Laneway Housing: Planning and the Rebuilding of Toronto’s Lanes

By

Nigel Terpstra

A report submitted to the School of Urban and Regional Planning in conformity with the requirements for the Degree of Master of Planning

Queen’s University
Kingston, Ontario, Canada
December 2012

©Nigel Terpstra (2012)
Acknowledgements

I would first like to thank all of the faculty and staff at the School of Urban and Regional Planning at Queen’s University. In particular, Dr. John Meligrana for his support and supervision through the entire writing process.

I would like to thank Jo-Anne Rudachuck without whose patience and guidance my time at SURP would have been considerably more difficult. I would also like to thank Charles Molson of the Department of Mathematics and Statistics whose passion and clarity made a challenging subject an attainable goal.

I would like to thank my parents for their eternal support and encouragement. Eet smakelijk and ‘go west.’

I would like to thank Julia DeFilippis who, in a life filled with change, continues to be an incredible constant.

Finally, I would like to thank all of my friends and classmates for making the past two years an amazing and unforgettable experience.
Executive Summary

Laneway houses are small-scale dwellings which are constructed behind traditional homes and which front on the laneway or alley which bisects a regular city block. Because of their size and somewhat awkward location, laneway houses can be constructed and maintained for far less than the cost of a traditional street-facing house. They are therefore a cost-effective way for growing cities like Toronto to retain the character of the neighbourhoods while adding residents and capitalizing on existing infrastructure.

This report will explore how Toronto’s alleys and laneways could be better-utilized if the city’s Zoning By-Law (438-86) was modified to allow as-of-right laneway housing within them. Toronto’s Official Plan (2006) projects that the population of the Greater Toronto Area (GTA) is expected to double over the next twenty-five years, adding 2.7 million residents and 1.8 million jobs by 2031. The city itself is forecasted to accommodate twenty percent of that growth or 537,000 additional residents and 544,000 new jobs. These projections however, will likely be surpassed as the Toronto CMA grew from 2,503,281 residents in 2006 to 2,615,060 in 2011, a 4.5% increase, according to the 2011 Census.2

The Province of Ontario’s Places to Grow Act (2005) and Growth Plan for the Greater Golden Horseshoe (2006) recommend that residential expansion be located in Urban Growth Centres (UGCs) and emphasize that new development be dense, compact and capitalize on existing infrastructure. Toronto’s Official Plan further directs this growth to specific ‘intensification areas’ such as the ‘Avenues,’ ‘Centres’ and ‘Mixed-Use Areas’ to protect what it defines as ‘Neighbourhoods,’ the low-rise residential communities for which Toronto is famous. Unfortunately, while the language in both documents indirectly supports laneway housing as a favourable way to grow, Toronto’s Works Committee sees laneway housing as: “...not supportable as good planning” due to a number of servicing, waste management and emergency access issues.

The purpose of this report therefore is to examine the planning and legal barriers restricting the development of laneway housing in Toronto and present solutions which might satisfy the City’s concerns. The report will use a wealth of research by planners, engineers, architects and academics to support its case. It will examine successful precedents such as the City of Vancouver and the State of California, both of which have reformed outdated zoning by-laws, streamlined planning processes and developed urban design guidelines to allow Accessory Dwelling Units (ADUs) to flourish. Several laneway
dwellings within Toronto will also be studied. These dwellings are perhaps the best precedent since they have successfully navigated a planning process which is stacked against them.

To get the best sense of how laneway houses could fit into Toronto’s existing urban fabric, the solutions identified in the previous section will be applied to a study area bordered by Queen Street to the south, Bloor Street to the north, Bathurst Street to the east and Ossington to the west. The alleys in this zone were extensively mapped, measured and documented to determine where and how new dwellings could be inserted while noting the unique challenges each presents. This information was used along with a set of Property Data Maps (PDMs) to develop a catalogue of all of the different types of block, lane and lot within the area. Though not all lots or lanes occur on a given block, the strength of presenting them in a catalogue is ability for one to mix and match and get the right combination of recommendations for a particular property.

This report also analyzes directly one of the most contentious aspects of laneway housing: increased density. To measure how dense neighbourhoods could safely and comfortably become, residential density standards for a number of different building typologies were researched and averaged to account for the fact that no standard currently exists for blocks with primary and accessory dwelling units. This data was then compared against the existing the densities of both residences and garages within the study area to accurately predict how many new homes could be added if a percentage of the garages were redeveloped. The numbers reflecting increases in alleyway density were then added to the existing numbers to reflect the total, combined density of primary and secondary dwelling units.

Armed with an accurately mapped and illustrated study area, a catalogue of the blocks, lots, lanes and several sample dwellings and a comprehensive set of density studies, this report will present a set of ‘design considerations’ which address the planning and approval, lot-specific and contextual design, construction, and capital and ongoing servicing of laneway houses. These recommendations apply a range of practical solutions found in prior studies and in the best practices of other cities and states to the specific problems outlined by the city. Solutions to gaps in policy, community awareness and engagement, planning and approval, technical and servicing and design are examined in hope that Toronto will re-evaluate its position on laneway housing in the near future are addressed.
Table of Contents

Acknowledgements .. ii
Executive Summary ... iii
Table of Figures ... viii

Chapter 1: Introduction & Context .. 10
 1.1 Purpose ... 10
 Research Objectives and Questions ... 11
 1.1.2 Laneway Housing Principles ... 13
 1.2 Background .. 15
 1.2.1 The Evolution of Toronto’s Urban Structure .. 15
 1.3 Literature Review ... 17
 Popular Media .. 17
 Studies and Reports ... 17
 Summary .. 20
 1.4 Best Practices .. 21
 California State Assembly Bill: AB 1866, 2003 ... 21
 Accessory Dwelling Unit Manual, Santa Cruz, California, 2003 .. 22
 Vancouver’s EcoDensity Program, 2008 ... 22
 City of Vancouver Laneway House Guidelines, 2009 .. 23
 Chicago’s Green Alleys Program, 2006 .. 24
 City of Unley, Adelaide, South Australia – Laneway Housing Implementation Study, 2012 25
 Summary .. 26
 1.5 Policy and Legal Background ... 27
 1.5.1 Province of Ontario .. 27
 Places to Grow Act, 2005 .. 27
 Growth Plan for the Greater Golden Horseshoe, 2006 .. 29
 1.5.2 City of Toronto ... 30
 City of Toronto Official Plan, 2006 .. 30
 City of Toronto Zoning By-Law No. 438-86, 2001 .. 32
 Works Committee: Report 5, Clause 5 – Construction of Housing in Laneways, 2006 33
Chapter 2: Methods .. 39

2.1 Literature Review and Best Practices .. 39

2.2 Policy and Legal Background .. 40

2.3 Analysis and Design Probe .. 40

2.4 Conclusions and Recommendations .. 42

2.5 Limitations to Study .. 42

Chapter 3: Analysis ... 43

3.1 Getting to Know the Area .. 44

3.1.2 Study Area Metrics .. 45

3.2 Block, Lane, Lot and House Catalogue ... 46

3.2.1 Block and Lane ... 46

3.2.2 Laneway Lots ... 48

3.2.3 The ‘Toronto House’ ... 51

3.2.4 Case Study Laneway Houses ... 53

40R_Laneway House – superkül inc | architect .. 53

113R Clinton Street – Astra Burka Architect .. 54

Laneway House – Kohn Shnier Architects .. 55

Ways Lane House – Diamond Schmitt Architects .. 56

3.3 Existing Condition .. 57

3.3.3 Right of Way .. 57

Laneway Properties ... 58

3.4 Quantitative Studies .. 59

3.4.1 Calculations .. 60
3.5 Design Considerations ... 62
 Introduction .. 62
 3.5.1 Planning & Approval .. 62
 3.5.1 Lot-Specific Design ... 63
 Corner Lot .. 63
 Island Lot ... 64
 Key Lot ... 64
 Slot Lot ... 64
 3.5.2 Construction .. 64
 3.5.3 Design in Context ... 65
 3.5.4 Capital and Ongoing Servicing .. 66

Chapter 4: Conclusions and Recommendations .. 67
 4.1 Community Engagement Recommendations ... 67
 4.2 Planning and Approval Recommendations .. 68
 4.3 Technical and Servicing Recommendations .. 68
 4.4 Concluding Remarks ... 69

Works Cited ... 72
 Policies, Codes & Standards .. 72
 Studies & Reports ... 73
 Other ... 73
 Maps ... 74

Appendix I: Glossary ... 75

Appendix II – Study Area Maps .. 77

Appendix III: Provincial & Municipal Laneway House Supportive Policies 81

Appendix IV: Existing Approvals Process in the City of Toronto .. 82

Appendix V: Documentation .. 83
 Existing Dwellings ... 83
 Existing Commercial Properties ... 84

Endnotes .. 85
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Map of study area, image by Nigel Terpstra</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Price's Lane; Feb. 23, 1912, image courtesy of the City of Toronto Archives</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>Advertisement for subdivided lots on a former Park Lot property. image courtesy of the City of Toronto</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Sample ADUs in Santa Cruz, California, image courtesy of the City of Santa Cruz</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>Houses and garages in a typical Vancouver lane, image courtesy of the City of Toronto</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>A flooded and rehabilitated lane in Chicago, image courtesy of the City of Chicago</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>City of Toronto standard dimensions for mews and private streets, image courtesy of the City of Toronto</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>City of Toronto standard lane dimensions, image courtesy of the City of Toronto</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>Existing alley condition, image by Nigel Terpstra</td>
<td>38</td>
</tr>
<tr>
<td>10</td>
<td>A number of existing dwellings, constructed before the current by-law, on Euclid Place, image by Nigel Terpstra</td>
<td>43</td>
</tr>
<tr>
<td>11</td>
<td>Andrews Ave, a zero-lot-line street in the study area, image by Nigel Terpstra</td>
<td>44</td>
</tr>
<tr>
<td>12</td>
<td>Existing laneway condition, image by Nigel Terpstra</td>
<td>44</td>
</tr>
<tr>
<td>13</td>
<td>City of Toronto context, image courtesy of Google Earth</td>
<td>45</td>
</tr>
<tr>
<td>14</td>
<td>Former City of Toronto context, image courtesy of Google Earth</td>
<td>45</td>
</tr>
<tr>
<td>15</td>
<td>Study area: land use diagram, image courtesy of the City of Toronto</td>
<td>45</td>
</tr>
<tr>
<td>16</td>
<td>Study area aerial view, image courtesy of Google Earth</td>
<td>45</td>
</tr>
<tr>
<td>17</td>
<td>Typical unnamed Toronto lane, image by Nigel Terpstra</td>
<td>50</td>
</tr>
<tr>
<td>18</td>
<td>Evolution of the Toronto House from Site Unseen</td>
<td>51</td>
</tr>
<tr>
<td>19</td>
<td>View north up Montrose Ave, a typical residential street in the study area, image by Nigel Terpstra</td>
<td>52</td>
</tr>
<tr>
<td>20</td>
<td>Typical street and lot dimensions in Toronto, image by Nigel Terpstra</td>
<td>52</td>
</tr>
<tr>
<td>21</td>
<td>Original Condition image courtesy of superkül inc</td>
<td>architect</td>
</tr>
<tr>
<td>22</td>
<td>Finished project, image courtesy of superkül inc</td>
<td>architect</td>
</tr>
<tr>
<td>23</td>
<td>Laneway context, image courtesy of superkül inc</td>
<td>architect</td>
</tr>
<tr>
<td>24</td>
<td>Second floor amenity space, image courtesy of Astra Burka Architect</td>
<td>54</td>
</tr>
<tr>
<td>25</td>
<td>Plan view, image courtesy of Astra Burka Architect</td>
<td>54</td>
</tr>
<tr>
<td>26</td>
<td>View from street</td>
<td>54</td>
</tr>
<tr>
<td>27</td>
<td>Kohn Shnier laneway house, image courtesy of Kohn Shnier</td>
<td>55</td>
</tr>
<tr>
<td>28</td>
<td>Section and plan views, images courtesy of Kohn Shnier</td>
<td>55</td>
</tr>
<tr>
<td>29</td>
<td>Second floor kitchen and living room, image courtesy of Kohn Shnier</td>
<td>55</td>
</tr>
<tr>
<td>30</td>
<td>Ways Lane, image by Nigel Terpstra</td>
<td>56</td>
</tr>
<tr>
<td>31</td>
<td>Ways Lane House, image courtesy of Diamond Schmitt Architects</td>
<td>56</td>
</tr>
<tr>
<td>32</td>
<td>Plan view, image courtesy of Diamond Schmitt Architects</td>
<td>57</td>
</tr>
<tr>
<td>33</td>
<td>Sample lane in study area, image by Nigel Terpstra</td>
<td>57</td>
</tr>
<tr>
<td>34</td>
<td>Laneway dwellings on Plymouth Ave, image by Nigel Terpstra</td>
<td>58</td>
</tr>
<tr>
<td>35</td>
<td>Laneway vehicle repair shop, image by Nigel Terpstra</td>
<td>58</td>
</tr>
</tbody>
</table>
Figure 36: Residential density standards ... 59
Figure 37: Existing laneway dwellings in Toronto, Images by Nigel Terpstra ... 59
Figure 38: Laneway and garages, image by Nigel Terpstra .. 60
Figure 39: Current and potential densities in the study area ... 61
Figure 40: Disused interior block warehouse, repurposed into a multi-unit residential complex, image by Nigel Terpstra .. 61
Figure 41: Potential laneway evolution, diagram by Nigel Terpstra ... 65
Figure 42: Study area - Blocks and Lanes, map courtesy of the City of Toronto, modified by Nigel Terpstra .. 77
Figure 43: Study area - Blocks, lanes and property lines, image courtesy, map courtesy of the City of Toronto, modified by Nigel Terpstra .. 78
Figure 44: Blocks, lanes, property lines and building outlines, map courtesy of the City of Toronto, modified by Nigel Terpstra .. 79
Figure 45: Laneway properties. Existing garages are indicated in purple, existing laneway residential properties are indicated in yellow, existing laneway commercial properties are indicated in green, map courtesy of the City of Toronto, modified by Nigel Terpstra .. 80
Figure 46: Approvals processes in the City of Toronto, diagram by Nigel Terpstra ... 82
Chapter 1: Introduction & Context

1.1 Purpose

This report provides an examination of laneway housing and an analysis of the planning and legal barriers restricting the development of this typology in the City of Toronto. Toronto makes for an interesting case study since the city’s rapid expansion has challenged planners, architects and politicians to find ways to accommodate the growth. Currently, the city’s Official Plan directs growth into three specific areas: ‘Avenues,’ ‘Centres’ and ‘Mixed-Use Areas.’ While this wisely directs development to areas of the city which are well-served by transit and are in close proximity to amenities such as retail and schools, it limits the form that intensification can take, ensuring that the majority of new structures are constructed by developers rather than contractors or end-users.

The matter is further complicated by Toronto’s Zoning By-Law 438-86, the regulatory framework which gives legal direction on where and how to build in the City.\(^3\) It states explicitly that without individual amendments, houses cannot be constructed without street frontage or a project-specific by-law amendment. Laneway houses are covered specifically in Section 4(11): "No person shall erect or use a residential building in the rear of another building." This particular by-law has been a major obstacle to the development of laneway housing on a broader scale.\(^4\) While the caution which informs the by-law is based on legitimate concern over issues such as emergency and sanitation access, electricity and water servicing as well as dwelling height, density and massing, a consistent conclusion from the research was that for every potential problem, a number of viable solutions exist.

