• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Behaviour and Design of Reinforced Concrete Pipes

    Thumbnail
    View/Open
    MacDougall_Katrina_V_201406_MaSC.pdf (5.150Mb)
    Date
    2014-06-24
    Author
    MacDougall, Katrina
    Metadata
    Show full item record
    Abstract
    The overall objectives of this thesis are to determine if Indirect and Direct Design methods currently used for reinforced concrete pipe are able to accurately predict the capacity of the pipe, to identify discrepancies between the two methods, and to provide potential modifications to the methods to reduce inconsistencies. As part of this investigation, two 0.6 m pipes (nominal strength classes 100-D and a 140-D) and two 1.2 m pipes (a 65-D with Wall B and a 65-D with Wall C) were tested under single wheel pair loading at burial depths of 1.2, 0.6 and 0.3 m. The test pipes did not crack at the applied service load of 110 kN and did not pass the crack width limit until between 2.5 and 4 times the service load. A 0.6 m 100-D pipe was also tested under simulated deep burial and it was found that the calculated test D-Load is 1.9 times greater than the designated D-Load of the test pipe. It was found that both methods were conservative and that the Direct Design method should be modified to more closely align with the Indirect Design. An investigation of the Direct Design parameters found that by considering thick ring theory and the Modified Compression Field Theory with two layers of reinforcement, the required amount of steel from Direct Design could be made to align very closely with the Indirect Design. An additional test was completed to further assess the Direct Design method on a 0.6 m 140-D pipe to measure the pressure around the circumference of the pipe and compare this measured pressure to the commonly used pressure distribution for Direct Design. The results show that at the minimum cover (0.3 m) the test pressure is higher than predicted at the crown, lower than predicted at the invert, and nearly zero at the shoulder, springline, and haunch, which is inconsistent with most of the predicted results at these locations.
    URI for this record
    http://hdl.handle.net/1974/12244
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Civil Engineering Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV