






























































L is about one-tenth of the zone si:e.3 This relationship enalles the code user to
select the shock width IV, usually taken to be about five -one sizes. The input width is
then converted to L = W/50 internally. This form for the linear viscosity has the
property of damping the motion of both contracting and expanding zomes, an advantage in
spherical shock expansion problems, but a disadvantage in spall calculations. Spall,
which involves the free expansion of zones near the surface, cannot be modeled accurately
unless the viscous terms are negligible during expansion. In this case the optional
conventional linear artificial viscosity should be used.

The deviatoric viscosities are determined from
2u .
Q. = C,pcL -y (i=x, z, vz) . 27

The ratio 2u/a is intended to produce greater damping for highly compressible materials
or for those with a high shear modulus.

The final two viscosity terms %, and q, are added, respectively, to the two
momentum equations [Eq. (3)] to control "hourglass" distortion. This is a type of
oscillation in which the zone diagonals are translated in opposite directions. This
oscillation arises because the numerical expressions for the strain rates are unaffected
by this type of distortion. Consequently, the artificial viscosities previously discussed
will not damp this mode of oscillation. As this is purely numerical phenomenon,
expressions for L and q,, which depend on a coefficient CS' will not be given here.
Reference 2 contains a complete discussion.

The artificial viscosities affect the time step through a stability criterion,

CﬂéD

8¢ = ~= (28)

[c™ + 4c2(§-ﬁ)2 + JClz(Au)_z] 172

This quantity is calculated for each zone, and the smallest &t found throughout the mesh
is used as the tine step for the next iteration. C0 is the Courant number and &D is a
number which is approximately the smallest zone dimension. Equaticn (28) is a
generalization of the stability condition proposed by Von Neumann and Richtmyer. If
the first term under the radical is considered alone, Eq. (28) represents the stability
condition for the pure hydrodynamic (hyperbolic) equation. The last two temms correspond
to the volumetric and quadratic viscosities, respectively, and force Eq. (28) to
represent the stability condition for the diffusion equation. This is dome because the
equations of motion [Eq. (3)] reduce to a diffusion (parabolic) equation in the limit of
large viscosities. The stability requirements corresponding to the brittle and ductile

12

relaxation schemes are not presently reflected in the stability calculation.

TENSOR74 problems are often discretized so that small zones are near the energy
source. The zoning is then graded tu larger :zome sizes near the periphery of the
problen. This is usually done in an effort to simultaneously obtain solutions to both
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a finely zoned close-in problem and a coarsely zomed far-out problem. The form of the
volumetric viscosity, however, works against such an approach. First, for the solution
to be stable when the shock reaches the larger zones, L (or equivalently k) must be
chosen to correspond to the size of the larger zones. This means that the problem is
highly overdamped in the region of the small zones where the sheck originates, resulting
in much smaller initial time steps than necessary.

The abdve problel_:_: does not arise in hydrodynamics codes using a conventional linear
viscosity formulation” because L is in effect chosen for each zome by keeping C4 ~ L/6D
constant. In problems with nonuniform zoning, there may be large systematic variations
in the zone size between two regions at the same distance from the source. For such
problems, the variation in artificial viscosity resulting from a conventional formulation
can result in systematic motioms which may be easily confused with a true problem
solution. The elimination of spurious zoming effects such as this is one of the primary
advantages of the viscosity formulation used in TENSOR74.

There exists a compromise between the two methods which is worthy of further
consideration. This involves simply forcing the code to choose L based upon the largest
zone which is active at a given time. In this way, all zones experience the same damping
at tne same time, As the shock wave moves outward, activating more zones, the viscosity
then increases cverywhere as re juired to give a stable solution for the larger zomes.

Finally, the internal energy equation

£E=-pP0 - (35, +5 )8 + (35, +SJ¢_ +25 ¢ (29)

is integrated to arrive at the new internal energy (per original unit volume) for each
zone. As indicated earlier, the appropriate viscosities are adued to each stress in

kq. (29) before the integration.

FUTURE WORK

Much work remains to be dome in the roch mechanics modeling of TENSOR74. In the
near future, we hope to examine the questiom of anisotropy and its modeling with respect
to shear and tensile strength and relaxation, damage, and void closure. The desirability
of the present wunified shear-tensile failure will also be questioned. In conmection
with the relaxation schemes, it will be necessary to examine their effect on stability.
The effect of shear stress on the compaction of porous material will also be modeled.

We plan to formulate a nmew artificial viscosity temsor in the coordinate system of
the principal strain rates. This will replace the present formulation — Eqs. (26) and
(27).

In the area of general code development, we plan to improve the convergence rate
of the existing quasi-static mode of operation, to reexamine the present gravity and

overburden formulations, and to develop new nonreflecting boundary conditions.
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