Toronto’s explosive growth also gives the issue a sense of urgency. While the housing industry in the Greater Toronto Area has been extremely successful in the past decade, it has essentially limited purchasers to three products: single detached homes, town or row houses and multi-family dwellings. This directly limits housing options and indirectly limits where individuals can afford to live. New families for example, generally prefer houses close to the ground, but since prices in the city are beyond the reach of many, they must seek accommodation elsewhere. If however, bylaws and the planning approval system were streamlined to allow laneway housing as-of-right or by a minor variance at the Committee of Adjustment, property owners could redevelop their garage or shed and have the option to occupy, rent or sell that property. It also gives those seeking residence in the City an affordable alternative to the limited housing options currently available.
Research Objectives and Questions

The specific research questions being addressed are:

1. What modifications can the City of Toronto make to existing by-laws and municipal policies to permit the development of laneway housing a broader scale and;
2. How can the planning, design and construction of residential dwellings in laneways be made more practical?

The research objectives of this report are as follows:

1. Identify why and how the City of Toronto has concluded that laneway housing is “not supportable as good planning;”
2. Find solutions to potential problems in literature, the best practices of other cities and Toronto’s own urban design guidelines for grey and brownfield infill projects;
3. Apply these solutions to a sample study area to determine how many new dwellings could be accommodated;
4. Distill a set of simple recommendations which address concerns in policy, planning and approval, community engagement, technical and servicing and general design. These are intended to be used as a road map for how the City can begin to re-examine laneway housing as quickly as possible.

This report will examine a study area bordered by Bloor Street to the north, Queen Street to the south, Bathurst Street to the east and Ossington to the west. The information gained through field work was used along with a set of Property Data Maps (PDMs) to develop a catalogue of all of the different types of block, lane and lot within the area. While the area largely retains the historic structure of Lord Simcoe’s Park Lots, the long, narrow blocks which have defined Toronto’s grid for over a century, it contains a number of unique and challenging deviations from it as well. This diversity of setting will ease the creation of a set of urban design guidelines to be applied more broadly across the city.

The study focuses primarily on residential dwellings as this use is most-complimentary to the existing context. Ideally, once Toronto gets accustomed to the idea of laneways as multi-use spaces, an exploration of commercial or light industrial uses may be undertaken. These uses often have servicing requirements which are more difficult to satisfy so an initial exploration into housing will lay a flexible framework onto which new programs and initiatives can be loaded in the future.
Figure 1: Map of study area, image by Nigel Terpstra
1.1.2 Laneway Housing Principles

To clarify the case for laneway housing, this paper will organize its research according to five principles. These principles speak directly to the population growth and built form objectives set out in both municipal and provincial plans and address several potential problems foreseen by the City’s Planning and Works Departments. This five-point structure informed both textual study and field work and it will be referenced throughout to help tie readers back to set of core principles:

- **Increase densities while retaining neighbourhood character** – Owing to their small size and alley-frontage, laneway houses are often unseen from the street yet collectively over a block are able to accommodate as many or more residents as a typical mid-rise building. Laneway houses also make the most of existing infrastructure, allowing Toronto to add a significant number of new dwellings without the need for costly capital improvements. Denser urban living has shown to be a far more sustainable way of life. By putting a greater number of people, goods and services in closer proximity, cities can make public transportation more efficient and increase the number of journeys made on foot and by bicycle.

- **Increase affordability and choice in Toronto’s housing stock** – Toronto’s ‘Housing Charter’ and ‘Housing Opportunities Toronto Action Plan’ emphasize the need for all Torontonians to have the opportunity to live in the neighbourhood of their choice. Unfortunately, the high cost of housing limits the number of ‘bed spaces’ in the city and means that for many, this is not currently possible. Laneway homes are cheaper to construct and maintain than regular street-facing dwellings and are therefore an excellent way to add new affordable housing stock. A greater number of bed spaces downtown also increases the number of residents living close to a variety of transportation options, decreasing the automotive and increasing the transit and active transportation modal shares.

- **Enhance Toronto’s Laneway Network** – Many of the City’s lanes appear forlorn with graffiti, unkempt vegetation, and poor lighting. This condition limits their use by pedestrians who consider them remote and unsafe. Allowing a laneway house typology to flourish would improve these spaces by introducing elements such as gardens and semi-permeable paving materials to help mitigate stormwater runoff. They also add ‘eyes on the street,’ Jane Jacob’s famous method for naturally increasing neighbourhood safety without need for more authoritarian measures.
Increase the vibrancy and variety of social life through the block – Studies of the social life of alleys indicate that they are often used for a diverse array of functions including gathering spaces for communities and sports facilities for children. Basketball hoops and hockey nets are oft-found furniture in alleys across the City and an expansion of laneway housing would help strengthen not only the physical appearance of alleys, but the social life they foster.

Create opportunities for unique and creative architectural expressions – Though contextual deference is rightly highlighted in Toronto’s urban design guidelines and Official Plan, it is not the only way to make alleys feel special. A number of already-constructed examples manage to balance neighbourhood sensitivity with creative expression. These and other laneway houses have won architectural awards indicating that architects are interested in giving alleys a unique expression all their own. Small houses in Japan for example have long symbolized an opportunity for architects and clients to express their own set of values in built form. The incredible range of these dwellings satisfies not only the creative imaginations of their designers, but also the desire for environments which hold pedestrian interest through spatial variety.

Figure 2: Price's Lane; Feb. 23, 1912, image courtesy of the City of Toronto Archives
1.2 Background

1.2.1 The Evolution of Toronto’s Urban Structure

“The premise that morphology informs building typology is the foundation to understanding the laneway and its opportunities.” – Brigitte Shim, Site Unseen

Toronto’s built form has gone through many evolutions in its near-250 year existence. From the early days of Fort York and the Georgian ‘ten-square’ grid to the ‘park-lot’ system which replaced it to the current block-and-alley structure, Toronto’s urban fabric has been in a constant state of evolution. To fully understand how re-introducing laneway housing would be a wise return to the planning conventions of the past, it is essential that one also understands how the city’s block structure came to be.

In the early nineteenth century, Governor John Graves Simcoe abandoned the Town of York’s Georgian, ‘ten-square’ pattern and began surveying the land into larger ‘park lots.’ These distinct, rectangular parcels, each ten times longer on their north and south axis (6,600 ft.) than to the east and west (660 ft.), are still the basis for Toronto’s present block structure.

Park lots were intended to be large, single-family estates for wealthy families and military officers and guidelines were drawn up to instruct owners on how they could develop their property. Chief among these guidelines was a stipulation that park lots were to be independent of urban development in an effort to retain their rural character. By the mid-nineteenth century however, owners abandoned these guidelines and began subdividing and selling off their land to accommodate Toronto’s rapid growth. Land owners often disagreed on how they thought the city should grow and as a result, most estates developed independently of the others. As time progressed, the original park lots were further subdivided by laying down streets and avenues and selling off the narrow, rectangular parcels which faced them.
Developers were keen to maximize the street frontage of their properties and moved service functions such as the delivery and storage of goods to a system of rear lanes which ran behind their street-facing properties. They soon realized that this internal laneway network could itself accommodate secondary, laneway-facing housing and commercial properties. Alleys such as Stonecutter’s Lane were give names which reflected the type of commercial activity occurring within them. This move maximized profits by increasing densities while minimizing wasted land and avoiding costly infrastructure improvements. The small detached cottages and apartments atop garages and stables which began to line the city’s lanes housed drivers, servants and other domestic workers along with horses, carriages and later, automobiles.

As late as 1937, ‘Chapter 33, Dwellings’ of Toronto’s ‘By-law 14852’ stated: “dwelling accommodation may be provided in a garage or stable building for the accommodation of a chauffeur or coachman, although such a garage or stable is located at the rear of another building, provided the employer or the chauffeur or coachman is a resident in the front building located upon the premises.” In 1952 however, the city enacted its ‘house behind house’ bylaw and by 1970, property severances were also all but banned. The authors of Site Unseen attribute the current zoning restrictions to: “a consequence of compulsory updates to the regulatory framework [because] Legislation evolved with the cultural decline of the coach house.”

The evolution of laneways from animated and active spaces to passive storage areas is emblematic of the broader changes to North American urban environments in the twentieth century. But cities continue to evolve. Increasingly, urban centres like Toronto are prioritizing active transportation and transit usage over individual automobile use. While residential laneways of pedestrian scale may not directly cause drivers to abandon their cars, they do speak to this evolution in two ways: first, by putting greater residents of people closer to work and amenities, distances between locations become smaller and the need to drive lessens. Second, the small, individualized frontages of laneway houses create a cadence and rhythm which increases pedestrian interest and naturally encourages walking. The reintroduction of laneway housing is therefore more than just a new way to house Torontonians, it is an opportunity to reconnect the city to itself.
1.3 Literature Review

Popular Media

Though the body of laneway housing literature is relatively small, it is focused and determined. A number of journalists and authors have praised laneway housing and encouraged the City to be more open to alternative dwellings. Dave LeBlanc, an urban affairs write for The Globe and Mail has called laneway housing ‘the future of homes’ while Beth Kapusta of Canadian Architect has called laneway housing “sophisticated and effortless’ and ‘an architectural rabbit pulled out of a hat.”

In Vancouver, critics have lauded the efforts of small companies such as Lanefab and praised the opportunity to: “enrich the lane by truly treating it as a front yard...” Kamala Rao, writing in the ‘Journal of the Planning Institute of British Columbia’ called laneway houses ‘ingenious’ and asked in reference to Vancouver’s experience: “...what other city has successfully added density to long-established, single-family neighbourhoods filled with $1 million-plus homes?” The praise of well-meaning critics is however only a part of the laneway housing literary oeuvre – perhaps more important are the studies undertaken by professionals and academics which prove quantitatively that the advantages of laneway housing far outweigh the drawbacks.

Studies and Reports

A Study of Laneway Housing in Toronto, 2002

Initial research into laneway housing was conducted by Jeffery Stinson and Terence Van Elslander who were commissioned by Affordability and Choice Today (ACT), a program sponsored by CMHC, the Federation of Canadian Municipalities and the Canadian Home Builders' Association (CHBA) to study how Toronto might expand the typology at a broader scale. Their report, A Study of Laneway Housing in Toronto (2002), concluded that laneways represented: "...an untapped resource of city property, which could be developed for much needed low cost housing [while] effectively using existing infrastructure."

The authors examined issues of neighbourhood integration, scale, access, density, privacy and quality of construction but found that the biggest roadblock lay in the 'unevenly rigorous' approvals process. Specifically planner’s unfamiliarity with the typology: "The recent municipal amalgamation seems to have exacerbated the problem; planners whose background is in the suburban context seem to have difficulty accepting the concept of laneway housing and are unfamiliar with its history and the large number of laneway houses already in existence."
Perhaps the strongest aspect of Stinson and van Elslander’s study were their calculations which proved both that there was a wealth of unused property in the City’s lanes and that one could build on that property for a fraction of the cost of an on-street dwelling. The study demonstrated that in an area where single-detached houses sold for $300,000 and up, a builder was able to construct a duplex for $252,000 at a construction cost of only $120 per square foot (approximately $160 in 2012).¹³

Stinson and van Elslander tempered their support of laneway intensification with a fair discussion of the impacts inherent to higher densities including increased noise, shadowing and waste. The authors felt however, that like many of the post amalgamation planners, many communities’ hesitancy to accept a laneway housing typology stemmed not from hostility, but simply unfamiliarity with the concept. They argued that this sentiment could be reversed with a Laneway Advocacy Group which would inform communities about the benefits of laneway housing and a start discussion about relaxing or removing the prohibitive bylaws restricting owners from creating such dwellings.

Espaces habitables sur ruelle (or, Building Houses That Front on Alleys), 2002

In the late 1990s, the group ‘Société Habitat sur mesure’ began studying how Montreal might accommodate laneway housing, or, what the study called ‘Building Houses That Front on Alleys.’ Like Toronto, Montreal’s by-laws explicitly prohibit alley-fronting housing and the group wanted to examine three distinct project objectives: “identify and regulatory obstacles to backyard housing; propose amendments to municipal by-laws to permit this type of construction; and develop design options and guidelines...which can serve as models for other[s].”¹⁴

The team began by documenting existing laneway houses in the city then identifying the solutions those dwellings had utilized to develop a list of metrics for identifying the most appropriate sites for alley-fronting dwellings. They then developed five prototype houses, each responding to the unique conditions presented by a particular style of lot (keyhole, island, etc.). The team then combined these prototypes with what they had what they had observed in the field and distilled the results into a set of broader urban design guidelines as well as a list of specific regulatory changes which, when combined, would encourage the safe construction of alleyway dwellings. The report recommended, among other things, that dwellings be located ‘no more than 20m from a main street,’ that dwellings ‘be adjacent to two alleys,’ and that dwellings ‘must have their own water supply’ (including both the provision of fresh and the disposal of waste water).
Site Unseen, 2003

In 2003, Architects Brigitte Shim and Donald Chong led a Masters studio entitled ‘Site Unseen’ at the University of Toronto’s Faculty of Architecture, Landscape and Design. The studio encouraged students to think of laneways as a ‘legitimate and potentially vast urban ‘resource,’ and explored the possibilities for intensification through ‘thoughtful’ and ‘regenerative’ insertions in the city fabric. The studio produced a book which provides both a history of Toronto’s urban structure and laneway housing’s place within it and a general set of recommendations for adding housing stock in unconventional places. The most interesting aspect of the Site Unseen project however are thirteen unique student projects which imagine what alleys might be like if uses such as parks, a food court, a student residence, a hostel, a cemetery, a laundromat and a hospital visitors’ residence were allowed within them.

Livable Lanes: A Study of Laneway Infill Housing in Vancouver and Other Growing B.C. Communities, 2009

‘Livable Lanes’ is a study undertaken by CMHC to assess the expansion of laneway housing and gauge potential resistance from cities and the communities of which they are composed. The study begins by detailing the results of a workshop which took place in Vancouver in 2006, two years before that council approved staff recommendations to expand laneway housing in the RS-1, RS-3, RS-3A, RS-5 and RS-6 zones of that city. Participants were very receptive to the benefits of laneway housing and suggested that the best way to raise positive awareness about the typology would be to educate residents through a ‘laneway advocacy group’ or similar organization (a conclusion shared by Stinson and Van Elslander).

The report split the rest of its recommendations into six sections: ‘Policy Strategies,’ ‘Technical Aspects,’ ‘Approvals Processes,’ ‘Design Considerations,’ ‘Awareness Building and Community Engagement’ and ‘Affordability.’ The conclusions each section presents aren’t necessarily groundbreaking but instead corroborate and underscore what others across the country have concluded. Namely, that laneway housing could be a useful tool for increasing densities and affordable housing stock while respecting the character of the city and neighbourhoods in which it is inserted.

Life in the Lane, 2010

‘Life in the Lane’ is a qualitative and quantitative study of the lanes in Councillor Adam Vaughan’s Ward 20. Undertaken by a group of Ryerson University Planning students in 2010, the report
does not argue for an expansion of uses in Toronto’s lanes but provides a detailed and comprehensive examination of the: “…underutilized network of laneways” from which the city might base future improvements. To this end, it analyzes, classifies and maps the block and lane typologies by shape, length, land use, level of activity and servicing. This sort of information allows the Planning department and Councillor Vaughan to use the document as a tool to help residents better-understand the city’s lanes and advocate for an expansion of uses in them.

Part of the students’ report details the results of a focus group which gauged residents’ perception of the city’s lanes and the social life within them. Responses were wide-ranging and found that while some alleys were perceived as ‘closed off’ and hardly used, others featured ‘hockey games, laneway parties and communal snow clearing.’ When asked about improvements, residents suggested improved lighting, permeable surfaces, reduced parking, better signage and pedestrian and cyclist prioritization as ways to encourage further use. This use of alleys as a social nexus is an important step towards making them true, multi-use spaces.

