proposed a novel ap-

proach based on the generalized estimating equations to incorporate a correlation

structure in the marginal model. Our method generalizes the parametric marginal

proportional hazards mixture cure model investigated in Chapter 4 to the semipara-

metric one for clustered survival data with a cure fraction. The proposed method also

extends the existing marginal proportional hazards mixture cure model (Peng et al.,

2007) by explicitly including the correlation structures in the model estimation. A

simulation study demonstrates that the proposed method can substantially improve

the estimation efficiency compared to the method in Peng et al. (2007) when the

cluster size is large and the correlation within a cluster is strong. These two methods

are comparable when the cluster size or the strength of the correlation decreases.

Therefore, the proposed semiparametric marginal PH mixture model is a useful alter-

native to the existing marginal models for clustered data with a possible cure fraction,

particularly when the correlation structures among the cure statuses and among the

failure times of uncured patients can be specified up to a few unknown parameters.

We employ the bootstrap method to estimate the variances of the estimated pa-

rameters in the model. This method is straightforward but computationally intensive.

Future work for this model includes the asymptotic properties of the estimates (par-

ticularly their asymptotic variance estimation). As we discussed in Section 4.6, we

will also consider methods to include a correlation structure in estimating the param-

eters in the baseline survival distribution and hope to further improve the estimation

efficiency. Since the random effects approach is widely used in the proportional haz-

ards mixture cure model, the performance of the proposed approach comparing with
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the existing random effects approach deserves a further study.

A paper (Niu and Peng, 2012) based on the main results of this chapter has been

accepted by Statistics in Medicine.
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Chapter 6

Summary and Future Work

In this thesis, we proposed novel marginal methods, based on the proportional hazards

model and the proportional hazards mixture cure model, for modeling clustered sur-

vival data with/without a cure fraction. We developed a set of estimating equations

to accommodate the potential correlation within clusters through flexible working

correlation structures such as the exchangeable working matrix.

Motivated by Segal and Neuhaus (1993), in Chapter 3, we investigated the classi-

cal clustered failure time data without a cure fraction by a semiparametric marginal

proportional hazards model. The dependence among failure times within a cluster

are modeled explicitly by an exchangeable working correlation matrix through a new

unbiased weighted estimating equation. We showed that the regression estimators

from the proposed estimating equation are consistent and asymptotically normal un-

der some regularity conditions. The variance estimates have a closed form and can

be consistently estimated by a sandwich method. The finite sample properties were

investigated by a simulation study which shows that the estimators of the regression

parameters based on the proposed estimating equation are more efficient than those

with the existing method (Lee et al., 1992).

In Chapter 4, we extended the marginal proportional hazards model for clustered
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failure time data without a cure fraction to a marginal proportional hazards mixture

cure model for clustered survival data with a cure fraction. The baseline survival

function was assumed to follow the Weibull distribution. Yu and Peng (2008) con-

sidered the same marginal model for a smoking cessation study. They applied the

EM algorithm to handle the missing information in the estimation procedure and

provided jackknife variance estimates of the parameters in the model. Their estima-

tion method is robust to misspecification of the correlation structure but may incur

a substantial efficiency loss of the parameters when there is information available for

the correlation structure. In this chapter, we extended the EM algorithm to the ES

algorithm to handle the substantial correlation among the cure statuses and among

the failure times of uncured patients in one cluster. Specifically, the S-step in the

ES algorithm for the regression parameters in the survival function of the susceptible

group inherits the generalized estimating equation approach as we did in Chapter 3.

Following the same idea, to accommodate the correlation among cure statues, we also

proposed an estimating equation for the regression parameters in the logistic model

of the incidence in the S-step. We proved that the proposed estimating functions are

unbiased and the corresponding estimators are consistent and asymptotically normal

under some regularity conditions.

In Chapter 5, we generalized the parametric marginal proportional hazards mix-

ture cure model to the semiparametric one where the baseline survival function is

nonparametrically specified for modeling clustered survival data with a cure fraction.

Peng et al. (2007) considered the same model for a multi-institutional tonsil cancer

data. They provided the robust variance estimates of parameters but did not ex-

plicitly model the correlation within an institution in the study. Alternatively, we

proposed two sets of estimating equations for the regression parameters in the ES

algorithm as we did in Chapter 4. However, the unweighted estimating equation for

106



the regression parameters in the survival function of uncured patients produces biased

estimates. We standardized the corresponding covariates to reduce such biases. A

bootstrap method was applied to obtain the variance estimates because of the bias

of the estimating function of β and the complexity of the nonparametric baseline

estimation in the proposed ES algorithm.

Based on the extensive simulation studies in Chapters 3, 4, and 5, we considered

the substantial improvement of estimation efficiency as the contribution of the pro-

posed methods comparing with the existing marginal methods for modeling clustered

failure time data, especially when the correlation within cluster is strong and the clus-

ter size is large given the total number of observations. The applications to the real

data sets from the biomedical research demonstrate that the proposed methods are

feasible in the practical applications. Therefore, the proposed marginal methods are

useful alternatives to the existing marginal methods for analyzing clustered survival

data with/without a cure fraction.

We would like to point out that, unlike the weighted estimating functions of β in

Chapters 3 and 4, the estimating function we proposed for β in Chapter 5 is biased.

We suggested to standardize the corresponding covariates to reduce the biases in

estimates. Future work include applying the unbiased weighted estimating equation

approach for β in the semiparametric marginal proportional hazards mixture cure

model and developing the asymptotic properties of the estimates.

As we mentioned in the conclusions of Chapters 4 and 5, the estimates of baseline

parameters in the marginal proportional hazards mixture cure models are based on

the independent estimating equations. Including a correlation structure in estimating

the parameters in the baseline survival distribution to further improve the estimation

efficiency is under consideration. The comparison between the marginal models and

the random effects models is an interesting topic in simulation studies.
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