Summary

Each document brings a different perspective into the laneway question. As practicing architects, Stinson and van Elslander took a pragmatic approach, applying what they have learned in the field to a new context and typology. The students of the Site Unseen studio then took the conversation in a more theoretical direction, exploring how lanes might evolve from service corridors to true multi-use spaces featuring residences, commercial ventures and restaurants. Montreal and Vancouver’s CMHC-commissioned studies also produced a number of interesting and useful recommendations regarding the siting of laneway buildings and the effect they would have on traditional zoning codes.

Taken together or individually, this body of work demonstrates a clear consensus that laneway housing should be re-examined wherever possible. Though this study focuses on Toronto, the ideas which underpin the typology are applicable in any city which features an alleyway system. Though the dimensions of lanes and the size and siting of dwellings will vary by city and often by neighbourhood, each locale brings its own set of opportunities and constraints. Adapting to these idiosyncrasies grows the pool of laneway knowledge and increases the availability and variety of solutions. Eventually, that pool will grow to the point that a technique used to solve a problem in a particular location will have a set of standards and guidelines which can be adapted and applied elsewhere.
1.4 Best Practices

With a good sense of the journalistic and academic attitude towards laneway housing, the next step is to examine exactly what other cities are doing. A number of other North American cities are investing in their laneways in a variety of different ways from residential and commercial accommodation to repaving and improved lighting. The following section investigates several of these programs using the five principles as a guide. As such, this report examines in detail projects which:

- Increase densities while retaining neighbourhood character
- Increase affordability and choice in Toronto’s housing stock
- Laneway enhancement
- Increase the vibrancy and variety of social life through the block
- Create opportunities for unique and creative architectural expressions

Projects in four cities were studied in detail including the adoption of laneway housing in the State of California and city of Vancouver, British Columbia; the Green Alleys alley revitalization program in Chicago, Illinois and; an implementation study by the City of Unley in Adelaide, South Australia.

California State Assembly Bill: AB 1866, 2003

State Bill AB 1866 was signed by Governor Grey Davis in July 2003. The amendment was intended to promote the development of second units or ‘Accessory Dwelling Units’ (ADUs) in existing and future single family lots across the state. It makes review of ADUs ministerial in that the development of an ADU cannot be prohibited if it meets 9 ‘Development Standards’ covering use, tenure, sizing, siting and parking.

When justifying the importance of ADUs, the Governor’s Office wrote: “Second-units provide an important source of affordable housing. By promoting the development of second-units, a community may ease a rental housing deficit, maximize limited land resources and existing infrastructure and assist low and moderate-income homeowners with supplemental income.” This is progressive language from a state notorious for urban sprawl and high rates of automobile use.
Accessory Dwelling Unit Manual, Santa Cruz, California, 2003

To ease community concern about the implementation of State Bill AB 1866, the City of Santa Cruz developed a comprehensive manual which encourages ADUs that are: “...sensitive to the surrounding neighbourhood, contributing, rather than detracting from the Santa Cruz community.” The manual guides homeowners through the entire process of developing an ADU including: relevant zoning, design standards, building codes, and show cases of prototype ADU designs. Since ADUs in California cannot be sold but can be rented, the manual includes a sample lease agreement to ensure owners are fully aware of what they are undertaking.

Though the lots in Santa Cruz are generally larger than those in Toronto, there are fundamental similarities in that residents are constructing and servicing two dwellings on a single lot. Furthermore, one of the stronger aspects of this manual is that the solutions it provides can be tailored to properties of any dimension. This strengthens the recommendations by increasing their versatility and applicability across a number of different contexts and scenarios.

Vancouver’s EcoDensity Program, 2008

In 2008, Vancouver relaxed its zoning by-laws and streamlined the approvals process to expand laneway housing in the city. The move to accept laneway housing as a 'normal' typology was made in support of the EcoDensity Program, a comprehensive set of policies which marry "density, design and land use with environmental sustainability, affordability and liveability." These legal and policy changes came with very clear instructions on how laneway houses may be constructed and where they can exist.

The EcoDensity program argues for ‘density done well’ and defines three distinct areas where homeowners can consider adding an additional unit. 'Gentle density,' is defined as sensitive infill which can be seen from the street but which is suitable for its neighbourhood in terms of its massing and design. 'Hidden density' includes new infill structures such as laneway houses and garage conversions.
which can be seen from the laneway but not the street. 'Invisible density’ refers to new secondary suites constructed within existing residential dwellings, including basement and attic apartment conversions. While sustainable land-use patterns are the overall goal of the EcoDensity program, Vancouver is also hoping to prove that higher densities in established neighbourhoods need not be something for residents to fear.

The Program is being introduced through The EcoDensity Charter. This document: “...commits the City to make sustainability a primary goal in planning decisions [and] outlines eight ‘commitments’ to its present and future citizens.” These include:

- An Over-Arching Environmental Priority
- Toward an Eco-City
- A Greener, Denser City Pattern
- More Housing Affordability, Types and Choices
- Greener and Livable Design with a “Sense of Place”
- Greener and Livable Support Systems
- Neighbourhood Voice, Neighbourhood Responsibility
- How Will the City Use this Charter and Meet our Commitments?

These policies marry creative land-use planning with sustainable design and a focus on neighbourhoods to present not just a vision of where the city is headed, but a roadmap for how to get there. Commitment 8, in particular, focuses on how the previous seven will be implemented and clarifies how the Charter will integrate with existing by-laws and policies.

City of Vancouver Laneway House Guidelines, 2009

As part of the ‘Hidden Density’ portion of the EcoDensity program, Vancouver opened the lanes in its RS-1 and RS-5 single-family zoned areas to the construction of secondary suites such as laneway houses and garage conversions. Guidelines published soon after advised that laneway houses: “create neighbourly relationships with adjacent properties, a positive landscape and enhanced environmental performance.” The guide is split into six sections: Quality, Durability and Expression; Scale and Massing; Privacy and Overlook; Lane Frontage; Landscape. Taken together, these six sections distill and clarify the difficult language of the RS-1 and RS-5 Zoning By-Law District Schedules and work in concert with the City’s ‘How-To Guide’ to allow homeowners to better assess whether their property is applicable and how to proceed if it is.

To illustrate and clarify the City’s Laneway House Guidelines, Vancouver published a ‘Laneway Housing How-to Guide.’ The guide cites five ‘laneway housing principles’ in support of new laneway construction: affordability, homeowner opportunity, lane enhancement, liveable and neighbourly units, and green design. The guide is friendly yet specific in its language, stating that: “homeowners are able to add a laneway house while keeping their existing home or build a laneway house along with a new main house.” Because the property owner is the one applying for and constructing the secondary suite, he or she controls its use (rent out, house family member, etc.) and complicated property severances are not required.

The guide also gives advice on the design of laneway houses. Split into ‘Design Basics’ and ‘Design in Context,’ this section guides owners through the process of siting and dimensioning their secondary suite, locating parking and protecting trees. It also provides suggestions on how to design in a ‘neighbourly way’ and how laneway houses can enhance their laneway setting with vertical plantings (green walls) and green roofs, permeable paving materials for parking spaces, and pedestrian-friendly lighting.

Chicago’s Green Alleys Program, 2006

Chicago’s ‘Green Alleys’ program is an initiative which addresses the deteriorating state of the City’s lanes with new paving materials and stormwater management techniques. Though the program does not encompass residential construction, it is still an excellent precedent which fulfills two of the laneway housing principles guiding this research (laneway enhancement, Increase the vibrancy and variety of social life through the block).
In 2006, Chicago’s Department of Transportation began converting the city’s 3,100km of asphalt and concrete alleyways into what it called ‘Green Alleys.’ The Green Alley Program proposes to revitalize these spaces by replacing old, impervious paving materials with semipermeable equivalents designed to allow surface water to drain into the soil. The program has been almost universally lauded and to date, nearly 150 of the city’s alleys have been converted. Chicago has in fact, now mandated that alleys which require even the partial removal of the hard surface for maintenance should be entirely re-paved according to Green Alley Program standards. To familiarize Chicagoans with the program, the city published The Green Alley Handbook, a document which describes what the city is undertaking and how property owners with lane-backing homes can assist in those efforts.

City of Unley, Adelaide, South Australia – Laneway Housing Implementation Study, 2012

In late 2011, the City of Unley, a Local Government Area in Adelaide, South Australia evaluated the potential opportunities and drawbacks associated with laneway housing. The study concluded that: “The concept offers potential benefits for housing growth, diversity and affordability, and a sensitive approach to increasing density in traditional character neighbourhoods.” There were also a number of ‘implications’ including: “a range of planning, traffic and infrastructure issues highlighted however, that require appropriate and comprehensive consideration.”
Unley concluded that laneway housing offers potential benefits for: “...housing growth, diversity and affordability, and a sensitive approach to increasing density in traditional character neighbourhoods.” Like Toronto, Unley noted range of planning, traffic and infrastructure issues that: “will require further appropriate broad, comprehensive and considered investigation. Further, the numerous critical infrastructure, traffic and planning issues will require careful deliberation and resolution.” In reading their respective opinions, one is struck by a notable difference in tone: where Unley seems excited to work with its residents to open up the city’s lanes to new uses and tie communities closer together in the process, Toronto is unconcerned with making laneway living a viable and affordable proposition.

Summary

These projects are reflective of a desire among cities, particularly in North America, to think more intelligently about where and how land is used. Programs such as Chicago’s Green Lanes are an excellent first step in laneway renewal since they can also create interest in these spaces and pave the way for further programming. From there, more comprehensive efforts such as those undertaken by the State of California and the City of Vancouver can provide solutions and expertise, allowing Toronto to capitalize on past success and avoid potential pitfalls.
1.5 Policy and Legal Background

The following section examines the provincial and municipal policies and laws which guide growth in the Province of Ontario and the City of Toronto. They will be studied with an eye to sections which speak to the five guiding principles.

- Increase densities while retaining neighbourhood character
- Increase affordability and choice in Toronto’s housing stock
- Laneway enhancement
- Increase the vibrancy and variety of social life through the block
- Create opportunities for unique and creative architectural expressions

In 2005 the Places to Grow Act (PTG Act) was enacted to direct land use and development in Ontario. It stresses intensification and redevelopment to maximize land value and promote density. It guides new development toward defined ‘Designated Growth Areas,’ most of which are Toronto, the GTA and the medium-sized urban centres which dot western Ontario. In 2006, the Growth Plan for the Greater Golden Horseshoe (GPGGH) was implemented to guide development according to the PTG Act and within existing local planning frameworks. Both of these documents’ support of intensification on brown and greyfield sites and promotion of the reuse of existing infrastructure inherently speak to a support of alternative methods of density such as laneway housing.

At the municipal level, growth is guided by the city’s Official Plan (OP) (2006) and Zoning By-Law 438-86 as well as a number of area-specific secondary plans and typology-specific urban design guidelines. Like its provincial counterparts, the OP supports Reurbanization, reuse of existing infrastructure and an excellent public realm. Unfortunately, though alternative methods of density are implicitly supported in the OP, they are explicitly opposed by the by-law. The section concludes with several documents provide hints at how existing policies can reinterpreted but not rewritten to be supportive of the typology.

1.5.1 Province of Ontario

Places to Grow Act, 2005

The Provincial Policy Statement (PPS), also known as the Places to Grow Act (PTGA) sets the policy direction for matters concerning land-use and development in Ontario. The aim of the PPS is to:
“[provide] for appropriate development while protecting resources of provincial interest, public health and safety, and the quality of the natural environment.”22 Though no policies speak to laneway housing directly, the PPS guides the physical growth of the province and the cities within it so an examination of its recommendations will be helpful.

Though laneway houses could be constructed in new housing developments in what the PPS defines as ‘Designated Growth Areas,’ (sec. 1.1.3.7) they are more likely to be found in ‘Settlement Areas,’ (sec. 1.1.3) or areas such as downtown Toronto which have existed for some time. ‘Settlement Area’ zones require development which: “efficiently uses the infrastructure and public service facilities which are planned or available, and avoids the need for their unjustified and/or uneconomical expansion.”23 Furthermore, development should be ‘compact in form’ and should: “[take] into account existing building stock or areas, including brownfield sites, and the availability of suitable existing or planned infrastructure and public service facilities required to accommodate projected needs.”24

Section 1.4, Housing, stresses the need to provide a range of housing types at a variety of densities to meet the projected growth targets set in the Provincial Growth Plan (2006). Section 1.4 touches laneway housing in that it requires that municipalities like Toronto keep enough land in reserve to: “...accommodate residential growth for a minimum of 10 years through residential intensification and redevelopment” alone.25 Though this land can still be found in the city’s unoccupied brown and greyfields, the addition of land fronting on laneways would ensure that these targets are not only met, but healthily surpassed.

Section 1.4.3 states that: “planning authorities shall provide for an appropriate range of housing types and densities to meet projected requirements of current and future residents...”26 Within that heading, policies 1.4.3d and 1.4.3e take this a step further, specifying that: “housing [should] efficiently use land, resources, infrastructure and public service facilities...” and “...new residential development [should] minimize the cost of housing and facilitate [a] compact form, while maintaining appropriate levels of public health and safety.”27 Laneway housing is not only compact in form and costs residents less to construct, it enhances public safety by transforming the city’s lanes from deserted and dangerous spaces to a network of passively-surveyed, small-scale streets and mews.

Laneway housing touches not only the residential aspects of the PPS but is intrinsically linked to those sections concerning public space, infrastructure and transportation. The PPS stresses that: “...public streets, spaces and facilities [need] to be safe, meet the needs of pedestrians and facilitate
pedestrian and non-motorized movement, including but not limited to, walking and cycling;”

Cities should: “use existing infrastructure and public service facilities should be optimized wherever feasible, before consideration is given to developing new infrastructure and public service facilities.” Likewise, transportation should: “…use…existing and planned infrastructure” as efficiently and cost-effectively as possible.

Appendix III, Table 1 includes all applicable laneway policies in the PPS.

Growth Plan for the Greater Golden Horseshoe, 2006

The ‘Growth Plan for the Greater Golden Horseshoe’ (Growth Plan) is a: “…framework for implementing the Government of Ontario’s vision for building stronger, prosperous communities by better-managing growth in the region to 2031.” The plan projects that the Greater Golden Horseshoe will grow by 3.7 million to a total of 11.5 million in that time and covers transportation, infrastructure planning, land-use planning, urban form, housing, natural heritage and resource protection in the region. Like many other pieces of legislation studied in this report, the Growth Plan does not make reference to laneway housing directly but it does consistently emphasize intensification and a ‘compact urban form.’ Of particular relevance to laneway urbanism are ‘Section 2; Where and How to Grow’ and ‘Section 3; Infrastructure to Support Growth.’

Section 2; ‘Where and How to Grow’ – This section calls for: “intensification of the built-up areas, with a focus on urban growth centres, intensification corridors, major transit station areas, brownfield sites and greyfields.” This emphasis on the use of existing land represents: “a new approach to city-building in the Greater Golden Horseshoe, one which concentrates more on the making better use of our existing infrastructure…” Toronto’s potential adoption of laneway housing would be in keeping with the land-use policies set forth in this section.

Section 3; ‘Infrastructure to Support Growth’ – This section speaks to the relationship between infrastructure costs and the density of new development. It claims that “…over 20 per cent of infrastructure capital costs could be saved by moving…to a more efficient and compact urban form.” Repurposing some of the city’s alleys for residential use would fulfill many of the plan’s goals by intensifying using existing infrastructure while reducing the burden on greenfields on the city’s periphery.

Appendix III, Table 2 includes all applicable laneway policies in the Growth Plan.
1.5.2 City of Toronto

City of Toronto Official Plan, 2006

Toronto's Official Plan is a strategic vision for how the city should grow over the next twenty-five years. Though the Official Plan does not reference laneway housing directly, policies in a number of sections indicate that growth in the form of laneway houses and ADUs is desirable. ‘Reurbanization’ for example, which the city defines as “the redevelopment of land within the existing urban fabric,” is prioritized and reiterated at several points throughout the plan. An analysis of the clauses which indirectly support laneway housing will help illustrate how it is actually in keeping with what the plan envisions.

Chapter 2 – Shaping the City

2.1 Building a More Livable Urban Region

The first set of policies in Section 2 of the Plan encourage not only the reuse of existing land resources, but also the integration of a range of different housing types in mixed-use areas and emphasize the ability to ‘live locally.’ Policy 1b for example, calls for development which: "makes better use of existing urban infrastructure and services," while Policy 1f mandates: "a full range of housing types in terms of form, tenure and affordability, and particularly encourages the construction of rental housing in all communities."36

2.2 Structuring Growth in the City: Integrating Land Use and Transportation

Section 2.2 identifies the major transportation networks within Toronto and makes clear the need to locate new growth in areas which are well-served by transit. This way, Toronto can: “...create a better urban environment, a competitive local economy and a more socially cohesive city.”37 Because laneway houses are, by definition, located in existing neighbourhoods, they are rarely far from a stop on the city’s extensive bus, streetcar and subway network.

2.2.1 Downtown: The Heart of Toronto

The Official Plan promotes intensification that is creative, innovative and sensitive to location. It recognizes that while additional residents and increased densities are desirable, growth will not be spread uniformly across the entire area: “...there are many residential communities which will not experience much physical change at all...While the population mix of these communities will change over time, their physical setting will remain unchanged.”38
2.3.1 Healthy Neighbourhoods

Toronto has often been called a ‘city of neighbourhoods’ owing to its unique collection of communities, each defined as much by cultural as by geographic borders. These communities are an immeasurable asset to the city and the Plan explicitly calls for their preservation: "[development must be] consistent and respectful of the existing physical character of buildings, streetscapes and open space patterns..."39 The wording of the ‘Healthy Neighbourhoods’ section of the Plan is careful to note that preservation does not equal ossification, stating: “...these neighbourhoods will not stay frozen in time...Some physical change will occur over time as enhancements, additions and infill housing occurs on individual sites.”40 To accommodate this change in a way that respects the existing built form, the plan calls for new development which: “respects the existing physical character of the area, reinforcing the stability of the neighbourhood.”41

Chapter 3 – Building a Successful City

Section 3, ‘Building a Successful City,’ introduces policies to: "...guide our growth by integrating social, economic and environmental perspectives...to create an attractive Toronto with a strong economy and complete communities."42 Section 3.2.1 – ‘Housing,’ addresses the need for a diversity of housing types and tenures so that all Torontonians are afforded the opportunity to live where they desire. Simultaneously, Section 3.2.1 recognizes that Toronto's rental market is underserved and calls for the supply and availability of rental housing to be returned to a 'healthy state.'43

3.1.1 The Public Realm

Toronto’s network of open public spaces includes its streets, parks, plazas and public buildings, all of which are vital assets deserving the highest levels of stewardship and pride. Though hidden and largely unnoticed, this network includes the city’s alleys and laneways which are currently are singular in use and unacceptable in maintenance. The Public Realm chapter in the Plan recognizes the importance of excellent urban design in creating spaces which people will not only use, but will want to use. The second policy for example, encourages architects and developers into healthy competition by emphasizing the importance of such programs as the Toronto Urban Design Awards.44 It is worth noting that to date, two laneway houses, Kohn Shnier’s laneway house and Superkül’s 40R_house, have won awards of excellence in the past.
3.2.1 Built Form

The Plan’s policies for ‘Built Form’ stress the need for new development to “respect and improve the character of the area” with regard to height, massing and density. They emphasize that most new development should occur on infill sites and encourage buildings which shape space rather than simply exist within it. Though the Plan does not recognize them, laneways have a utilitarian built form all their own. Increasing residents and casual walkers can reanimate these spaces and give them new life. The fifth policy, is perhaps most important since it explains how buildings should work for pedestrians and should make perambulation an exciting prospect.

Appendix III, Table 3 includes all applicable laneway policies in the Official Plan.

City of Toronto Zoning By-Law No. 438-86, 2001

City of Toronto Zoning by-law No. 438-86 is the regulatory framework which gives direction on where and how to build in the City. It is intended: “To regulate the use of land, the erection, use, bulk, height, spacing of and other matters related to buildings and structures and to prohibit certain uses of lands.” Unfortunately, Toronto’s Municipal Code and the by-laws which comprise it state explicitly that without individual amendments, houses cannot be constructed without street frontage or a project-specific by-law amendment.

Section 4(11), ‘Residential buildings: Frontage on a Public Highway, Minimum Front Lot Line, House behind House’ of Toronto By-Law 438-86, governs the construction of houses which do not front on traditional streets. Within bylaw 4(11), Subsection B states explicitly that: "No person shall erect or use a residential building in the rear of another building" while Subsection C reiterates that: "No person shall erect or use a building in front of another building as to produce the condition of a residential building in the rear of another building.”

Since ‘house behind house’ conditions are not advisable, it has been incumbent on planners to interpret the current codes and by-laws with some creativity when presented with a laneway application. Unfortunately, though some examples have been constructed, the typology is still relatively foreign and until planners and engineers are willing to re-examine the reasoning behind existing restrictions, applications will continue to ‘test’ the City’s approval process.
In May 2006, Councillor Adam Giambrone requested that Toronto’s Works Committee report on whether: ‘the construction of housing in laneways can be made more practical.’ Unfortunately it recommended that: “…the City not permit construction on existing laneways except in special circumstances where there are no privacy, overlook, shadowing and engineering servicing implications.” The report cited the awkward manoeuvring of large vehicles such as garbage trucks, snowploughs and fire engines in tight spaces and the difficulty of servicing laneway dwellings with sewer, water and electricity and/or natural gas as contributing to the decision. Ultimately, it concluded that laneway housing is not ‘in keeping with the character of the neighbourhoods’ and could therefore not be supportable as ‘good planning.’

The report is the only City document addressing laneway housing directly and it is not kind in its language. It splits the issue into two categories: ‘Planning Considerations,’ which examines lot severance complications and respect for the existing character of neighbourhoods, and ‘Engineering and Servicing Considerations,’ which studies the technical difficulties of constructing and servicing laneway dwellings. The report claims that due to ‘extremely high costs’ and ‘increased disruption,’ from ‘specialized, non-standard equipment and techniques,’ equipping lanes with additional infrastructure is not possible.

Unfortunately, even though the report states that many of these problems could potentially be overcome through 'sensitive design,' it concludes that: "Laneways are primarily constructed to provide vehicular access to parking garages for houses which already have a public street frontage." It is unfortunate that the engineers who penned the report are adhering to an outdated vision of a lane existing primarily for vehicular storage and are ignoring the longer history of alleys as multi-use spaces. Though several of the concerns raised in the report are real, they are not without solutions and it is important to look to successful precedents both in Toronto and across the country for answers.
In February 2005, Councillor Maria Augimeri requested a report quantifying the number of city laneways and the level of service in them. The report provided the following table breaking down the number of city-owned alleys in each Community Council Area:

<table>
<thead>
<tr>
<th>Community Council Area</th>
<th>Number of Laneways</th>
<th>Total Length (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toronto and East York</td>
<td>1907</td>
<td>226.7</td>
</tr>
<tr>
<td>Etobicoke York</td>
<td>359</td>
<td>56.5</td>
</tr>
<tr>
<td>North York</td>
<td>109</td>
<td>19</td>
</tr>
<tr>
<td>Scarborough</td>
<td>58</td>
<td>9.3</td>
</tr>
<tr>
<td>Total</td>
<td>2433</td>
<td>311.5</td>
</tr>
</tbody>
</table>

Table 1: Laneways by Community Council Area, City of Toronto ‘Works Committee Report 5’

The report also classifies which City services are provided in which lanes, how they are provided and at what frequency. Snow, for example, is removed with salt as opposed to plowing since the lack of storage space for the snow means the windrows generated would prevent access to garages and backyards. Furthermore, the City’s winter maintenance policies call for laneway snow removal to commence only when accumulations have reached 30cm. It is important for the city to keep track of this sort of information since current procedures would have to be amended if laneway-fronting residential properties were permitted.

For nearly ten years, Toronto has produced a set of urban design guidelines for ‘infill townhouses’ which it defines as: “...low-rise, grade-related, attached residential units constructed in rows or blocks.” The city reasoned that infill construction was desirable because the dwellings were “compact, less land consumptive and more energy efficient.” It also recognized the revitalizing power of replacing ‘aging and dilapidated’ buildings with new ones. The Guidelines have two intended uses: to help planners, architects and developers make ‘more informed decisions’ when submitting site plan and re-zoning applications and to help residents and communities understand how new development should fit into their neighbourhood.
Laneway houses and infill townhouses share many characteristics in terms of their size, density and use of existing infrastructure. The guide’s four sections, ‘Streets and Open Spaces,’ ‘Building Location and Organization,’ ‘Building Form,’ and ‘A Comfortable Environment for Pedestrians’ could in fact be a template for new set which address laneway houses directly. One of the concerns raised in ‘Works Committee Report 5’ was that laneway houses “are not in keeping with the physical character of the Neighbourhood” yet the report goes on to support infill development which conforms to the ‘special criteria’ contained within these guidelines. One of these criteria is that: “…it is very important that new townhouses ‘fit’ within the existing context, and minimize impacts on the surrounding neighbourhood.”

There is no reason to suppose that laneway houses would not have to adhere to a similar aesthetic standard.

City of Toronto Development Infrastructure Policy & Standards - Public Local Residential Streets and Private Streets, 2005

Toronto’s roads are categorized into *arterial*, *collector* and *local* streets. These are themselves broken down into *major*, *intermediate* and *minor* streets and *lanes*. Each category has its own set of policies which direct their size, appearance and technical outfit. Section 3.2, Public Street Standards – *Rear Lanes*, sets the standard width of a rear lane to a six meter (6.0m) right of way with half-meter (0.5m) setbacks containing light and electricity standards on each side. It also reiterates that lanes exist to: “…provide vehicular access to parking garages/areas located at the rear of a house.”

The document is not optimistic about extending municipal services to lanes, stating: “There will be no...infrastructure in rear lanes other than street lighting and drainage. There may be some exceptional situations where solid waste and recyclables collection will be carried out...”
from the rear lanes."\(^{57}\)

There also exist however, a set of criteria for the design of ‘private streets’ or ‘mews’ where a project merits the construction of a new street. Where on the smallest city streets (‘Minor Local Residential Streets’) a 16.5m ROW is required (8.0m pavement, 2.0m sidewalk, 3.30m setback), on smaller mews widths can legally be between 8.0m and 9.7m depending on whether a 1.7m sidewalk is included. Furthermore, it states: “...no sidewalk [may be installed] if street is paved with upgraded paving materials, with appropriate drainage and appropriate safe refuge areas for pedestrians.”\(^{58}\) In this case, only the 8.0m ROW – a width not dissimilar to many in the study area – would exist. If servicing issues can be addressed, the policies and standards for mews and private streets could be used as building block towards a new set for residential laneways.

Toronto Housing Charter, 2009

Toronto's housing charter, *Opportunity for All* (2009), reinforces the principles set forth in the *Official Plan* by stating that: "It is the policy of the City of Toronto that fair access to a full range of housing is fundamental to strengthening Toronto's economy, its environmental efforts and the health and well-being of its residents and communities."\(^{59}\) This acknowledges that diverse neighbourhoods composed of residents of differing economic classes are the most favourable way for Toronto to grow.

The Charter calls for all housing constructed in the city to be: "maintained and operated in a good and safe state of repair," a statement which could positively affect the way Torontonians embrace and utilize a laneway system which is currently underused and in need of repair.\(^{60}\) It also calls for housing which allows: “...residents [to] be able to live in their neighbourhood of choice without discrimination.”\(^{61}\) This is important when one considers Stinson and Van Elslander’s calculations indicating it is possible to both construct and inhabit a laneway house for half or two thirds of a regular, street-facing dwelling.

Housing Opportunities Toronto Action Plan, 2010-2020

Toronto’s housing charter is to be implemented using the *Housing Opportunities Toronto Action Plan 2010-2020* (*HOT Action Plan*) – a set of 67 'City Actions' falling under eight strategic themes. Several of these themes underscore policies in the *Official Plan* which call for affordable housing in all neighbourhoods, helping homeless and vulnerable people find and keep homes and assisting individuals and families to afford rents. Other themes address the actual 'bricks and mortar' construction of these
units and the opportunities such development provides. These policies call for: "...family friendly housing spread across the city in quiet, safe neighbourhoods." Of particular interest to this report is Theme 6 – ‘Create New Affordable Rental Homes.’

Theme 6 speaks directly to the construction of individual rental homes and units at a smaller scale. The section calls for the development of 1000 new affordable rental homes annually over the next ten years and specifies how Toronto might accommodate new dwellings (City Actions 46-49). The goal is ambitious and like Vancouver's EcoDensity program, will require action from full-scale neighbourhood redevelopment through the construction of a variety of individual apartments and houses. It is at the lower, more individual levels that Toronto can make the most change since laneway houses do not require large developers or complex construction financing to create small-scale, neighbourhood-friendly units.

The ‘Green Fleet Plan 2008-2011’ part of a larger strategy to: “reduce fuel use, fuel costs, emissions of greenhouse gasses and smog pollutants, and to reduce the fleet’s environmental impact.” Of note for laneway housing advocates is a pledge to invest in: “promising new technologies and practices over time” The policies within the ‘Vehicles’ subheading speak to this in particular:

“2. Contain fleet size and purchase fuel-efficient, right-sized vehicles as a standard practice across all Divisions, if they are commercially available and meet operational needs, specifically:

a) Purchase the right size of vehicle for the job, using small vehicles where they meet operational needs; and
b) Purchase the most fuel-efficient vehicle, or lowest-emitting vehicle, that is commercially available and meets operational needs;”

The Green Fleet Plan is an excellent opportunity for Toronto to re-evaluate the vehicles it assigns to specific tasks. The hesitancy expressed in ‘Works Committee Report 5’ was based partially on a legitimate concern that the City’s garbage trucks and other vehicles would be difficult to maneuver in tight laneways. An expansion of laneway housing would challenge both Fleet Services and Solid Waste Management to invest in a wider variety of vehicles which are able to service all parts of the city.
Summary

These policies demonstrate that while some of the technical aspects of laneway housing are challenging, the desire for the kind of urbanism the typology represents is there at both the provincial and municipal levels. Furthermore, a number of the City’s existing current housing, road maintenance and waste management policies can, with minimal modifications, better-serve Torontonians by lowering costs and extending services. Greater numbers of people can be housed affordably, owners can unlock the true value of their property by constructing a revenue-producing second dwelling and the City would slowly upgrade alleyway environments making them safer and more-pleasant place to be.

What is clear is that while the visionary aspects of planning such as the City’s Official Plan and the Province’s Growth Plan, support intensification and alternative housing typologies, the administrative elements including Toronto’s Zoning By-Law and the Ontario Building Code, deny it. This Euclidean view of a compartmentalized city is unnecessarily restrictive and in some ways, actively fights policies which attempt to direct new growth towards existing urban centres.

Fortunately, Toronto is currently undertaking a ten-year review of the Official Plan to gauge how successful its implementation has been and note where and how things can be done differently. It is also in the process of implementing a new zoning by law, 1156-2010, which harmonizes the by-laws from pre-amalgamated cities in the GTA. These both represent an extraordinary opportunity for Toronto to revisit not just laneway housing, but a host of other alternative densification methods.

![Figure 9: Existing alley condition, image by Nigel Terpstra](image-url)
Chapter 2: Methods

Studying how a city might adopt a foreign building typology is a complex endeavour. The scope of work includes everything from historical back-grounding to policy and legal research to computer modelling and the calculation of future densities. It also requires the researcher to get into the field and become familiar with not only the physical dimensions, but the unique social and communal characteristics that make alleyways special places. A clear methodology, guided by four research objectives and five laneway housing principles (outlined in the introduction) was used to narrow the scope, ensuring that analysis is comprehensive and recommendations precise.

- Increase densities while retaining neighbourhood character
- Increase affordability and choice in Toronto’s housing stock
- Laneway enhancement
- Increase the vibrancy and variety of social life through the block
- Create opportunities for unique and creative architectural expressions

2.1 Literature Review and Best Practices

An initial review of pertinent laneway housing literature is an important first step in familiarizing oneself with the existing dialogue. Here, two studies are of particular interest: the initial exploratory analysis by The Canada Mortgage and Housing Corporation (CMHC), *A Study of Laneway Housing in Toronto* (2002) and *Site Unseen* (2003), a graduate-level studio conducted at the Department of Architecture, Landscape and Design at the University of Toronto. These and other studies will be augmented with more general planning literature and form an important basis upon which this report will draw its own conclusions.

For comparative purposes this report also examines how other places such as the City of Vancouver and State of California have amended laws, streamlined approvals processes and published easy-to-read, how-to guides so that laneway housing could spread with minimal disruption. In Vancouver, the move to accept laneway housing as a 'normal' typology was made in support of the City’s *EcoDensity* Planning Program, a comprehensive set of policies which marry ‘density, design and land use with environmental sustainability, affordability and liveability.’ In California, Bill AB 1866 makes accessory dwelling units a ‘ministerial’ affair meaning that they cannot be prevented if a number of agreed-upon criteria including siting, size, setback requirements and tenancy are met. Since the bill was
passed at the state level and because of the idiosyncrasies of local zoning codes, no set of unified urban design guidelines were drawn up. The task was instead left to individual cities such as Santa Cruz, whose guidelines which are some of the most comprehensive yet easiest-to interpret and have allowed the city to become a leader in ADU development.

2.2 Policy and Legal Background

The report begins with an examination of provincial growth policy documents such as the Provincial Policy Statement (2005), The Places to Grow Act (2005) and The Growth Plan for the Greater Golden Horseshoe (2006). A similar analysis at the municipal level will examine the policies in Toronto’s Official Plan, Housing Charter, Housing Opportunities Toronto Action Plan, 2010-2020 and various urban design guidelines and engineering requirements. These documents call for development which is dense, compact and which capitalizes on existing infrastructure.

Unfortunately, while municipal and provincial growth policies support construction in Toronto’s alleys, the laws governing land-use explicitly deny it. The Ontario Building Code (OBC) and Toronto's Zoning By-Law 438-86 are the legal foundations governing construction in Toronto and contain minimum setback distances, servicing requirements and 'dwelling behind dwelling' conditions which stifle the expansion of laneway urbanism throughout the city.

2.3 Analysis and Design Probe

The typical Toronto block is bound by four streets and is composed of three primary elements: the lane which bisects it, the lots which divide it and the houses which give it life. These elements (lanes and lots) come in a variety of shapes and dimensions depending on the local and historical conditions of the neighbourhood in question. A study area which has as many of these different elements is therefore needed to maximize the applicability of this report’s recommendations so an area bordered by Bloor St (north), Queen St (south), Ossington St (west) and Bathurst St (east) was chosen.

It is necessary to classify and catalogue the lanes and lots by type to assess the advantages and drawbacks of different layouts and determine which combination(s) could best accommodate residential uses. The first two elements, the blocks and lanes, build upon a similar catalogue presented in Site Unseen while the lots further-develop a five-point analytical method from Stinson and Van Elslander’s Study of Laneway Housing in Toronto. The third element, the house, is divided into two sections, the first traces its morphological history while the second examines four completed laneway
projects in Toronto. Each of these case study houses corresponds to a different type of lot in an effort to gain as comprehensive a perspective as possible.

Once a catalogue of lanes, lots and houses has been established the report will tackle directly one of the most contentious aspects of laneway housing: increased density. This report will use a method similar to Stinson and Van Elslander’s to quantify how many new dwellings can fit. The authors used criteria including minimum requirements for severance, firefighting and servicing to determine that within a study area which contained 5,112 lots, 515 lots or between 5 to 10 percent of the stock was ripe for laneway redevelopment. They then extrapolated this data to include all homes in the pre-amalgamation city (123,000) and found that if 5 percent of these lots were redeveloped the city could add approximately 6,150 new affordable homes; if 10 percent were redeveloped the number jumped to 12,300.68

This study will use residential density standards for a number of different building typologies including single-family detached, townhomes, stacked townhomes and row houses were researched and averaged. A number of different densities needed to be studied since no standard currently exists for blocks with primary and accessory dwelling units. Then, an accurate baseline off of which to calculate future densities was needed so a recent set of maps (2011) from the City of Toronto’s Property Data Maps archive was inputted into AutoCAD where the layering tool was used to highlight or hide particular features. Blocks, alleys, residences and garages were counted and recorded in a chart for easy reference.

This data was then used to predict how much denser the area could become if increasing numbers of garages were ‘converted’ to ADUs. Existing and future densities were then added together to reflect the total, combined density of primary and accessory dwelling units. Both gross and net densities were calculated, first using the entire 2.6km² study area and second subtracting the area devoted to streets, alleys and other non-buildable space. These numbers were then compared to the standards researched earlier to quantify how many new homes equal how much new density.

Armed with an accurately mapped and illustrated study area, a catalogue of the blocks, lots, lanes and several sample dwellings and a comprehensive set of density studies, the report presents a set of ‘design considerations’ which address the planning and approval, lot-specific and contextual design, construction and capital and ongoing servicing of laneway houses. These recommendations apply a range of practical solutions to the specific problems outlined by the City.
2.4 Conclusions and Recommendations

The report concludes with a number of recommendations addressing how to move forward from this point. Whereas the ‘design considerations’ presented in the previous chapter address specific nuts and bolts issues around the planning and construction of laneway houses, these take a step back and summarize how to move forward from where we stand today. As such, solutions to gaps in policy, community awareness and engagement, planning and approval, technical and servicing and design are examined in hope that Toronto will re-evaluate its position on laneway housing in the near future.

2.5 Limitations to Study

One major limitation to the analytic method is that while it does give an excellent sense of the raw numbers in terms of the numbers of new dwellings one could insert, it assumes each lot and alley is essentially the same, omitting things like community opposition and servicing and emergency access constraints. To combat this, gross and net densities were calculated at ten even intervals between 0 and 100 percent. This accounts for the fact that while particular alleys may be harder to develop in than others, if a finite number of the total number garages are redeveloped, the increase in density can still be expressed as a percentage.

Another limitation is the size of the alleys themselves. While this report argues that the challenges presented by small urban environments can be overcome, it does recognize the difficulty in doing so. Tailoring vehicles to the environment they will be servicing rather than the environment to the vehicles as is currently done is a simple practice in place all over the world. However, while several of the studies researched in the literature review have noted that Toronto would ‘have to purchase smaller equipment,’ this report seeks to be more precise. By investigating the equipment which the City’s Works and Waste Removal departments already own and operate, one is able to find smaller garbage trucks, snow plows, fire trucks and construction vehicles which are operable in the tight environment of the laneway. The Works Department’s insistence that their fleet must be standardized is a part of the problem but is also understandable given the enormous cost of solid waste and recycling removal. This report contends that ‘fleets’ of these vehicles already exist but are currently assigned to other duties or are used by different department. For example, small garbage trucks, about the size of a full-size pick-up, are currently used by the City’s Parks Department. These vehicles are not foreign and could easily service the City’s lanes. These solutions will be discussed as part of both the ‘design considerations’ in the Analysis chapter as well as the broader Conclusions and Recommendations made in Chapter 4.
Chapter 3: Analysis

Chapter 1 examined the historical formation of Toronto’s urban grid and identified how laneway housing fulfills the targets of a number of municipal and provincial plans. It also looked to literature and case studies to find solutions to the planning, servicing and constructability issues foreseen by the city. Next, we will apply those solutions to a design probe focused on a study area bound by Bloor St (north), Queen St (south), Ossington St (west) and Bathurst St (east). The purpose of this exercise is to examine in detail a diverse section of Toronto which retains the general plan of Simcoe’s original Park Lots to determine how many laneway houses could potentially be added.

The section will begin with a catalogue of different lane and lot shapes as well as an assessment of the advantages and drawbacks of each. From there, maps from the City of Toronto’s Property Data Maps archive are used to calculate how many new dwellings can be accommodated if a certain percent of the garages were redeveloped. These numbers will be combined with the practical solutions found through research and field work and distilled into a number of design considerations which address concerns in both the planning and approval, and construction and servicing of laneway dwellings.

Though they are intended to be read in conjunction with the overall conclusions and recommendations made in the final chapter of this report, the design considerations outlined in this chapter are distinct in that they focus on how Toronto might accommodate laneway housing if it were allowed as-of-right. Conversely, those contained in the final chapter should be interpreted as a roadmap for how the city can get to that point.

Figure 10: A number of existing dwellings, constructed before the current by-law, on Euclid Place, image by Nigel Terpstra
3.1 Getting to Know the Area

One of the fundamental elements of an effective design probe is an accurate set of metrics and maps. These tools allow one to make precise recommendations which can be adopted more broadly as opposed to general conclusions which have to be adapted to a given locale. These illustrations also help show the historical morphology of the neighbourhood, allowing one to see traces of Simcoe’s Park Lot system and the subdivisions which eventually broke it down into the blocks Torontonians are familiar with today.

Section 3.2.1 helps contextualize the study area in terms of its location within Toronto and its approximate size, shape and composition. This section should also be used alongside Appendix II which maps the study area, highlighting a number of features including blocks, lanes and property lines. Emphasizing particular elements gives one a better sense of space and land use in lanes and alleys and helps one visualize how that space could evolve over time.

With a sense of the size and scope of the study area, an assessment of the existing conditions and properties (both residential and commercial) will help readers visualize what the environment of the lane is like. Knowing what things are like today is one of the best ways to advocate for change. Making Torontonians aware not just of the current state of their alleys, but how they can be improved, one is already making progress in turning adversaries into advocates.

Figure 11: Andrews Ave, a zero-lot-line street in the study area, image by Nigel Terpstra

Figure 12: Existing laneway condition, image by Nigel Terpstra
3.1.2 Study Area Metrics

Location: Toronto, Ontario, Canada

Bound By: Bloor Street (n), Queen Street (s), Bathurst Street (e), Ossington (w)

Neighbourhoods: Koreatown, Palmerston, Little Italy, Mirvish Village

Approximate Area (km²): 2.6 km²

Approximate Perimeter (km): 6.6 km

Average Gross Density (u/ha): 11.46

Average Net Density (u/ha): 14.68

Number of Blocks: 85

Number of Named Lanes: 13

Number of Unnamed Lanes: 68

Number of On-Street Dwellings: Approx. 2,981

Number of Garages: Approx. 3,312

Number of Laneway Buildings: approx. 40

Number of Parks: 6

![Figure 13: City of Toronto context, image courtesy of Google Earth](image)

![Figure 14: Former City of Toronto context, image courtesy of Google Earth](image)

![Figure 15: Study area: land use diagram, image courtesy of the City of Toronto](image)

![Figure 16: Study area aerial view, image courtesy of Google Earth](image)
3.2 Block, Lane, Lot and House Catalogue

Toronto’s lanes, lots and houses come in a variety of shapes and sizes. All blocks are unique and while each lane will adhere to one of the shapes listed in 3.1.1, this does not necessarily mean that it will contain one (or more) of the lots listed in 3.1.2.

3.2.1 Block and Lane

Though the inner city’s blocks generally follow boundaries first demarcated by Simcoe’s ‘park lot’ system there are many irregularities within that grid. The lanes which bisect the blocks are equally unique and a variety of shapes exist. These patterns usually correspond to the historic land use patterns on that particular block where, for example, a lane will separate the rear of commercial from the sides of residential properties. A catalogue of these shapes will assist in determining which lanes might best accommodate residential dwellings.

No Laneway – Some blocks do not feature lanes. This condition is not uncommon and is found most often in predominantly residential districts.

5 Blocks in Study Area

Interior Block – Occurs when two sets of parallel lanes intersect to create a mini-block on the interior of a larger one bordered by municipal streets.

1 Block in Study Area

Short Open Laneway – Lane runs parallel to the short axis of the block. This condition is most common when a residential block is bookended by commercial properties along one or both of its short axes. Short lanes are sometimes found in the middle of a block where they ease pedestrian and vehicular access between two parallel streets.

15 Blocks in Study Area
Short Closed Laneway – Lane runs parallel to the short axis of the block but does not penetrate through. These lanes can occur in the middle or at the end of a block.

10 Blocks in Study Area

Long Open Laneway – Lane runs parallel to the longer, north-south axis of the block. Likely the best candidate for residential intensification as service and servicing and emergency response vehicles are not hindered by sharp corners.

0 Blocks in Study Area

Long Closed Laneway – A lane oriented towards the longer, north-south axis of the block which does not penetrate through. Long closed lanes are not likely candidates for housing due to difficulties with servicing and emergency access.

1 Block in Study Area

Lettered Laneway – Lettered lanes come in both short and long varieties and occur when a lane runs parallel to both the long and short axis of the block. Long lanes are always open and cut a letter I, T, C, J, L, or Z through the block. Short lanes can be open or closed and can be shaped like the letters T, J, H, R or L.

20 Blocks in Study Area

Irregular Laneway – By far the most common variety of laneway, irregular lanes occur where the right of way follows an atypical route through the block. Irregular lanes cut a number of different patterns through blocks but are not necessarily unique in form.

33 Blocks in Study Area
3.2.2 Laneway Lots

Laneway lots come in a number of different configurations: corner lot, key lot, slot lot, island lot and through lot. Each presents a unique set of advantages and limitations but all have the potential to be developed for residential use. This chapter will assess these lots building upon a five-point methodology developed by Stinson and van Elslander.69

To simplify the lot analysis a hypothetical block, similar in size and composition to a typical block in the study area but containing all types of laneway lot has been modelled and presented below. The block, which features both commercial (red) and residential (yellow) properties as seen in the land-use map below, has been rotated ninety degrees and each lot has been highlighted in red.

<table>
<thead>
<tr>
<th>Corner Lot</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Corner lots sit at the corner of two lanes and have two lot lines which often face different properties.</td>
</tr>
<tr>
<td>Address</td>
<td>Address is assigned based on which lane features the primary entrance to the residence.</td>
</tr>
<tr>
<td>Access</td>
<td>From lane</td>
</tr>
<tr>
<td>Advantages</td>
<td>Potential for increased fenestration and access. Potential for multiple access points to residence. Increased space for servicing and parking. Increased opportunity for architectural experimentation.</td>
</tr>
<tr>
<td>Limitations</td>
<td>Potential for vehicular damage from trucks and cars turning the corner. Increased surface area makes building more susceptible to vandalism such as graffiti.</td>
</tr>
<tr>
<td>Servicing</td>
<td>From lane</td>
</tr>
<tr>
<td>Prevalence</td>
<td>Very common – lot typology exists wherever two lanes intersect.</td>
</tr>
</tbody>
</table>
Key Lot

<table>
<thead>
<tr>
<th>Description</th>
<th>‘Key lot’ or ‘keyhole lot’ is a house-behind-house condition where access to the rear dwelling is granted by severing a small strip of property beside the primary, street-fronting residence. Direct access to laneway is optional.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>On street</td>
</tr>
<tr>
<td>Access</td>
<td>From street or lane</td>
</tr>
<tr>
<td>Advantages</td>
<td>On street address can make locating the residence easier.</td>
</tr>
<tr>
<td>Limitations</td>
<td>House-behind-house condition is not possible under current by-laws. Property lines can be murky – potential for disagreements over who owns what.</td>
</tr>
<tr>
<td>Servicing</td>
<td>From street or lane. More access for emergency response personnel.</td>
</tr>
<tr>
<td>Prevalence</td>
<td>Not currently prevalent but has the most potential for expansion under current by-laws.</td>
</tr>
</tbody>
</table>

Slot Lot

<table>
<thead>
<tr>
<th>Description:</th>
<th>Occurs at the rear of a severed property and is defined by lane and neighbouring property lines.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td>Laneway</td>
</tr>
<tr>
<td>Access:</td>
<td>From lane</td>
</tr>
<tr>
<td>Advantages:</td>
<td>Increased privacy, independence from primary, street-fronting residence,</td>
</tr>
<tr>
<td>Limitations:</td>
<td>Difficult to sever property.</td>
</tr>
<tr>
<td>Servicing:</td>
<td>From lane</td>
</tr>
<tr>
<td>Prevalence:</td>
<td>Rare due to current restrictions on lot severance.</td>
</tr>
</tbody>
</table>

![Diagram of Key Lot](image1.png)

![Diagram of Slot Lot](image2.png)
<table>
<thead>
<tr>
<th>Island Lot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Address:</td>
</tr>
<tr>
<td>Access:</td>
</tr>
<tr>
<td>Advantages:</td>
</tr>
<tr>
<td>Limitations:</td>
</tr>
<tr>
<td>Servicing:</td>
</tr>
<tr>
<td>Prevalence:</td>
</tr>
</tbody>
</table>

Figure 17: Typical unnamed Toronto lane, image by Nigel Terpstra
3.2.3 The ‘Toronto House’

Detached home ownership has long been promoted as part of the North American dream. From 1906 to 1912, a building boom transformed Toronto from an ultra-compact, urban city to a less-dense ‘city of homes.’ To maximize land while promoting ownership, Toronto’s developers perfected the semi-detached or duplex home as an alternative to more expensive single-detached houses. During this time, the semi-detached home which now typifies many of the city’s streets became the standard form for speculators, developers and owners. The chart below traces the evolution of the Toronto house over a hundred years from the early nineteenth century when a single manor house and a few outbuildings would occupy a park lot to the early twentieth when the lots were increasingly subdivided and rows of townhouses became the defining built form.

![Figure 18: Evolution of the Toronto House from Site Unseen](image)

These homes were constructed according to a formula: “the ‘Toronto duplex’ is long and narrow with a typical height of two stories above grade. A party wall separates one family from the next; a single porch provides two separate entrances to each home. Sitting together, multiple homes appear continuous along the street.” At this time, lanes were embraced by developers as they allowed them to keep servicing functions such as refuse collection and coal delivery at the rear. Though waste removal
has since been returned to the city’s primary streets and we no longer require coal, relatively little of the city’s urban structure has changed from this period. Laneways continue to be used for the servicing and storage of personal transport – albeit automotive rather than equine – and the provision of a secondary space for children to play and adults to socialize.

Figure 20: Typical street and lot dimensions in Toronto, image by Nigel Terpstra

Figure 19: View north up Montrose Ave, a typical residential street in the study area, image by Nigel Terpstra
3.2.4 Case Study Laneway Houses

40R Laneway House – superkül inc | architect

<table>
<thead>
<tr>
<th>Lot Style:</th>
<th>Island Lot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot Size:</td>
<td>12 x 5.4m (64.8m²) or 40 x 18 ft (720ft²)</td>
</tr>
<tr>
<td>Original Site Condition:</td>
<td>Building dates to the 1880s and had been in service as an industrial building for nearly 120 years. Formerly used as a blacksmith shop for the railway, a stable and an artist’s studio.</td>
</tr>
<tr>
<td>Planning and Approval:</td>
<td>By-laws did not allow for additional fenestration, architects had to draw light and ventilation into the dwelling from above.</td>
</tr>
<tr>
<td>Servicing:</td>
<td>Building did not require new capital servicing.</td>
</tr>
<tr>
<td>Construction:</td>
<td>Building was reinsulated and reclad using refurbished panels from the original structure. Materials were reused wherever possible.</td>
</tr>
<tr>
<td>Date of Completion:</td>
<td>2009</td>
</tr>
<tr>
<td>Awards:</td>
<td>2012 Green Building Awards Winning Project; 2009 Toronto Urban Design Awards – Building in Context, Private</td>
</tr>
</tbody>
</table>

![Figure 21: Original Condition image courtesy of superkül inc | architect](image1)

![Figure 22: Finished project, image courtesy of superkül inc | architect](image2)

![Figure 23: Laneway context, image courtesy of superkül inc | architect](image3)

Figure 21: Original Condition image courtesy of superkül inc | architect

Figure 22: Finished project, image courtesy of superkül inc | architect

Figure 23: Laneway context, image courtesy of superkül inc | architect
113R Clinton Street – Astra Burka Architect

<table>
<thead>
<tr>
<th>Lot Style:</th>
<th>Key Lot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot Size:</td>
<td>9.5m x 41.1m (345.45m²) or 31.1 x 134.84 (4,193.5ft²)</td>
</tr>
<tr>
<td>Original Site Condition:</td>
<td>Lot had been severed in the 1950s and was used as a builder’s storage yard. House is located in a unique area in which the lanes have a long history of industrial and residential use.</td>
</tr>
<tr>
<td>Planning and Approval:</td>
<td>Building did not pass the Preliminary Zoning By-Law Review as the use was ‘non-conforming.’ Project was later approved at the Committee of Adjustment. Project is unique in that approval process took only a year.</td>
</tr>
<tr>
<td>Servicing:</td>
<td>Owner initially tried to service the dwelling from the street using the 3.35m keyhole right of way though neighbourhood opposition made this impossible. Owner installed gas, water and sewage services 173m down the lane at a cost of $67,000 (1997). Electricity and cable existed already.</td>
</tr>
<tr>
<td>Construction:</td>
<td>Difficult to construct though this was mitigated somewhat with a design that was simple to construct. Vehicular access and material delivery was complicated owing to the narrow dimensions of the lane.</td>
</tr>
<tr>
<td>Date of Completion:</td>
<td>2000</td>
</tr>
<tr>
<td>Awards:</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Figure 24: Second floor amenity space, image courtesy of Astra Burka Architect

Figure 25: Plan view, image courtesy of Astra Burka Architect

Figure 26: View from street
Laneway House – Kohn Shnier Architects

<table>
<thead>
<tr>
<th>Lot Style:</th>
<th>Slot Lot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot Size:</td>
<td>7.9 x 12.1 (95.59m²) or 26 x 40ft (1,040ft²)</td>
</tr>
<tr>
<td>Original Site Condition:</td>
<td>Lot had been severed but was unused.</td>
</tr>
<tr>
<td>Planning and Approval:</td>
<td>Approval was complex but made easier by the dwelling being located on a named lane (Croft Street). Project required only minor variances from the city yet the process took over six months.</td>
</tr>
<tr>
<td>Servicing:</td>
<td>N/A</td>
</tr>
<tr>
<td>Construction:</td>
<td>Construction was difficult owing to the tight site and narrow lane. Contractor claims it was difficult to get more than two trades on site at one time due to construction scheduling and parking constraints.</td>
</tr>
<tr>
<td>Date of Completion:</td>
<td>2004</td>
</tr>
<tr>
<td>Awards:</td>
<td>2007 Toronto Urban Design Awards – Building in Context, Private</td>
</tr>
</tbody>
</table>

Figure 27: Kohn Shnier laneway house, image courtesy of Kohn Shnier

Figure 28: Section and plan views, images courtesy of Kohn Shnier

Figure 29: Second floor kitchen and living room, image courtesy of Kohn Shnier
Ways Lane House – Diamond Schmitt Architects

<table>
<thead>
<tr>
<th>Lot Style:</th>
<th>Corner Lot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot Size:</td>
<td>8.8 x 13.4m (117.9m²) or 29 x 44 ft (1,276ft²)</td>
</tr>
<tr>
<td>Original Site Condition:</td>
<td>A single abandoned cottage, constructed in the 1870s, existed on site.</td>
</tr>
<tr>
<td>Planning and Approval:</td>
<td>Project involved much public consultation as neighbours felt that a laneway was an ‘undesirable’ place to live and therefore anyone wishing to live there must be equally ‘undesirable.’ Questions of traffic and parking were also raised. Proponent did not appeal to OMB but rather redesigned the dwelling and garnered greater support from the community. Eventually the project was approved by the Committee of Adjustment.</td>
</tr>
<tr>
<td>Servicing:</td>
<td>Gas, water and sewer were fed from the lane with few problems.</td>
</tr>
<tr>
<td>Construction:</td>
<td>Site is on a corner lot making construction easier. Demolition of original structure posed some problems related to material removal by truck.</td>
</tr>
<tr>
<td>Date of Completion:</td>
<td>1997</td>
</tr>
<tr>
<td>Awards:</td>
<td>2001 Toronto Urban Design Awards – Award of Excellence</td>
</tr>
</tbody>
</table>

Figure 30: Ways Lane, image by Nigel Terpstra

Figure 31: Ways Lane House, image courtesy of Diamond Schmitt Architects
3.3 Existing Condition

Right of Way

The study area bound by Bloor, Queen, Ossington and Bathurst Streets contains 85 alleys, each with a unique shape and dimensions. Most are paved in concrete, but a number have been resurfaced in asphalt. The quality of the paving differed significantly by block but conditions were generally unfriendly with cracks, potholes, sunken asphalt and pooled water appearing frequently.

Vehicular storage is currently the overwhelming use in Toronto’s lanes and garages, car ports and open and covered driveways making up much of the lanescape. Most garages are set back from the right of way by one to three meters but a number have been built right to the lot line. The garages themselves vary in age and size from small, peaked-roof structures constructed from wood or brick to large, multi-car facilities in cinderblock or corrugated steel. Most garages feature graffiti and other forms of vandalism with some owners combatting this by commissioning more elaborate and permanent works. Some garages seemed well-used while others showed signs of neglect in the form of weeds, collapsed roofs and accumulated garbage.
Laneway Properties
See Appendix VI for further documentation.

Residential
A number of existing laneway properties exist within the study area. While most of these were built before the current zoning by-laws and approvals process, two dwellings were constructed recently. The existing dwellings range from small, single-occupancy buildings to much larger multi-unit structures. In all instances, the houses seemed to function well and fit seamlessly into the existing context.

The laneway houses observed were constructed over time and from a variety of materials including wood, masonry, cinder or concrete block and exterior insulated finishing systems (EIFS). This unique mix of construction and cladding systems is likely due to the incremental nature of laneway construction where owners are able to expand as funds become available. Doors and garages address the laneway directly and gardens usually fill the small setback between the right of way and the primary façade. Some dwellings featured windows on the ground floor where they were specially treated increase their opacity but most designs kept major fenestration to the upper floors.

Commercial
Though residential dwellings make up the majority of the existing active laneway buildings, the study area also features a small number of commercial properties as well. These include a home-based auto-repair garage, artists’ studio and gallery space and an architectural practice. Though laneway-based commercial and industrial activities are not covered directly in this report, they are a logical next-step once residential uses are permitted.
3.4 Quantitative Studies

When calculating the appropriate density for a given area, planning manuals suggest standards similar to those displayed in the table below:

Residential Density Standards in units per hectare (ha)

<table>
<thead>
<tr>
<th>Dwelling Type</th>
<th>Net Density</th>
<th>Neighbourhood Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-detached:</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>Zero-lot-line detached:</td>
<td>20-25</td>
<td>15</td>
</tr>
<tr>
<td>Semi-detached:</td>
<td>25-30</td>
<td>18</td>
</tr>
<tr>
<td>Row houses:</td>
<td>40-60</td>
<td>30</td>
</tr>
<tr>
<td>Stacked townhouses</td>
<td>60-100</td>
<td>45</td>
</tr>
<tr>
<td>Three-story walk up apartment:</td>
<td>100-125</td>
<td>50</td>
</tr>
<tr>
<td>Six-elevator apartment:</td>
<td>160-190</td>
<td>75</td>
</tr>
<tr>
<td>Thirteen-story elevator apartment:</td>
<td>215-240</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 36: Residential density standards

A similar text suggests that planners remember: “Density and housing types are related. Three housing design features are critical: width of the dwelling unit, width of the side yards and provision for parking.” Furthermore, since this report’s study area contains several neighbourhoods, we must remember that: “A certain density level for a neighbourhood does not mean that all the houses in that neighbourhood correspond to that density. The larger the neighbourhood, the greater the possible difference between the overall average density and the housing type(s) on any particular parcel.” We therefore need to situate the potential densities achieved through the combination of on-street and laneway housing in between the 20 units per ha suggested for ‘single-detached’ dwellings and the 30 units per ha for ‘stacked townhouses.’

Figure 37: Existing laneway dwellings in Toronto, Images by Nigel Terpstra
3.4.1 Calculations

To get an accurate picture of how dense the study area is, two sets of calculations were employed. The City of Toronto Property Data Maps archive reveals that there are currently 2,981 individual residential units and 3,312 garages in the study area. This is consistent with estimates from this report’s field research which observed that around ten percent of dwellings did not feature a garage. Using the same PDM archive, the area of streets, parks and other miscellaneous unbuildable land was calculated and subtracted from the gross number (2.6km² or 260 ha) to give a net value of 2.03km² or 203 ha. Both of these calculations are displayed in the table below.

Gross Density:

<table>
<thead>
<tr>
<th></th>
<th>Dwellings</th>
<th>Garages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,981 residential dwellings in study area</td>
<td>3,312 garages in study area</td>
</tr>
<tr>
<td></td>
<td>/2.6km²</td>
<td>/2.6km²</td>
</tr>
<tr>
<td></td>
<td>1,146 dwellings per km²</td>
<td>1,273 garages per km²</td>
</tr>
<tr>
<td></td>
<td>/100</td>
<td>/100</td>
</tr>
<tr>
<td></td>
<td>11.46 dwellings per ha</td>
<td>12.73 garages per ha</td>
</tr>
</tbody>
</table>

Net Density:

<table>
<thead>
<tr>
<th></th>
<th>Dwellings</th>
<th>Garages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,981 residential dwellings in study area</td>
<td>3,312 garages in study area</td>
</tr>
<tr>
<td></td>
<td>/2.03km²</td>
<td>/2.03km²</td>
</tr>
<tr>
<td></td>
<td>1,468 dwellings per km²</td>
<td>1,631 garages per km²</td>
</tr>
<tr>
<td></td>
<td>/100</td>
<td>/100</td>
</tr>
<tr>
<td></td>
<td>14.68 dwellings per ha</td>
<td>16.31 garages per ha</td>
</tr>
</tbody>
</table>

Figure 38: Laneway and garages, image by Nigel Terpstra
These numbers give an accurate sense of how dense the study area is. Next, we must calculate how much more dense it could safely and comfortably become if a given percentage of the garages were redeveloped into secondary suites. The chart takes the 2,981 existing dwellings and 3,312 garages as its baseline and expresses future densities in units per hectare (u/ha).

<table>
<thead>
<tr>
<th>Percentage of Garages Redeveloped (%)</th>
<th>New Dwelling Units</th>
<th>Total Dwelling Units</th>
<th>Gross Density (u/ha)</th>
<th>Net Density (u/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2,981</td>
<td>11.46</td>
<td>14.68</td>
</tr>
<tr>
<td>10</td>
<td>331</td>
<td>3,312</td>
<td>12.73</td>
<td>16.31</td>
</tr>
<tr>
<td>20</td>
<td>662</td>
<td>3,643</td>
<td>14.01</td>
<td>17.94</td>
</tr>
<tr>
<td>30</td>
<td>994</td>
<td>3,975</td>
<td>15.28</td>
<td>19.58</td>
</tr>
<tr>
<td>40</td>
<td>1,325</td>
<td>4,306</td>
<td>16.56</td>
<td>21.21</td>
</tr>
<tr>
<td>50</td>
<td>1,656</td>
<td>4,637</td>
<td>16.79</td>
<td>22.84</td>
</tr>
<tr>
<td>60</td>
<td>1,987</td>
<td>4,968</td>
<td>19.10</td>
<td>24.47</td>
</tr>
<tr>
<td>70</td>
<td>2,318</td>
<td>5,299</td>
<td>20.38</td>
<td>26.10</td>
</tr>
<tr>
<td>80</td>
<td>2,649</td>
<td>5,630</td>
<td>21.65</td>
<td>27.73</td>
</tr>
<tr>
<td>90</td>
<td>2,981</td>
<td>5,962</td>
<td>22.93</td>
<td>29.36</td>
</tr>
<tr>
<td>100</td>
<td>3,312</td>
<td>6,293</td>
<td>24.20</td>
<td>31.00</td>
</tr>
</tbody>
</table>

Figure 39: Current and potential densities in the study area

These numbers suggest that even with if every garage in the study area were developed, the resulting net density (31u/ha) is still near enough to the ideal numbers presented in planning manuals (between 20-30 u/ha) that Toronto should carefully reconsider its position regarding laneway housing.

Figure 40: Disused interior block warehouse, repurposed into a multi-unit residential complex, image by Nigel Terpstra
3.5 Design Considerations

Introduction
Laneway houses require special attention because of their location in confined spaces with limited privacy. Constructing an attractive and respectful dwelling is however not difficult and many completed examples both in Toronto and abroad demonstrate this. If properly clarified and distilled into a set of urban design guidelines not unlike those for infill townhouses, the challenges facing laneway housing can be easier overcome. Three of the four sections are directed at property owners and design teams while the fourth, ‘Ongoing Servicing,’ outlines areas the City will have to re-examine in terms of solid waste removal and emergency servicing.

3.5.1 Planning & Approval
One recurring theme in both popular and academic literature is how long and cumbersome the current planning and approval process for laneway houses is. One of the primary reasons this is so protracted is that each project is considered in isolation and no set of minimum standards exist to guide the design and construction of laneway dwellings (Appendix IV illustrates the current planning process for a typical project in Toronto). This attitude was reiterated in ‘Works Committee Report 5’ which described laneway housing as: “...not supportable as good planning [and] doesn’t conform to Council’s Official Plan policies for neighbourhoods.” In reality however, the process should be no longer or shorter than any traditional street-fronting dwelling since the only thing to change are the requirements each application must fulfill. Though there are a number of unique planning considerations which laneway housing applications must address, the city could avoid confusion by clearly outlining these issues beforehand.

Density – The municipal and provincial growth policies reviewed in Part I of this report indicate that density is encouraged and should be directed to existing communities and built areas. A wise suggestion forwarded by Stinson and Van Elslander is for the city to calculate densities over both the lot in question but also over the block. This way, planners can better determine how densities are spread more evenly over the city rather than concentrated in a small number of extremely dense pockets.

Scale & Lot Coverage – The scale of a laneway structure is an important factor which goes beyond the sheer size of a building and examines how it is articulated and its relationship with its neighbours. The proportion of mass to void, fenestration to solid, and dwelling to lot size are all important factors in determining whether a building is ‘in scale’ with its context.
Overlook – Privacy is a sensitive issue in a dense city like Toronto. One’s requirement for solitude should however, not deny the expansion laneway housing entirely as adequate policies and sensitive design can easily resolve an unfavourable condition. Carefully placed fenestration, balconies and rooftop amenities can direct views to public areas and away from neighbours houses and backyards.

Parking – Toronto’s Zoning By-law requires a minimum amount of parking per household. Though very difficult to relax, several recent multi-unit buildings have been approved with no tenant parking and only a handful of spots for visitors and car share services. Though a different typology, these developments could be seen as precedent for relaxed parking requirements for laneway dwellings.

Open Space – Proposals must contain a certain amount of open or ‘amenity’ space at the pedestrian level. Unfortunately, the City does not accept rooftop gardens as part of that calculation and laneway properties are forced to cede precious space to openings which may make little contextual sense.

Servicing / Infrastructure – Split into Capital and Ongoing Servicing, each are dealt with individually below.

Though slightly simplified, Toronto’s planning apparatus applies for everything from high-rise buildings to historic restorations to individual renovations. This clumsy, one-size-fits-all approach is emblematic of the current planning process which naturally favours large developers over small scale builders and individual property owners. While it is impractical to suggest a separate planning process for each type of project, a distinct set of by-laws and urban design guidelines must be developed if laneway housing is to be successful on a broader scale. This exact process has happened in the past, for example, with infill townhomes and tall buildings. As existing guidelines already do, those for laneway housing would fit seamlessly into the existing process and would help interested parties minimize expenses by clarifying exactly what is required of their property and their project.

3.5.1 Lot-Specific Design

Laneway houses should respond to a number of conditions unique to their location within the block. Some of these conditions were cited in the Works Committee’s paper addressing “Construction of Housing in Laneways” and include: privacy, shadow, overlook, scale and neighbourhood character.

Corner Lot

Corner lot houses should take advantage of their position at the intersection of two laneways by using large windows on the public faces of the dwelling while retaining neighbours’ privacy by keeping rear facing walls free of fenestration. The sides of the secondary suite facing other dwellings should feature vertical plantings or other features which mitigate the ‘rear of dwelling’ condition.
Island Lot
Island lots generally require no land assembly or severance and are therefore excellent candidates for laneway intensification. Because dwellings feature a lane on three or four sides, issues of privacy and outlook are inherently mitigated. Designs should still respect their neighbours and undesirable outlook and shadow conditions should still be investigated and appropriately accounted for.

Key Lot
Key lots are a common both in the study area and across the city. Key Lots are of particular interest to laneway housing advocates as they are most easily-developable due to their on-street address. Setback distances are an important factor in key lot development since both the lane and street-facing dwellings must balance privacy with the need for open space at grade. Owners may choose to fence off their yard and side access or keep them open so that both properties enjoy a maximum amount of space.

Slot Lot
Many think that slot lots are the only type of laneway lot since they most clearly distinguish between the street and alley-facing sides of a property. Slot lot dwellings should take advantage of the severance the two properties likely enjoy and focus its façade and primary fenestration toward the lane. The wall facing the existing dwelling should feature vertical plantings or some similar treatment to ease the ‘blank wall’ condition created by the dwelling’s rear.

3.5.2 Construction
Constructing a laneway house is a challenging prospect. Because laneway dwellings are generally built right to the property line, there is little space to maneuver large construction delivery vehicles and store spare construction materials. This lack of space also means that dwellings’ footings and foundations are directly adjacent to those of neighbouring properties and extra care must be taken to leave them undisturbed.

Some of these considerations can be overcome with a modular or prefabricated design where pieces of the house are constructed offsite and are simply lifted into place and locked down by a small construction team. This method minimizes disruption on the alley by minimizing the number of machines and limiting the length of time they operate. One downside to a prefabricated design is the size of the truck needed to deliver the pieces.
3.5.3 Design in Context

It is important that dwellings are scaled so that they may appropriately fit into the unique context of the laneway.

As the diagram above illustrates, if designed with care, laneway houses are imperceptible from the street and would therefore not alter the character of the neighbourhood.
3.5.4 Capital and Ongoing Servicing

Capital Servicing

Capital servicing is twofold. If future laneway housing policy suggests that property owners sever their land to create a second dwelling, more extensive subsurface construction will likely be required as connections generally do not cross property lines. Each service provider has a set of minimum distances which must be respected for their equipment to work safely and effectively.

Sanitary and Water – Distributed entirely below-grade in pipes of pre-specified sizes. Owners may choose to service a secondary suite from the street or from the lane, depending on neighbourhood support and cost. Owners can search out government assistance for this in the form of subsidies and tax credits.

Electricity – Delivered above-ground on poles. Many of Toronto’s lanes are electrified making servicing one of the easier aspects of constructing and connecting a laneway house.

Telecommunications – Sub-grade distribution and a complex set of minimum distances make telecommunications servicing difficult to install.

Natural Gas – Also distributed sub-grade, Toronto’s natural gas lines traditionally run underneath the City’s streets. Delivery of natural gas to a laneway property involves either the construction of a new trunk line beneath the laneway or under the property of a street-facing dwelling.

Ongoing Servicing

Ongoing servicing refers to how a City services a dwelling in terms of solid waste removal, snow clearance and emergency vehicle access. Ongoing servicing is a complex issue because it calls on the city to re-examine the way it purchases and operates its vehicles. It would also have to re-examine a current by-law preventing waste collection vehicles from reversing.

Solid Waste Collection – Toronto already owns and operates a number of models of smaller garbage truck which could be adapted to work in the city’s tight laneways. Laneway collection wouldn’t necessarily require the purchasing of new set of vehicles but merely calls for the City’s Solid Waste department to rethink how and where they use existing equipment.

Snow Removal – Snow is currently is removed from alleys with salt as opposed to plows since the windrows pilling up would prevent access to and from garages and backyards. Using smaller machines would reduce the size of these windrows and allow timely snow removal. Like its waste collection vehicles, Toronto already employs small plows with sand / salting devices in parking lots, on sidewalks.
and in other tight spaces. Using these same machines in laneways would be a cost-effective way to ensure alleys are safe for vehicular and pedestrian use.

Emergency Access – Though emergency access by ambulance and police car would pose little problem for laneway houses, because of their size, normal, on-street fire trucks would run into complications. Again however, smaller fire trucks already operate in Toronto so as long as an address is known a dispatcher can easily request such a vehicle to a laneway fire. Ensuring front access or adding interior sprinklers are also ways to mitigate fire damage.

Chapter 4: Conclusions and Recommendations

4.1 **Community Engagement Recommendations**

For Toronto to successfully adopt laneway housing, it will have to do so by engaging and educating communities rather than imposing its will against them. A ‘Laneway Advocacy Group’ such as that suggested by Stinson and Van Elslander is certainly the most important factor in this campaign as it is a grassroots way to connect with residents and understand their fears.

1. A Laneway Advocacy Group similar to that identified by Stinson and Van Elslander must be established. This group would educate communities about the benefits of laneway housing while ameliorating fears of overbuilding and high-densities. As part of its educational work, the group might also highlight successful examples that already exist in Toronto and other North American cities.

2. To augment what is learned in the ‘classroom,’ a series of pilot projects should be constructed to showcase laneway housing and its potential to revitalize forlorn and underused alleys. The group could organize walking tours of these dwellings and arrange special ‘viewings’ during construction.

3. When public opinion and the City of Toronto become receptive to the idea of laneway housing, incorporate into the zoning by-law provisions allowing owners to develop their property under relaxed yet appropriate guidelines. This step will require the creation and distribution of a ‘how to guide’ such as that available in Vancouver.

4. When laneway houses become more common and solutions to issues of servicing and emergency access more mainstream, municipalities should consider allowing laneway houses ‘as-of-right’ in residential by-laws. This final step requires the most work as it calls on planners,
architects, engineers and other professionals to synthesize what has been learned in pilot projects, constructed dwellings and community meetings into a set of laws and urban design guidelines which allow homeowners to build safely and respectfully of their neighbours.

4.2 Planning and Approval Recommendations

While the concerns raised in ‘Works Committee Report 5’ are certainly real, they are not without solutions. While Stinson and Van Elslander found that part of the Planning Department’s resistance was a simple unfamiliarity with the typology but that was ten years ago and with numerous new plans and strategies to guide growth in the city and province, this ‘explanation’ seems more and more out of date. Leading up to the official acceptance of laneway housing in Vancouver, CMHC recommended that planners there interpret: “Regulations and guidelines...more flexibly in order to respond to the unique context [of] each infill proposal in order to respond to the unique context of each infill proposal to achieve the best possible project for all parties involved.” This indicates that the city and its planners are willing to work with residents to make laneway housing and other inventive methods of increasing density a natural part of the urban fabric.

4.3 Technical and Servicing Recommendations

The ‘Engineering and Servicing Considerations’ contained in ‘Works Committee Report 5’ identify several specific technical and servicing requirements which, while complex, are by no means immobile. Fire protection for example can be accomplished by mandating sprinklers in laneway dwellings and easing access to backyards from lanes and street-facing dwellings. The report also claimed that the city’s municipal vehicles such as its garbage trucks were too large to enter laneways, a matter made more complicated by a by-law prohibiting them from reversing. While it seems flip to simply recommend that the city purchase new vehicles, there is much truth to the criticism that the vehicles which service large suburban arterials are probably not the best equipment for inner-city refuse collection. Paying more attention to how specific vehicles are tailored to jobs is an easy way to solve a complicated problem.
4.4 Concluding Remarks

Laneway housing is a powerful urban tool. It is unique in its ability to significantly increase neighbourhood densities while retaining the physical character and social life of the existing community. In nineteenth century cities, industry, commerce and housing shared far closer quarters because at that time, the primary mode of transportation was walking. It was not until the advent of modern, Euclidean zoning regulations and the rise and dominance of the automobile that the traditional built form began to disintegrate.

Fortunately, Toronto did not succumb completely to the allure of the 'modern city' and as a result, retained much of its historic structure and many important buildings. It is also for this reason that some of the city's laneways remain animated with residences, artists' studios, auto repair facilities and other light commercial and industrial uses. These 'servant spaces' also form an important part of the social and psychological fabric of the city and many Torontonians have positive childhood associations with them. It would therefore be a natural evolution to reinforce this semi-hidden social network by returning residential uses to it as well.

Some have criticized the small size of laneway houses and have expressed doubt about their potential popularity with purchasers and renters. This theory however, fails to hold water for Torontonians have been living in small and often hidden away spaces for as long as the City has existed. From the Town of York’s early embrace of the lane not only as a secondary, serving space for the primary road network but also as a place for workers to live and congregate to the present, where smaller and smaller condominium units have increasingly become the new normal.

Laneway housing also speaks to a growing desire to minimize one’s carbon footprint and ‘live small.’ Though the concept of sustainable living was hardly new when the studies this report examined earlier were written, the idea has become much more popular in the past decade. In many ways, cities have responded to this desire. Municipal recycling programs have become more comprehensive and incentive programs have been drawn up to help citizens dispose of larger, more difficult and sometimes more dangerous items.

There are also significant environmental benefits to living at higher densities. Compact cities consume fewer resources since homes can be serviced from less extensive infrastructure, thereby lowering the cost of provision and increasing the number of people benefitting from those services. This growing desire to live in places which are connected and urbane has also been reflected in the housing
market. For decades, developers focused on suburban development at the urban periphery since they were delivering what the market demanded. As purchasers increasingly see ‘urban convenience’ as a priority, developers have had to re-examine where and how they position their products and, more fundamentally, what form those products take. One American study has projected that if current trends continue, there will be a surplus of 22 million large-lot homes (one sixth of an acre and larger) since the demand for low-density, low intensity suburbs is in decline.

Cities have always been strengthened by diversity. Mixing residents of different ages, genders, ethnicities and family structures encourages interaction and fosters tolerance between people who may otherwise disagree. The more difficult question is how does a city grow so that density and diversity are placed at the forefront of the conversation. Studies like Toronto’s Avenues and Mid-Rises Guidelines which work with the Official Plan to put buildings of approximately 8-12 storeys on the mixed-use arterials which form Toronto’s urban structure are evidence that the City is beginning to take its expansion seriously. However, while these initiatives are a large part of the solution, they can also be part of the problem.

Toronto has sometimes been given the description ‘New York run by the Swiss’ since the City has often tented toward bureaucracy and procedure at the expense of the ‘joie de vivre’ which makes cities the vibrant, vital places we desire. The Official Plan is itself evidence of this. While it wisely directs growth to the ‘Mixed Use Areas,’ ‘Avenues,’ and ‘Centres,’ it essentially restricts the city’s ‘Neighbourhoods’ from growth based on the erroneous belief that changing them will somehow disrupt a stable and successful community. The reality however, is that neighbourhoods have never been stable and are always in flux. From the composition of the community to the colour of the houses, neighbourhoods are constantly changing.

What’s more, when Toronto does break the rules, it is almost always to the benefit of the city. When owners began dividing their Park Lots up in the nineteenth century, they were defying an order which stated that they were not intended for urban growth but were to remain as isolated estates for the wealthy and military leaders. The houses that began to appear on the subdivided lots have also constantly been changing, from single family homes which were subdivided into apartments before being reverted to their original condition as consumer priorities and the associated economics shift.

In a recent issue of Spacing magazine, senior editor Dylan Reid attacked this very principle stating: “neighbourhoods are good, but they are not sacred.” Reid notes that the very Annex
neighbourhood where Jane Jacobs resided is itself a diverse mixture of houses and apartments of varying size. This variety of homes allows a greater mix of families and individuals, all of differing ages, sizes, incomes and social statuses to come together and form a community. While it is understandable that residents would likely oppose the construction of a taller building around their homes, they should not base their opposition on the false premise that it will throw their neighbourhood into disarray.

The invisible density that laneway houses provide would be a wise way for Toronto to open up its neighbourhood to development which is sensitive and contextual. It is wise to ensure that new growth in existing neighbourhoods ‘fits in’ to what exists already but blanket restrictions deny them the typological and social diversity which makes them special in the first place. In fact, the small-scale nature of laneway houses means that their urban contribution is even more significant. Where larger, developer-constructed buildings combine properties and reduce individual frontages, laneway homes work to break that scale down and reintroduce the fine-grained environments which pedestrians prefer.

As Toronto embarks on a review of its *Official Plan* it must re-examine many of its long-standing beliefs and be bold enough to experiment with new forms of growth and accommodation. A little over a decade ago Toronto did this by opening up the restrictions on infill development on brown and greyfield sites. The results have been spectacular with many interesting projects making the most of the unique conditions a site provides. More importantly, it was proven that many of the adverse conditions presented as barriers to this form of growth were not permanent and could be overcome with creative engineering and sensitive design. It is time for Toronto to rekindle the spirit of innovation which has driven the City forward in the past and begin to make bold choices about where and how we live.
Works Cited

Policies, Codes & Standards

South Australian Government, Department for Families and Communities. (Feb. 2009). Scoping the Opportunities for Accessory Dwelling Units (ADU) to Contribute to the Supply of Affordable Housing

City of Toronto. (2008, 1 October). City of Toronto Vertical & Horizontal Clearance Guidelines

Studies & Reports

Bridson, Danny; Craig, Joanna; Finlay, Heather; Griffith, Andrae; Kataure, Virpal; Leung, Alex; Pereira, Chris; Szafarski, Adam; Watson, Jesse. (2010). Life in the Lane: Mapping Ward 20 Lanes. Ryerson University: Toronto.

Other

Maps

City of Toronto. (2007). Property Data Maps
Appendix I: Glossary

Accessory Dwelling Unit (ADU): A second dwelling unit constructed on a lot with an existing house or townhouse. The second unit is usually smaller than the main dwelling and can be created in a variety of ways including adding to an existing house, converting an existing garage or constructing an entirely new building.

Block: The primary organizational element in a city’s urban structure. Toronto’s blocks are remnants of John Graves Simcoe’s Park Lot system which divided the City of York into thirty-two, 100 acre lots which were longer on their north and south axis (6,600 ft.) and shorter to the east and west (660 ft.). The majority of these blocks feature commercial properties on the shorter sides to the north and south and residential properties on the longer sides to the east and west.

Brownfield: Underused or abandoned commercial or industrial land which is available for redevelopment. Brownfields may be contaminated from the activities of previous owners such as gas stations or factories but toxins are generally found in low quantities and soil remediation is often possible. In the last decade, brownfield sites have been the focus of a number of financial and planning considerations which give incentives such as tax breaks and expedited approvals processes to developers willing to build on them.

Coach House: In the nineteenth and early twentieth centuries, coach houses were secondary buildings which housed a family’s horses and coach wagon (later their automobile(s). They were also an early form of laneway housing since often the driver and sometimes his family would inhabit the space on the second floor of this structure.

Greyfield: Similar to brownfields, greyfields are properties which are abandoned or underused but which are available for redevelopment. The difference lies mainly in that greyfields do not require extensive remediation but instead bring existing infrastructure such as roads, plumbing or electrical connections, foundations and other structural members which are then rehabilitated and often incorporated into a subsequent project.

Infill Development: New development which is constructed on existing brown or greyfield lots. Infill development is not limited in its scale, from townhouses to office and residential buildings, as long as the project is located on disused land in an already-intensified urban area, it can be considered infill.
Lane / Laneway / Alley: These terms are used interchangeably in this report. A laneway is a service corridor which cuts through the centre of a city block providing access to backyards and garages. An expansion of laneway uses including residential properties fronting on the lane can re-animate underused infrastructure and densify neighbourhoods in ways consistent with their existing built form.

Laneway House: A small, detached, secondary residential dwelling which shares a lot with an existing, street-fronting dwelling but whose frontage faces the rear lane.

Laneway Urbanism: The physical and psychological embrace of a city’s laneways as functioning, multi-use spaces. Laneway urbanism can take many forms including residential uses in the inner suburbs of Vancouver or commercial and food service uses in Melbourne, Australia.

Local Residential Street: The primary organizing element of Toronto’s residential neighbourhoods, local residential streets are classified by City of Toronto’s ‘Development Infrastructure and Policy Standards’ in three categories: major, intermediate and minor. Street types are chosen to meet the role of that particular thoroughfare in relation to the larger block and public realm patterns around it.

Private Street / Mews: A private street or mews is considered acceptable when a lot is deep enough to accommodate more than a single building fronting on a primary, public street.

Right of Way (ROW): An area of land over which people and goods have the right to pass or travel. In the City of Toronto, separate rights of way exist for pedestrians, cyclists, vehicles and transit.

Secondary Suite: A self-contained living unit which can take the form of a basement, garage or attic apartment. Secondary suites can be incorporated into a property’s primary structure or in secondary buildings such as garages or sheds.

Served / Servant Spaces: A concept for diving space in a building devised by the architect Louis Kahn. Servant spaces describe transitory and functional elements such as corridors, stairs, elevators and mechanical passages. Served spaces are the rooms and offices which are the destination spaces in a building. Streets, alleys and lots can be conceptualized in a similar way.

Woonerf / Shared Street: Dutch streets on which pedestrians and cyclists are given priority over motorists. Most woonerfs feature almost entirely passive methods of traffic calming such as planters and other gardens, speed bumps, fine-grained paving schemes and a lack of sidewalks. Woonerfs are similar to British home zones, Australian shared zones and North American complete streets.
Appendix II – Study Area Maps

Figure 42: Study area - Blocks and Lanes, map courtesy of the City of Toronto, modified by Nigel Terpstra
Figure 43: Study area - Blocks, lanes and property lines, image courtesy, map courtesy of the City of Toronto, modified by Nigel Terpstra
Figure 44: Blocks, lanes, property lines and building outlines, map courtesy of the City of Toronto, modified by Nigel Terpstra
Figure 45: Laneway properties. Existing garages are indicated in purple, existing laneway residential properties are indicated in yellow, existing laneway commercial properties are indicated in green, map courtesy of the City of Toronto. modified by Nieel Terstra
Appendix III: Provincial & Municipal Laneway House Supportive Policies

Table 1

<table>
<thead>
<tr>
<th>Places to Grow Act – Laneway Housing Supportive Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1.0 – Building Strong Communities</td>
</tr>
<tr>
<td>1.1. Managing and directing land use to achieve efficient development and land use patterns</td>
</tr>
<tr>
<td>1.1.1. – Healthy, liveable and safe communities – Policies: a, b, c, d, e, g</td>
</tr>
<tr>
<td>1.1.2.</td>
</tr>
<tr>
<td>1.1.3. – Settlement Areas</td>
</tr>
<tr>
<td>1.1.3.1.</td>
</tr>
<tr>
<td>1.1.3.2.</td>
</tr>
<tr>
<td>1.1.3.3.</td>
</tr>
<tr>
<td>1.1.3.4.</td>
</tr>
<tr>
<td>1.4. Housing</td>
</tr>
<tr>
<td>1.4.1. – a</td>
</tr>
<tr>
<td>1.4.3. – a, b, c, e</td>
</tr>
<tr>
<td>1.5. Public Spaces, Parks And Open Space</td>
</tr>
<tr>
<td>1.5.1. – a</td>
</tr>
<tr>
<td>1.6. Infrastructure And Public Service Facilities</td>
</tr>
<tr>
<td>1.6.2.</td>
</tr>
<tr>
<td>1.6.3.</td>
</tr>
<tr>
<td>1.6.4. - Sewage and Water</td>
</tr>
<tr>
<td>1.6.4.1. – a</td>
</tr>
<tr>
<td>1.6.5. – Transportation Systems</td>
</tr>
<tr>
<td>1.6.5.2.</td>
</tr>
<tr>
<td>1.6.5.3.</td>
</tr>
<tr>
<td>1.6.5.4.</td>
</tr>
<tr>
<td>1.6.5.5.</td>
</tr>
<tr>
<td>1.7. – Long-Term Economic Prosperity</td>
</tr>
<tr>
<td>1.7.1. – a, b, c,</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Chapter 2 – Shaping the City Laneway Housing Supportive Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.1 – Building a More Livable Urban Region</td>
</tr>
<tr>
<td>1, a, b, c, d, e, f</td>
</tr>
<tr>
<td>Section 2.2 – Structuring Growth in the City: Integrating Land Use and Transportation</td>
</tr>
<tr>
<td>1, a, b, c, d, e</td>
</tr>
<tr>
<td>Section 2.2.1 – Downtown: The Heart of Toronto</td>
</tr>
<tr>
<td>1, 2, 3a,b 4a, b, 5, 6</td>
</tr>
<tr>
<td>Section 2.3.1 – Healthy Neighbourhoods</td>
</tr>
<tr>
<td>1, 2a, b, c, d, 3, 4a, b, c, 5a, b, c</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Chapter 3 – Building a Successful City Laneway Housing Supportive Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 3.1.1 – The Public Realm</td>
</tr>
<tr>
<td>1, a, b, c, d, 2, 5, 12, 14a, b, c, d, e, f, g, 16a, b, c, d</td>
</tr>
<tr>
<td>Section 3.2.1 – Built Form</td>
</tr>
<tr>
<td>1, a, b, c, d, 5 a, b, c, d, e, f, g, h</td>
</tr>
</tbody>
</table>
Appendix IV: Existing Approvals Process in the City of Toronto

Figure 46: Approvals processes in the City of Toronto, diagram by Nigel Terpstra
Appendix V: Documentation

All photographs by Nigel Terpstra, June and July 2012.

Existing Dwellings
Existing Commercial Properties
Endnotes

3. Zoning By Law 438-86. p. 4
4. Bylaw 438-86 was briefly repealed in 2010 and replaced with Harmonized Zoning By-Law 1156-2010. Shortly after, 438-86 was reinstated by Council after the city received nearly 700 complaints due to ‘conflicts.’ An amended version of 1156-2010 will again go before council in early 2012.
7. Chong, Donald; Shim, Brigitte. *Site Unseen.* (University of Toronto Press, 2003), p. 20
10. Planning Institute of British ColumbiaPIBC Journal – p. 4
13. A second study, not published in their official paper, looked at a home in a neighbourhood where values were upwards of $500,000 and found that the owners had only expended $350,000. - van Elslander - 298B/C Sackville St.
14. ACT Solutions – Building Houses That Front on Alleys. p. 1
15. City of Santa Cruz. *Accessory Dwelling Unit Manual* (Santa Cruz: 2003), p. 3
17. City of Vancouver. ‘Eco Density Charter,’ p. 9
20. City of Vancouver. ‘Eco Density Charter, Section 11. 11.24.9,’ p. 6
34. Province of Ontario. *Growth Pan for the Greater Golden Horseshoe,* p. 22
35. City of Toronto. *Official Plan,* p. 29
36. City of Toronto. *Official Plan,* p. 29
37. City of Toronto. *Official Plan,* p. 32
38. City of Toronto. *Official Plan,* p. 34
40. City of Toronto. *Official Plan,* p. 48
41. City of Toronto. *Official Plan,* p. 48
42. City of Toronto. *Official Plan,* p. 49
43. City of Toronto. *Official Plan,* p. 71
44. City of Toronto. *Official Plan,* p. 45
45. City of Toronto. *Official Plan,* p. 61
City of Toronto. ‘Zoning By Law 438-86.’ (Toronto: 1978), p. 4

Bylaw 438-86 was briefly repealed in 2010 and replaced with Harmonized Zoning By-Law 1156-2010. Shortly after, 438-86 was reinstated by Council after the city received nearly 700 complaints due to 'conflicts.' An amended version of 1156-2010 will again go before council in early 2012.

Bylaw - 4(11) B, C

City of Toronto. ‘Construction of Housing in Laneways’ (Toronto: 2006), p. 4

City of Toronto. ‘Construction of Housing in Laneways,’ p. 2

City of Toronto. ‘Construction of Housing in Laneways,’ p. 4

City of Toronto. ‘Construction of Housing in Laneways,’ p. 4

City of Toronto. ‘Inventory of City Laneways and Level of Services Provided.’ (Toronto: 2005), p. 1

City of Toronto. ‘Inventory of City Laneways and Level of Services Provided,’ p. 1

City of Toronto. ‘Urban Design Guidelines: Infill Townhouses,’ p. 2

City of Toronto, ‘Development Infrastructure Policy & Standards.’ (Toronto: 2005), p. 5

City of Toronto, ‘Development Infrastructure Policy & Standards.’ p. 5

City of Toronto, ‘Development Infrastructure Policy & Standards.’ p. 9

City of Toronto. ‘Toronto Housing Charter.’ (Toronto: 2009), p. 1

City of Toronto. ‘Toronto Housing Charter,’ p. 1

City of Toronto. ‘Toronto Housing Charter,’ p. 1

City of Toronto. ‘Housing Opportunities Toronto,’ p. 27

City of Toronto. ‘Housing Opportunities Toronto,’ p. 34

City of Toronto. ‘Green Fleet Program.’ (Toronto: 2008), p. 3

City of Toronto. ‘Green Fleet Program,’ p. 3

City of Toronto. ‘Construction of Housing in Laneways,’ p. 3

Jeffery Stinson; Terence Van Elslander. ‘A Study of Laneway Housing in Toronto,’ p. 25

van Elslander - Survey of Vernacular Dwellings

Chong, Donald; Shim, Brigitte. Site Unseen, p. 15

Hok Lin Leung. Land Use Planning Made Plain. (University of Toronto Press, Toronto: 2003), p. 113

Hok Lin Leung. Land Use Planning Made Plain, p. 114

Hok Lin Leung. Land Use Planning Made Plain, p. 114

City of Toronto. ‘Construction of Housing in Laneways,’ p. 2

These include but are not limited to the issues raised in Works Committee Report 5.

Jeffery Stinson; Terence Van Elslander. ‘A Study of Laneway Housing in Toronto Part II,’ p. 29

Livable lanes – p. 5